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We present a flexible approach to transfer metallic photonic crystals (MPCs) onto

end facets of optical fibers. The MPCs were initially fabricated on a glass substrate

with a spacer layer of indium tin oxide (ITO), which was used as a buffer layer in

the transferring process. The fiber ends were firstly welded on the top surface of the

MPCs by a drop of polymer solution after the solvent evaporated. The ITO layer was

then etched by hydrochloric acid (HCl), so that the MPCs got off the substrate and

were transferred to the fiber ends. Alternatively, the MPCs may be also etched off the

substrate first by immersing the sample in HCl. The ultra-thin MPC sheet consisting

of gold nanolines interlaced with photoresist gratings was then transferred to cap the

fiber ends. In the later approach, we can choose which side of the MPCs to be used

as the contact with the fiber facet. Such methods enabled convenient nano-structuring

on optical fiber tips and achieving miniaturized MPC devices with compact integration,

extending significantly applications of MPCs. In particular, the fabrications presented in

this manuscript enrich the lab-on-fiber engineering techniques and the resultant devices

have potential applications in remote sensing and detection systems.
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INTRODUCTION

Integration of photonic structures onto the end facets of optical fibers attracted extensive research
interests for achieving miniaturized devices of multifold functions [1–6]. A variety of techniques
have been reported for direct nano-structuring [7, 8] or indirect photonic nano-transferring on the
fiber ends [9, 10]. However, due to the small area of the end facet of an optical fiber and difficulties
in managing flexible fibers in conventional nano-fabrication systems, multiple challenges need
to be overcome in direct approaches. In contrast, it is much more convenient to fabricate high-
quality large-area photonic structures on planar substrates than on fiber ends, therefore, the indirect
techniques generally facilitate more flexible and more promising device engineering. Furthermore,
the indirect methods also lower the requirements on thematerials for nano-structuring. In this case,
all of the challenges are moved to the transferring techniques. Nanoimprinting lithography [11, 12]
and capping with mechanical contact [13, 14] are some typical methods for fiber-end-based nano-
transferring techniques. We have also demonstrated nano-structuring techniques for sensing and
lasing devices [15, 16].

Here we can define direct and indirect transfer methods, where direct transfer means that the
transferred photonic structures are the same as those initially fabricated, however, in the indirect
processes the transferred structures are different from the precursor or the template in materials or
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in the reversal configuration. Thus, nanoimprinting transfer
[10] or masked etching transfer [17] are indirect techniques.
In this work, we demonstrate practical techniques for direct
transferring the precursor metallic photonic crystals (MPCs)
originally fabricated on planar glass substrate to end facets
of optical fibers. A buffer layer of indium tin oxide (ITO) is
crucial for these nano-transferring techniques, which not only
favors high-quality nano-fabrication and nano-characterization,
but also enables easy lift-off between the photonic structures and
the substrate due to its easy dissolution in hydrochloric acid. In
particular, this technique is preferable for batch fabrication with
high success rate.

FABRICATION OF METALLIC PHOTONIC
STRUCTURES

Figures 1A–C show schematically the fabrication procedures
of the MPCs using interference lithography and colloidal gold
nanoparticles, as has been described in our previous publications
[18–20]. Interference lithography using a UV laser at 325 nm
and a positive photoresist (PR) S1805 produced grating structures
with a period of about 425 nm and a modulation depth of more
than 100 nm. Colloidal gold nanoparticles with a concentration
of 100mg/ml in xylene was spin-coated onto the PR grating. After
the sample was heated to about 350◦C for about 20 min, metallic
gratings consisting of gold nanolines interlaced with PR lines
were produced. Figure 1D shows the SEM image of the fabricated
gold nanoline gratings, which is called as one-dimensional
MPCs and is used as the precursor for the subsequent transfer
procedures.

“WELDING” TRANSFER

The so-called “welding transfer” refers to the process fixing the
free end of an optical fiber to the MPCs with the facet of the fiber
parallel to the plane of the MPC substrate. The “solder” here is
the solution of polymethyl methacrylate (PMMA) in xylene with
a concentration of 5 mg/ml. In the process of welding transfer,
an optical fiber was mounted such that the axis of the fiber is
perpendicular to the plane of the above fabricated MPCs with
end facet of the fiber touch the top surface of the MPCs, as shown
in Figure 2A. Then, a drop of PMMA solution was added to the
touching point between the fiber and the MPCs to fill up the gap
between them. The free fiber end was fixed firmly onto the MPCs
by PMMA after the solvent evaporates completely.

The welded sample was then immersed in hydrochloric acid
with a concentration of 20% for about 30 min, as shown
in Figure 2B. After the ITO layer was dissolved into HCl
thoroughly, theMPC structures were thus transferred completely
onto the end facet of the optical fiber. The sample were rinsed in
water and then trimmed to finish the transfer process, as shown
in Figure 2C.

Figure 3 gives a clearer demonstration of the practical
fabrication technique. Figures 3A,B show how the MPCs on a
single piece of substrate can be transferred to a number of fiber
ends. The process in Figure 3A is defined as a batch transfer,

whereas, that in Figure 3B is defined as discrete transfer, where
the MPC layer was firstly divided before the welding process.
Figure 3C shows a finished sample, where the MPC device has
been transferred and fixed onto one end of an optical fiber. The
fiber has core diameter of 400 microns.

LIFT-OFF TRANSFER

In the lift-off transfer, the MPCs fabricated using a photoresist
master grating on a ITO glass substrate was first immerse in HCl
with a concentration of 20% for more than 30 min. The MPCs
interlaced with the PR grating was removed completely from the
substrate after the ITO buffer layer was dissolved into HCl. The
MPC film was then floating on the top of the liquid, as shown
in Figure 4A. The lift-off MPCs was picked up using a plastic
tweezer, and pulled slowly on the surface of water with either
side rinsed by water, as shown in Figure 4B. The photoresist with
enhanced rigidity allows us to perform the rinsing process. A
special holder was designed to pick up the lift-off MPC film from
water. The MPC film was then placed on the fiber end, as shown
in Figure 4C. In the final stage, the MPC film was trimmed to
finish the transfer procedure after the holder was removed, as
shown in Figure 4D.

Figure 5 shows the photograph of a finished sample by
transferring a MPC device to a fiber end with the enlarged facet
image under the optical microscope shown in the right panel. We
can observe strong light diffraction by the MPC at the fiber end.
Clearly, the area of the MPCs on the fiber facet is homogeneous,
indicating excellent contact, and successful transfer process.

OPTICAL PERFORMANCE OF THE
TRANSFERRED MPCs

The optical performance of the transferred MPCs on a fiber
end facet was measured using transmission optical extinction
spectroscopy. Broadband light from a halogen lamp was sent into
the incident end of the fiber. The output at the MPC-structured
end was sent to a spectrometer after passing through a polarizer
sheet. TE polarization is parallel to the gold nanolines in the
MPC grating, whereas, TM polarization is perpendicular to the
gold nanolines. Clearly, localized surface plasmon resonance can
be excited in MPCs for TM polarization. In the transferring
process, PMMA has filled the gap between the fiber end and
the MPCs, there exists a thin layer of PMMA between the end
facet of the fiber and the MPCs. Therefore, waveguide resonance
mode may be excited in the thin layer of PMMA. As has
been investigated extensively, [21–23]. Fano coupling between
waveguide resonance mode and localized surface plasmon
resonance can be observed in such MPC structures. Figure 6
shows the optical extinction measurement results, where the red
and black curves show the measurement results for TE and TM
polarization, respectively. A strong peak at about 650 nm with a
bandwidth larger than 100 nm at FWHM may be observed for
TE polarization, which resulted from the waveguide resonance
mode. We have verified the waveguide-resonance-mode feature
of this optical extinction peak by measuring the spectrum at an
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FIGURE 1 | Fabrication of MPCs using solution processed gold nanoparticles. (A) The photoresist (PR) grating fabricated using interference lithography. (B)

Spin-coating of colloidal gold nanoparticles. (C) The MPCs consisting of gold nanolines interlaced with the PR grating after the annealing process. (D) The SEM image

of the MPCs.

FIGURE 2 | “Welding” transfer process. (A) Welding of the fiber end to the MPCs using PMMA. (B) Etching of the ITO buffer layer. (C) Rinsing in water and

trimming to finish the transfer.

FIGURE 3 | (A,B) Schematic illustration of batch and discrete transfer of MPCs to the end facets of optical fibers, respectively. (C) A practical example of a transferred

MPC device.

angle from the normal of the fiber facet. We observed splitting
of this mode into two peaks, which is a typical feature of the
waveguide resonance mode [24]. Large acceptance range of the

incident angles in the fiber led to the broadband resonance mode.
However, a dip centered at about 750 nm may be observed in
the red curve for TM polarization, as indicated by a downward
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FIGURE 4 | Lift-off transfer processes. (A) Etching of the ITO buffer layer. (B) Rinsing in water. (C) Pick-up of the MPC film using a specially designed holder. (D)

Trim the MPC film to finish the transfer.

FIGURE 5 | The finished transfer of the MPCs to the end facet of an

optical fiber using lift-off transfer with the optical microscopic

observation of the MPCs on the fiber end.

red arrow, leaving two peaks on both sides. Improvements are
still required to narrow the resonance spectrum, so that high
sensitivity may be achieved for potential sensors applications
based on the fiber-based MPCs.

CONCLUSIONS

We demonstrated multiple methods for direct transfer of MPCs
to end facets of optical fibers. High efficiency, high flexibility,
and high simplicity are the main advantages of these methods.
Such kinds of integration of MPCs onto fibers enable a variety of

FIGURE 6 | Optical extinction spectroscopic measurements for

different polarizations. The measurement setup is depicted schematically in

the inset.

applications of plasmonic devices in remote sensors for extensive
purposes, in particular for vibrational or acoustic sensors, and
in compact optical instruments. The transferring methods lay
basis for exploring new techniques for achieving miniaturized
photonic devices. It needs to be stressed that for such MPC
devices integrated to a fibers, it is suitable to develop sensor
needles.
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