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Nanomaterials can provide innovative solutions for solving the usual energy harvesting

and storage drawbacks that take place in conventional energy storage devices based on

batteries or electrolytic capacitors, because they are not fully capable for attending the

fast energy demands and high power densities required in many of present applications.

Here, we report on the development and characterization of novel electrostatic

supercapacitors made by conformal Atomic Layer Deposition on the high open surface

of nanoporous anodic alumina membranes employed as templates. The structure of

the designed electrostatic supercapacitor prototype consists of successive layers of

Aluminum doped Zinc Oxide, as the bottom and top electrodes, together Al2O3 as the

intermediate dielectric layer. The conformality of the deposited conductive and dielectric

layers, together with their composition and crystalline structure have been checked

by XRD and electron microscopy techniques. Impedance measurements performed

for the optimized electrostatic supercapacitor device give a high capacitance value of

200µF/cm2 at the frequency of 40Hz, which confirms the theoretical estimations for

such kind of prototypes, and the leakage current reaches values around of 1.8mA/cm2

at 1 V. The high capacitance value achieved by the supercapacitor prototype together its

small size turns these devices in outstanding candidates for using in energy harvesting

and storage applications.

Keywords: supercapacitor, nanoporous alumina membranes, atomic layer deposition, leakage current, energy

storage, energy harvesting

Introduction

Nowadays, most energy harvesting and storage systems are required to fulfill two main proper-
ties: high electrical energy density (W·h) and high power supplied (W). Batteries can solve the
energy storage problem, but do not reach high enough power density specifications required for
many applications such as electric/hybrid vehicles, renewable sources, portable and consumer elec-
tronics, etc. Nevertheless, the conventional electrostatic and electrochemical capacitors can supply
high power density requirements but sacrificing the energy storage capacity [1, 2]. For these rea-
sons, the researchers’ community is looking for innovative strategies that allow increasing the
energy density of these devices [3–6]. The outstanding properties exhibited by nanostructured
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materials are the key for the next generation of energy harvesting
and storage devices. In order to accomplish with these objec-
tives, the combination of patterned 3D nanostructures together
with thin film deposition techniques are outstanding candidates
to solve the high energy density storage problems, but without
sacrifice the increasing power density requests [7–16]. In partic-
ular, one of the most promising applications of nanomaterials for
energy storage technologies is aimed to the fabrication of elec-
trostatic supercapacitors (ESCs) by taking advantage of the huge
specific surface area of nanostructured substrates like patterned
templates combined with novel thin film deposition techniques
to achieve high capacitance values. These engineered superca-
pacitors show a similar conductor-dielectric-conductor (CDC)
structure to conventional electrostatic capacitors, which are con-
stituted by two conductor (or semiconductor) electrodes and
separated by an intermediate dielectric layer [5–7, 17–21].

The plane-parallel configuration is the simplest type of elec-
trostatic capacitor, where its capacitance can be described in this
case as follows:

C =
κε0A

d
(1)

where C is the capacitance, κ the dielectric permittivity of the
electrical insulator, ε0 is the vacuum permittivity constant (8.85×
10−12 F/m), A is the capacitor area and d is the thickness of the
insulating layer. Therefore, the capacitance is increased in devices
with high dielectric permittivity values, large effective surface
area and reduced layer thickness of the electrical insulator.

When aiming to achieve extremely high capacitance densi-
ties, it becomes necessary to combine the benefits obtained with
a high permittivity insulator material and an increased effective
surface area. In this way, highly hexagonally ordered nanoporous
anodica alumina membranes (NAAMs) are excellent high open
surface-area substrates for being employed as patterned tem-
plates, due to their self-assembled porous structure having well
defined geometrical lattice parameters and with high aspect ratio
values that can be adjusted by controlling the anodization con-
ditions (Figure 1) [3, 22]. The simple production process, low
cost fabrication and easily adjustable morphological parameters
make that NAAMs are currently used in great number of applica-
tions inmaterials science [23–25]. However, the increased surface
area of these NAAM templates requires of the ability to deposit
thin films with conformal coverage and uniform layer thick-
ness on the walls and inside the pores of the high aspect ratio
nanoporous structure. For most thin film deposition methods
this is an extremely difficult task, but the ALD technique can pro-
vide a precise control over the thickness of the deposited layers,
also providing an excellent conformality of the surface coverage
even on surfaces having high aspect ratios. Furthermore, ALD
can be straightforward scaled-up and it offers a facile method for
introducing dopant elements in the deposited materials [26–28].

Both, the top (TE) and bottom (BE) electrodes material must
exhibit good conductivity properties and the bottom electrode
must have a low thickness (tBE) to achieve a remarkable increase
in the capacitance values. For this reason, Al-doped ZnO (AZO)
thin film is a great candidate to constitute the electrodes of the
supercapacitor due to its attractive physical characteristics, such

FIGURE 1 | Schematic view of the cross section of the supercapacitor

engineered onto the NAAM indicating the CDC layered structure and

defining the lattice parameters involved in the capacitance calculation.

Conductive layers of AZO are in red and dielectric layer of alumina in brown.

Outlined are the 3 different contributions to total capacitance of the-designed

supercapacitor prototype.

as excellent thermal stability and low electrical resistivity [29, 30].
The role played by dielectric materials is also relevant for the
capacitor behavior, because the insulating material must have
high dielectric constant and low thickness (tdielectric) to improve
the capacitor capacitance (Equation 1), but if the thickness is too
low, it will lead to the premature breakdown of the ESC. Alumina
(Al2O3) is usually chosen as the insulating layer due to its ability
for being deposited by ALD, its relatively high dielectric constant
(k∼7), exceptional stability and durability [31].

The total capacitance of the supercapacitor prototype
designed on the basis explained above, could be calculated as the
sum of the three different contributions to the whole capacitance,
according to the supercapacitor geometry displayed in Figure 1,
by including the planar space among pores (2), the cylindrical
part of the pores (3), and finally the bottom of the pores (4) [17].

Cplane =
κε0

tdielectric

[(√
3

2

)

(

2rpore + Dint

)2 − πr2pore

]

(2)

Cpore =
2πκε0L

ln
[

(rpore − tBE)
(rpore − (tBE + tdielectric))

] (3)

Cbottom = κε0

[

rpore − (tBE + tdielectric)
]2

tdielectric
(4)

The contribution of the cylindrical part of pores is the major
input to the total capacitance of the supercapacitor device given
by formula (5), while the top electrode thickness (tTE) hardly
influences the total capacitance of the supercapacitor, as it can
be deduced from the Equations (2, 3, 4, and 5). Nevertheless, it
needs to be thick enough to ensure good electrical contact and to
protect the sample surface against external damage.

Ctotal ≈ α
(

Cplane + Cpore + Cbottom

)

(5)
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Herein, we discuss about the fabrication and development pro-
cesses, together the morphological, structural and electrical study
of a prototype of electrostatic supercapacitor. The prototype of
the device follows the same principle as conventional electrostatic
capacitors, but takes advantage of the high open surface area of
nanoporous alumina membranes and the reduced thickness and
elevated dielectric constant of the insulating layer deposited by
ALD. The CDC structure of the ESC was formed by successively
deposited layers on top-surface of a typical NAAM having pore
diameter (Dp) about 65 nm, 105 nm of interpore distance (Dint)
and pore length (L) around 10µm. The conductor and dielec-
tric alternating layers forming the CDC structure of the ESC were
chosen of Aluminum-doped Zinc Oxide (AZO), as the BE and TE
electrodes, with respective thicknesses of 12 and 24 nm, together
with an intermediate insulating alumina (Al2O3) layer having a
dielectric constant between 7–9 and 10 nm in thickness. This ESC
prototype exhibits a high capacitance value about 200µF/cm2 at
the frequency of 40Hz, and a breakdown voltage about 4–5V,
while the leakage current present values close to 1.8mA/cm2 at
1V. The high value of capacitance achieved in the supercapacitor
prototype together with its small size makes these devices out-
standing candidates for using in energy harvesting and storage
applications.

Experimental

Fabrication of NAAM Templates
NAAM templates were fabricated starting from high-purity alu-
minum foil (99.999%, Goodfellow) with a thickness of 0.5mm.
Firstly, the sample was cleaned in isopropanol an ethanol. Then,
the aluminum foils were electropolished in a two electrode elec-
trochemical cell with a mixture of perchloric acid and ethanol
(25:75 vol. %) at 5◦C, under an applied voltaje of 20V. The cath-
ode was a Pt mesh counter electrode in the electrochemical cell
and the aluminum foil was the anodic electrode. An alumina layer
displaying a high aspect ratio honeycomb nanoporous structure
was grown on top of the Al substrate, by following a well-known
two step electrochemical anodization process in 0.3M oxalic acid
at a temperature between 1–3◦C at 40 Vdc, (Figures 2A–D), as
reported elsewhere [32].

As a result, the NAAM template displays a highly spatial and
periodically ordered distribution of the pores with hexagonal
symmetry, having a pore diameter, Dp, about 35 nm, 105 nm of

interdistance among nanopores, Dint , and pore length, L, around
10µm, resulting in a pore density about 1×1010 cm−2 (Figure 3).
Afterwards, the pores were widened by chemical etching in a
weak dissolution of phosphoric acid (5 wt. %) during 35min at
30◦C, thus increasing Dp up to 65 nm. The pore widening aims
to increase the pore size to contain the complete CDC structure
constituting the electrostatic supercapacitor.

Optimization of ALD Growth Rates of Conductive
BE, TE, and Dielectric Layers
In order to determine the growth per cycle ratio of AZO and
Al2O3 layers, different thicknesses of these oxides were deposited
on Si substrates under the same deposition conditions that were
used for NAAM substrates. Figures 4A,B) show the respec-
tive layer thicknesses measured using ellipsometry (black trian-
gles) and profilometry (blue squares) techniques. The thickness
exhibits a lineal behavior with the number of cycles. The growth
per cycle (GPC) of the AZO and Al2O3 layers in ALD expo
mode are 0.188 ± 0.002 nm/cycle and 0.127 ± 0.001 nm/cycle,
respectively, which are comparable values with that reported in
the literature for similar deposition conditions to here employed
[31, 33].

FIGURE 3 | SEM image on top surface of a typical NAAM after the

two-step anodization processes, where it can be appreciated the

self-ordered porous structure with honeycomb arrangement, together

a cross section break showing the parallel aligned longitudinal

nanochannels.

FIGURE 2 | Schematic view of the two-step anodization process

followed during the synthesis of a typical NAAM: (A) starting high

purity Al foil; (B) random pores grown during the first anodization

step; (C) chemical etching of the alumina layer; and (D) highly

ordered porous alumina layer grown after second anodization

step.
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In this work, an Al doping ratio of 20:1 was chosen for the
AZO films. Thus, the real concentration of Al follows the “rule of
mixtures” at low dopant concentrations and it can be estimated
through the expression:

%Al =
GPCAl2O3

GPCAl2O3
+ nGPCZnO

(6)

Where n represents de number of ZnO cycles in the AZO super-
cycle. For the case of the AZO films with n = 20, the estimated
%Al was 3.28%. This value of Al doping concentration can be
considered the most appropriated according to other previous
studies carried out to optimize the microstructure and there-
fore the electrical characteristics of the AZO films deposited by
ALD, in order to obtain high degree of crystallinity, low resis-
tivity and decrease in band gap of the conductive layer [33–35].
The measured resistivity of the AZO films was 1.5× 10−4 �·cm,
which is similar to the experimental values obtained in several
reports [33, 34]. Higher Al contents in the AZO composition
would increase the electrical resistivity due to the transformation
of the conductor AZO film into insulator. In addition, it would
also decrease the mobility and concentration of the charge carri-
ers, thus reducing the electrical conduction properties of the AZO
films [34].

CDC Layered Structure Deposited by ALD on
Nanoporous Alumina Templates
The ESCs were prepared employing the ALD technique by coat-
ing the surface and inner pores of the starting NAAM template
(Figure 5A) with a thin film of AZO as the bottom (Figure 5B)
and top (Figure 5D) electrodes, respectively, and an Al2O3 layer
as the intermediate dielectric (Figure 5C), as it is shown in the
complete scheme displayed in the Figure 5.

The AZO and alumina thin layer depositions were performed
in an ALD reactor (Savanah 100) at 200◦C, using N2 as the carrier
and purging gas, and operating in exposure mode. This oper-
ating mode provides slower deposition processes as compared
to the flow mode, but it is particularly suitable for conformal
depositions on surfaces with high aspect ratio, as in the case of
NAAM templates [36]. Trimethyl aluminum (TMA) and H2O
were used as precursors to deposit the Al2O3 layer at a deposi-
tion rate of 0.127 ± 0.001 nm per cycle to grow a thickness of
10.17 ± 0.07 nm dielectric layer. The AZO films were composed
of alternate 20 cycles of ZnO and 1 cycle of Al2O3. The precur-
sors utilized to deposit AZO were DEZ (diethyl zinc), TMA and
H2O at a deposition rate of 0.188 ± 0.002 nm per cycle. This
provided thicknesses of 11.9 ± 0.1 nm and 23.7 ± 0.3 nm for
the BE and TE, respectively. The trilayer structure CDC reaches
a thickness of 45 nm, but due to the cylindrical shape of the
pore, it constitutes a total thickness of 90 nm, filling completely

FIGURE 4 | Thickness of different AZO (A), and Al2O3 (B), films deposited on Si substrates. The thicknesses were measured by using ellipsometry (black

triangles) and profilometry (blue squares) techniques.

FIGURE 5 | Schematic illustration of the CDC nanostructured layers

deposited by ALD on nanoporous alumina templates for the ESC

fabrication: (A) starting highly ordered nanoporous alumina template;

(B) AZO Bottom Electrode conformally deposited by ALD; (C)

intermediate Dielectric layer of Al2O3; and (D) after ALD deposition of

the AZO Top Electrode.

Frontiers in Physics | www.frontiersin.org 4 March 2015 | Volume 3 | Article 12

http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Iglesias et al. ALD supercapacitors on NAAM templates

the nanopore diameter of NAAM template, as it is depicted in
Figure 5D).

Electrical Contacts
The separated electrical contacts for the bottom and top elec-
trodes were fabricated by masking a part of the supercapacitor
after the first deposition of the bottom electrode with Kapton
tape. Afterwards, the dielectric and top electrode layers were
deposited and after the CDC structure was completely deposited,
the mask was then removed, therefore exposing the bottom elec-
trode. Later on, both the bottom and top electrodes were con-
tacted using a conductive epoxy resin to make two electrical
contacts by separately.

Microstructure and Electrical Characterization
Material characterization was carried out using a JEOL 6610 LV
SEM (Scanning Electron Microscopy) and JEOL JEM 2100 TEM
(Transmission Electron Microscopy), proving the deposition
conformality and layer thicknesses. Structure and compositional
characterizations were conducted using an X-Ray diffractome-
ter and STEM (Scanning Transmission Electron Microscopy).
Prior to TEM and STEM characterization, the NAAM coated
with the CDC structure, was thinned by ion milling with Ar
on the upper and lower sides of the nanocapacitor, employing
a Gatan 691 Precission Ion Polishing System, operated at 3–
5 kV. Resistivity measurements of conductor AZO films were
performed with a four-point probe. Device capacitance and elec-
trical impedance were measured with an Agilent 4294a LCR

meter at frequencies ranging between 40Hz and 100MHz, and
applying 500mV (AC). Likewise, the leakage current and the
breakdown voltage measurements were carried out by means of
a homemade experimental setup consisting of a DC power sup-
ply model Keithley 2400 Source Meter, a variable resistor and
the supercapacitor prototype, all together connected in series.
For each leakage current measurement performed at any cer-
tain value of voltage, it has been waited long time enough (about
1min) in order to ensure the stabilization of the leakage current
value.

Results and Discussions

SEM images shown in Figure 6 summarize the top-view sur-
face evolution of the pore diameter during the successive ALD
depositions of conductive and dielectric layers of the CDC engi-
neered structure that constitutes the electrostatic supercapacitor
prototype, starting from the initial NAAM template displayed
in Figure 6A). The first conductive thin layer was formed by
63 cycles of AZO as the BE (Figure 6B), followed by 80 Al2O3

cycles as the dielectric layer (Figure 6C), and finally 126 cycles of
AZO as the TE (Figure 6D), which verified the correct deposi-
tion rates for the different CDC layers. Moreover, the thickness
measured for the AZO layer at the BE was tBE = 10 ± 2 nm
and the corresponding one for the Al2O3 dielectric layer was
tdielectric = 8 ± 3 nm. These layer thicknesses values were in
good agreement with the fitted ones estimated from the AZO and
Al2O3 GPC.

FIGURE 6 | SEM top view images of NAAM templates showing the

evolution of the pore diameter after successive ALD depositions

for the supercapacitor prototype. (A) top view of the starting NAAM

before the ALD process; (B) after deposition of 63 cycles of AZO as the

BE; (C) top surface of nanopores after deposition of the BE and 80

cycles of Al2O3 dielectric layer; (D) SEM image after deposition of the

complete CDC structure (63 cycles BE + 80 cycles dielectric layer +
126 cycles TE).
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FIGURE 7 | (A) TEM top view image of a planar section of the sample

structure after being carefully prepared for displaying the nanopores

after depositing the CDC structure. (B) TEM image showing the

different CDC layers constituting the supercapacitor: BE and TE of

AZO layers are represented in red color and the Al2O3 dielectric layer

in green. (C) STEM image and (D) compositional analysis along the

line-scan profile of the pore indicated in (C), where it is clearly

evidenced the presence of three elements [zinc (blue), aluminum (red)

and oxygen (green)], which spatially match with the CDC structure

deposited on the NAAM.

TEM top-view images displayed in Figures 7A,B), that were
taken from samples after ion milling of the top and bottom sides
of the CDC structure, confirmed the existence of three concen-
tric layers with the expected spatial distribution and thicknesses
near the values calculated from the GPC. The contrast differ-
ences in the images are due to the different density of both
materials: AZO electrodes mainly composed of ZnO (density
of 5.61 g·cm−3), and the Al2O3 in the NAAM and dielectric
layer (density of 3.95 g·cm−3). Moreover, STEM mode image
(Figure 7C) and compositional analysis profile (Figure 7D) con-
firm the existence of three concentric layers from the pore

center: AZO top electrode, next to dielectric layer of Al2O3

and finally the layer of AZO constituting the bottom electrode.
These experimental results evidence the CDC morphological
structure of the engineered ESC, as schematically described in
Figure 5.

By analyzing with more detail the inner part of the pores,
the crystalline structure of the AZO top electrode can be evi-
denced in the HR-TEM analysis shown in Figure 8A). X-Ray
diffraction analysis shown in Figure 8B), displays the diffrac-
tion peaks corresponding to aluminum substrate and zinc oxide.
However, there are not peaks coming from the alumina due
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FIGURE 8 | (A) TEM image of the inner pore shows the crystalline structure of AZO films, inset corresponds to the SAED (Select Area Electron Diffraction) analysis; (B)

X-Ray diffraction pattern study of the supercapacitor device surface.

FIGURE 9 | Electric characterization of the supercapacitor prototype

and its comparison with a commercial capacitor: (A) impedance

module, Z, and (B) phase, θ , in the frequency range of 40Hz and

110MHz. (C) Capacity and Resistance curves fitted according to a LCR

circuit connected in series in the frequency range between 40Hz and 70 kHz,

for the supercapacitor device.

to its amorphous structure. Using the width of the zinc oxide
peaks and the Scherrer equation [37], it is possible to calcu-
late the grain size of AZO nanocrystals, obtaining a value of 5.6
± 0.6 nm. This value is in agreement with the data extracted
from the selected area electron diffraction spectra (SAED) and
the high resolution TEM image displayed in Figure 8A). The
AZO crystallinity is related with an enhancement of the elec-
trical conductivity and improves the properties of capacitor
electrodes.

The impedance measurements shown in Figures 9A,B, dis-
play the module of impedance and phase behavior for the
supercapacitor prototype and its comparison with a typical com-
mercial capacitor, in the wide frequency range of 40Hz up to
110MHz. The impedance module decreases at low frequen-
cies until it reaches the supercapacitor resonance frequency at
about 2.5MHz. When frequency increases, the module of the
impedance rises up and the supercapacitor exhibits an induc-
tive behavior at high frequencies. This is also the typical behavior
of the impedance in a conventional capacitor, while the values
for the module of the impedance and its resonance frequency
are both lower than the corresponding ones compared with the
supercapacitor prototype.

On the other part, negative values for the phase of
the impedance are reached at frequencies below that of the
supercapacitor resonance, while at frequencies close to 40Hz the
phase of the impedance takes anomalous negative values, but that
does not reach −90◦, as it would be expected for a conventional
capacitor, also displayed in the Figure 9B. Nevertheless, for fre-
quencies higher than the resonance frequency, the impedance
phase increases reaching positive values, which is characteris-
tic of an inductive behavior. The unusual phase performance
at low frequencies could be due to a high device leakage cur-
rent (Figure 10A), which provokes a strong resistive contribu-
tion in the supercapacitor prototype behavior at frequencies near
40Hz.

Additionally, the frequency variation of the capacitance of the
device, which is shown in Figure 9C, has been estimated with
the LCR meter by modeling the supercapacitor behavior with an
equivalent circuit composed by a capacitor, a resistance and an
inductance all together connected in series. This basic equiva-
lent circuit is commonly used to represent the performance of
the conventional capacitors. Maximum capacitance value about
200µF/cm2 is reached at the frequency of 40Hz, which decreases
drastically when the measurement frequency is increased. This
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FIGURE 10 | I–V curves characteristic of the CDC supercapacitor. (A) Leakage current measurement in the low voltage range of 0–1V; (B) cycling performance

indicating the breakdown voltage of the ESC prototype.

property indicates that the future device applications should be
focus on the low frequency range where the supercapacitor pro-
totype exhibits the largest electrical energy storage properties.
Furthermore, by using the Equations (2–5), it is also possible to
calculate a theoretical value of the device capacitance, by intro-
ducing the morphologic parameters of the studied ESC prototype
(rpore = 65 nm; Dint = 105 nm; L = 10µm; α = 1× 1010 cm−2;
tBE = 11.9 nm; tdielectric = 10.17 nm). The estimated calculation
of the capacitance gives a result of 201 ± 20µF/cm2, which is
in good agreement with the capacitance value obtained from the
LCR approach.

In spite of that, the anomalous phase behavior displayed by
the impedance at low frequencies, together the high resistance
value obtained, suggests that the LCR equivalent circuit cho-
sen to represent the behavior of the supercapacitor prototype
may not be the most appropriate for modeling the impedance
response of the supercapacitor device in this frequency range.
Due to the complex engineered structure of the device/sample,
the impedance behavior of the prototype should be adjusted with
another more complicated model of equivalent circuit composed
of serial and/or parallel associations of resistors and capacitors,
as those reported in the literature for other similar prototypes of
supercapacitor devices [38–40].

Leakage current of the supercapacitor device wasmeasured for
different applied voltages, obtaining a linear behavior with high
leakage current values of 1.7mA/cm2 at voltages up to 1V, as it
can be seen in Figure 10A). The obtained leakage current values
are high, which may be a handicap for applications of this ESC
prototype in long-term energy storage applications. The origin of
such high leakage current values could be due to the existence
of local defects in the CDC structure, or chemical impurities
that increase the conductivity of the dielectric alumina layer, as
well as the strong electric field localized at the sharp tips of the
membrane surface. However, different strategies can be further
explored to improve this feature of the ESC prototype, such as by
increasing the thickness and uniformity of the dielectric layer, by
introducing a passivation layer or an anodic alumina barrier to
soften the NAAM profile and get avoided the electrical losses due
to the sharp tips on the membrane surface [12, 18].

Finally, the characteristic current-voltage curve (I–V) shows
a breakdown voltage about 5V, as it can be shown in
Figure 10B. On the upwards curve slope of the characteris-
tic I–V representation, it is noticed that the current increases
forcefully at this value of voltage, indicating the completely
dielectric breakdown in the device. However, in the marked
area between the two discontinuous bars, it is possible to
appreciate that the dielectric breakdown is not abrupt, but it
seems to take place gradually by breaking different parts of
the dielectric layer as the voltage is continuously increased,
which is consistent with the parallel arrangement of individ-
ual nano-capacitors embedded in the NAAM template. Nev-
ertheless, on the slope of the descending curve it can be
observed a higher current flow through the supercapacitor pro-
totype as compared with the upward curve, clearly indicating
the dielectric breakdown and hence, an irreversible damage in
the supercapacitor prototype ability for storing the electrical
energy.

Conclusions

In summary, we report on the fabrication and characteriza-
tion of ESCs by ALD conformal deposition of a CDC engi-
neered structure on the high open surface of a NAAM as tem-
plate. The excellent conformality of both deposited conduc-
tive and dielectric layers, together with their composition and
crystalline structure have been checked by means of different
XRD and electron microscopy techniques. The complete elec-
tric characterization was carried out in the frequency range
of 40Hz up to 100MHz by using a LCR impedance ana-
lyzer. It is found that the capacitance per unit area decreases
strongly with the frequency, but at the low frequency of 40Hz
it reaches about 200µF/cm2. This result is well correlated with
the theoretically calculated capacitance according with the geo-
metric structure of the ESC prototype. Additionally, the fre-
quency dependence of the impedance module and phase indi-
cate that ENCs follow a frequency behavior similar to commer-
cial capacitors, but showing enhanced capacitance areal density.
This comprehensive study is particularly interesting because the
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electrostatic capacitors can usually exhibit higher power den-
sities than compared to batteries, but their capacitive prop-
erties do not degrade over the time such as the electrolytic
capacitors. Looking forward it becomes necessary to improve
the features of the ESC prototype device in order to minimize
the leakage current and breakdown voltage, thus optimizing
the impedance behavior and power density of the supercapac-
itor, but without sacrificing the energy storage density of the
device.
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