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We have studied experimentally the states formed in artificial square ice nanomagnet
systems following demagnetization in a rotating in-plane applied magnetic field that
reduces to zero in a manner that is linear in time. The final states are found to be controlled
via the system’s lattice constant, which determines the strength of the magnetostatic
interactions between the elements, as well as the field ramping rate. We understand
these effects as a requirement that the system undergoes a sufficiently large number of
active rotations within the critical field window in which elements may be reversed, such
that the interactions are allowed to locally exert their influence if the ground state is to be
approached. On the other hand, if quenched disorder is too strong when compared to the
interaction strength, any close approach to the ground state is impossible. These results
show that it is not necessary for there to be any ac component to the field amplitude that
is applied to the system during demagnetization, which is the method almost exclusively
employed in field protocols reported to date. Furthermore, by optimizing the parameters
of our linear demagnetization protocol, the largest field-generated ground state domains
yet reported are found.
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1. INTRODUCTION
Artificial spin ices are patterned nanomagnet arrays designed
to act as analogs of bulk geometrically frustrated materials
[1, 2]. They realize two-dimensional (2D) Ising and vertex ice
models [3–5], in which each single domain element forms an
anisotropic macrospin which can be directly imaged via mag-
netic microscopy. As they are built via nanolithography and
thin film deposition, it is possible to engineer system parame-
ters such as lattice geometry [6], inter-elemental dipolar coupling
strength [2, 3], moment switching behavior [7], and (to an extent)
quenched disorder (QD) [3, 8]. They have hence presented a fam-
ily of systems in which to explore a myriad of phenomena, such as
collective ordering, competing interactions, and fractionalization
[9–13].

Naturally, ground state (GS) access has been a prominent area
of interest [14, 15]: one wishes to know whether or not a system
behaves as designed. Furthermore, the square ice GS, shown in
Figure 1A, provides a background for energetically well-defined
magnetic charge defects [16, 17], hence the reliable generation
of GS order could lead to studies of defect creation and manip-
ulation. More generally, the repeatable experimental access of
well-defined states is of its own interest and is further com-
plementary to numerous current studies, e.g., of ferromagnetic
resonance in nanopatterned magnetic structures [18–20] and
numerical simulations of ordering processes [21–25].

Until recently [26–28] the most successful route to GS ordering
in square ice involved the thermalization of NiFe islands during

early stages of material deposition when the moment volumes
were small [3, 17]. As their thickness increased, thermal dynam-
ics of the macrospin lattice slowed down and ultimately blocked,
locking-in order [29, 30]. Applied fields are hence required to
promote any subsequent reconfiguration of such frozen systems
following this single-shot anneal.

Rotating field protocols have proved a reliable and repeat-
able method for experimentally controlling magnetic states via
“effective thermodynamics” [4]. Whilst ac field profiles were
reported as superior [31], only short range GS correlations could
be produced in quasi-infinite patterns [2, 14]. Although this is
the most commonly employed protocol, the parameter space is
large and has not been extensively and systematically explored.
Constant magnitude rotating fields have recently helped eluci-
date reconfiguration processes at work during such protocols
[22, 32] and emphasize the crucial influence of QD [23, 33, 34]:
unlike the Ising systems they mimic, such patterned systems
possess an intrinsic distribution of macrospin properties due to
unavoidable random variations imparted by the fabrication pro-
cesses employed. Non-rotating fields have also generated varying
amounts of GS order [35, 36]. For all field profiles, a critical win-
dow exists in which non-trivial dynamics are allowed, defined by
the interplay between QD and dipolar coupling.

Here we apply a simple rotating linearly-decreasing field pro-
tocol to square ice systems similar to those discussed. Results of
such a protocol have been previously reported, but not in exten-
sive detail [31]. Using magnetic force microscopy (MFM), we look
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in detail at the effects of varying both the system’s lattice constant
and the protocol ramping rate on the magnetic states achieved.
We observe effective control of GS ordering strength without the
need for an oscillating field and produce the strongest GS order
yet reported for field-driven dynamics.

2. MATERIALS AND METHODS
2.1. SAMPLE FABRICATION AND FIELD PROTOCOL
Samples were fabricated by electron beam lithography using a
JEOL 6300 system and evaporative metallization, as described
previously [17]. Elements were 86 nm by 280 nm in area, pos-
sessing a thin film structure of Ti(3 nm)/NiFe(26 nm)/Al(2.5 nm).
Each element forms a single domain anisotropic macrospin, with
a bistable dipolar moment. Samples each spanned total areas of
2.5 mm × 2.5 mm. Two sample batches were studied: batch 1
consisted of five arrays with lattice constants of a = 500 nm to
900 nm in steps of 100 nm, and batch 2 consisted of two arrays
with a = 400 nm and 500 nm.

Magnetic states were prepared by the application of an in-
plane magnetic field of magnitude Ha which decreased in a linear

FIGURE 1 | (A) The square ice ground state. Each magnetic nano-element
possesses an Ising-like moment, as indicated by arrows. The dashed box
indicates a structural unit cell (with lattice constant a) containing a single
vertex, which possesses an area of a2. An example of a pair of 1st nearest
neighbor moments is emboldened. Cartesian axes are also defined with
reference to the sample frame. (B) The 16 vertex model of square ice.
Vertices can be arranged into four types Ti in order of increasing energy,
i = 1–4, respectively.

fashion from ≈ 1300 Oe to 0 Oe, at a rate r = dHa
dt , whilst the

sample rotated around an axis normal to the sample plane at
close to f = 42 Hz. A schematic of the protocol as well as an
example of an experimentally measured field profile are shown
in Figure 2. As for previous studies [2, 21], this protocol oper-
ates within a regime in which the micromagnetic response of the
system’s constituent nano elements to the time-varying field they
experience is expected to occur on time scales significantly faster
than the utilized rotational period, hence the dynamic response of
an island’s magnetization occurs effectively instantaneously. For
clarity, note that the following results will be discussed from the
sample reference frame. Such a protocol ensures states are ini-
tially reset with each application, with bulk array coercive fields
of Hc ≈ 600 Oe, and a switching window of ≈ 100 Oe (hys-
teresis measurements for the a = 500 nm sample of batch 1 have
previously been presented [37]; such values are typical for nano-
magnets of the dimensions used here [21, 31] and vary little with
a [38]). These values are also indicated in Figure 2. Magnetic
states were imaged using MFM over ∼5 evenly spaced areas each
of ≈13 µm ×13 µm. Our images are colored (using the WSxM
software [39]) such that each nanomagnet appears as a dumb-
bell of red and blue contrast, as drawn in Figure 1, indicating the
north and south magnetic poles, respectively, allowing moment
configurations to be fully inferred. Unless stated otherwise, sta-
tistical error bars presented are calculated as the standard error
over the collection of images for a given sample and field protocol
realization.

2.2. VERTEX MODEL INTERPRETATION
The square ice system is well-described by a 16 vertex model,
Figure 1B. Four degenerate configuration types can be formed by
the four moments converging at a vertex, Ti for i = 1–4 in order
of increasing energy [2]. The GS is defined by a chess-board tiling

FIGURE 2 | Applied field protocol example. (Inset) A sample is rotated
about an out-of-plane axis at f = 42 Hz whilst and in-plane field Ha is
applied. Ha is ramped down from 1300 to 0 Oe in a linear fashion, as shown
in the main plot for a ramping rate of r = 6 Oe/s (red solid line). The black
solid line indicates the coercive field of such samples, Hc ≈ 600 Oe, and
the dashed black lines indicate the estimated intrinsic macrospin switching
field distribution width of ≈ ±100 Oe centered about Hc .
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of T1 vertices, Figure 1, which, crucially, is twofold degenerate.
This state presents a background for well-defined magnetic chain
defects consisting of magnetically charged “monopole” excita-
tions in the form of T3,4 vertices, which possess an excess of
north or south polarity, connected by energetic strings of T2 ver-
tices. Such chain defects can exist as isolated excitations flipped
out of the GS background [40], or as part of domain wall struc-
ture separating two continuous regions of opposite GS phase
[3, 17, 32]. Whilst both T1,2 obey the 2-in/2-out ice rules, they
are energetically split by the square ice geometry.

3. RESULTS
3.1. MAGNETIC STATES vs. LATTICE CONSTANT
Figure 3 shows a series of MFM images of states prepared for
r = 6 Oe/s, with a shown in each case. For clarity, regions con-
tinuously tiled with T1 vertices are boxed and tinted red or blue,
indicating whether they belong to one possible GS phase or
the other. What is immediately apparent is the variety of states
achieved. For largest a, states appear magnetically disordered. As
a decreases, small GS-ordered regions emerge, becoming clear
to the eye at a = 700 nm, existing within a disordered-looking
matrix of higher energy vertices. By a = 500 nm, the order is typ-
ified by sizeable continuous GS domains spanning many vertices
and separated by narrow domain wall structures the width of a

single vertex, much like those observed following thermal order-
ing [3, 17, 26–29, 32] and in square ice simulations [24]. For
a = 400 nm, these features are only enhanced. Here interaction
strength is being varied against a close-to-constant intrinsic island
property distribution (assuming little variation in patterning as a
is changed).

Also quoted in Figure 3 are the normalized digital magneti-
zation components mx,y along the respective x−, y−directions
as defined in Figure 1A. Here we assume identical point Ising
dipoles. Previous discussion of a similar linear protocol reported
a large variation in the net magnetization of states achieved for
similar samples and protocol parameters, however, this observa-
tion was never explained or understood [31]. Here we observe
a tendency for demagnetization to improve as a decreases,
attributable to stronger interactions promoting the formation of
zero-moment T1 vertices.

Figure 4 shows the corresponding vertex type populations, ni

for i = 1–4, as a function of a. Populations are non-random over
all a, as ni are not given by their multiplicities qi, plotted as dashed
lines in Figure 4A. Throughout this series, vertex populations
mainly shift from n3 to n1, being respectively, equal to 0.36 ±
0.01 and 0.24 ± 0.02 for a = 900 nm, and 0.073 ± 0.003 and
0.628 ± 0.009 for a = 400 nm. n2,4 stay approximately constant
at n2 ≈ 0.33 and n4 ≈ 0. It is clear that the observed behavior

FIGURE 3 | MFM images of square ice states prepared by a linearly

decreasing rotating in-plane field. Scale bars represent 2 µm. Samples
were rotated at f = 42 Hz, and the field was ramped down at
r = 6 Oe/s. As the lattice constant decreases from a = 900 nm to
400 nm, strong ground state order emerges in the form of well-defined

domains, which are boxed and tinted red or blue to indicate the two
GS phases. The normalized digital magnetization components mx,y are
quoted and standard errors are expressed in brackets at their
corresponding significant figures. Note, all images are of samples from
batch 1 except for a = 400 nm.
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FIGURE 4 | (A) Vertex populations ni for i = 1–4 vs. lattice constant a. Dashed lines represent the corresponding random-state values, as given by multiplicities
qi . (B) The corresponding mean areal domain size Nd . Data points for batch 1(2) are open(filled).

with a is qualitatively similar to that of thermally annealed square
ice systems: the GS domains are comparable in form [3, 41].
Furthermore, the data for a = 400 nm shows the strongest GS
order yet reported following field-driven dynamics.

The maximum n1 population yet reported following ac
demagnetization of quasi-infinite square ice is 0.35 [2]. Whilst
the ac demagnetization protocol was further optimized in later
studies [14], this work addressed exclusively pairwise correlation
between elemental magnetizations. If a correlator C is defined
as ±1 depending on whether two first-nearest-neighbor elements
(as illustrated in Figure 1A) are favorably or unfavorably aligned,
respectively, at a = 400 nm we find a value of 〈C〉 = 0.618 ±
0.009, averaged over all such pairs imaged. This compares with
roughly 0.5 ± 0.02 for the previously reported ac demagnetiza-
tion study [14]. Furthermore, whilst rotating and non-rotating
field demagnetization experiments on finite area square ice pat-
terns have also been shown to generate significant n1 populations
[21, 35, 42], finite size edge effects are expected to have played a
significant role in the onset of coherent ordering [22], which will
be absent from our “bulk” measurements.

For completeness, note that our two a = 500 nm samples
possess similar statistics, however, they are statistically distinct,
indicating the subtle difference between sample batches as men-
tioned in previous reports [17]. The protocol was also repeated
two or three times for each sample, yielding consistent results (not
shown in Figure 4 for clarity).

To directly characterize the observed domain structure, we
define the normalized mean areal domain size, Nd, as the aver-
age number of T1 vertices in continuous contact within a domain
(calculated cumulatively over all MFM images for a given param-
eter set, along with a standard error). A vertex contributes a unit
area a2 to a domain, as shown by a box in Figure 1A. Shown in
Figure 4B, Nd steadily increases from 1.9 ± 0.1 at a = 900 nm
to 11.3 ± 0.9 at a = 400 nm. The value of Nd for a random
state equals 1.32 to 3 significant figure, as indicated in Figure 4B
by a dotted line, which would be expected for a demagnetized

non-interacting system in the limit of a → ∞ (This was calcu-
lated by averaging the statistics of pseudo-randomly generated
square ice states, 200 × 200 vertices in size, over 30,000 real-
izations). Note, we follow recent studies of dipole domains in
nanomagnet arrays [5], neglecting the finite field of view in the
calculation, which will act to reduce the measured size of edge-
straddling domains. While our domains could be interpreted in
terms of dipoles which belong to either phase of the GS, the ver-
tex picture is more appealing as the T1 vertex is the natural object
of interest in this study.

It is interesting to consider the means by which the observed
order should form during the field protocol. The evolution of
order will be governed by whether or not the net local field
experienced by a given macrospin overcomes its intrinsic switch-
ing barrier as Ha evolves in time. This is indeed a non-trivial
many-body problem requiring the attention of simulations or
“real-time” microscopy studies, beyond the scope of our present
report. Despite this, we can make general inferences based on the
state-of-the-art. As we will discuss, this is a problem involving
the balance of three magnetic field scales defined by interaction
strength (controlled by a), QD, and r.

Two trivial field regimes must exist: one where Ha is so large
that all macrospins track it, the other where Ha is too low to allow
any dynamics at all. In the crossover between these two regimes
the non-trivial regime of interest exists, both interactions and
QD influencing its width. This region is illustrated in the plot
of Figure 2. The most influential interaction is that between first
nearest neighbors, as indicated in Figure 1A. The field strength
H1 can be calculated assuming point Ising dipoles with moments
μ = VMs, a prismatic volume V and the saturation magnetiza-
tion of NiFe Ms = 860 × 103 A/m. H1 varies from ≈ 40 to 4 Oe
as a increases from 400 to 900 nm, respectively. For QD, recently
a width σ = 1.25H1 was estimated for a Gaussian distribution
of intrinsic switching fields in similar patterns with a = 400 nm
[21], hence σ ≈ 50 Oe. This estimation is expected to be repre-
sentative of all a studied, as similarly fabricated patterns studied
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by MOKE magnetometry were reported to show little variation in
the width of the field range over which their net magentizations
reversed as a function of a [38], implying that extrinsic perturba-
tions to magnetic reversal of the constituent nanoelements, such
as pairwise interaction disorder, are a much lesser contribution to
this width.

In dc field reversal, a picture of propagation of defected vertices
across a background state via the sequential flipping of underlying
moments is often invoked [12, 35, 36, 43]. In our protocol, we can
consider there to be a background of “loose” spins which track
the field. As Ha drops through the critical field window, increas-
ing numbers of moments will lock out due to local stabilization.
Initial nucleation of order will occur at random sites defined by
QD. Correlated order can then form around such nucleation sites
due to dipolar interactions. Simulations have showed that at opti-
mal values of Ha spin flip dynamics increment every 1/4 turn
in constant-magnitude rotating field protocols [21, 22], proceed-
ing via the creation, propagation and annihilation of oppositely
charged T3 vertex pairs, and the same is anticipated for our lin-
early decreasing field profile. The field step every 1/4 turn, �Ha,
is hence a third relevant scale, influencing which moments might
or might not freeze. For r = 6 Oe/s and f = 42 Hz, �Ha =
0.036 Oe. Tuning r is hence expected to be a means of control-
ling the order in a given sample, crudely defining an “annealing
time.”

3.2. MAGNETIC STATES vs. FIELD RAMPING RATE
To further study these ideas we explore the effects of parameter r
on the states formed. We test this for two samples from batch 1,
the densest and sparsest patterns, with a = 500 nm and 900 nm,
respectively. The crucial difference between these two samples is
the interaction strength. Both should, however, possess a simi-
lar intrinsic distribution of moment properties, hence, the effects
of QD should be much more prominent for the latter sample,
in which interelemental coupling is relatively weaker. Rates of
r = 0.3 Oe/s, 3 Oe/s, 6 Oe/s, 60 Oe/s, 300 Oe/s, and 600 Oe/s were
used.

Figure 5 shows MFM images for a selection of four values of r
for the a = 500 nm sample, and two images for the a = 900 nm
sample with smallest and largest r, respectively. All states were
found to be adequately demagnetized, as quoted, with a con-
sistently higher moment for a = 900 nm. Again, a shorter a has
resulted in better demagnetization. Figure 6 shows (A) ni and (B)
Nd for both samples.

For r = 0.3 Oe/s and a = 500 nm, the strongest GS order
and largest average domain size are observed, again with nar-
row domain walls. Here n1 = 0.62 ± 0.09 and Nd = 11.3 ± 1.4
vertices (statistically similar to the state of a = 400 nm and r =
6 Oe/s discussed previously). As r is increased, the domains
shrink in size. Whilst continuous T1 domains are never fully
suppressed to a random-state size, a messy matrix of T2,3

FIGURE 5 | MFM image series of square ice states for varying

ramping rates r for the a = 500 nm and a = 900 nm samples of

batch 1 (as quoted). Scale bars represent 2 µm. The two GS phases
are indicated by boxes tinted red or blue. For a = 500 nm, decreasing

r enhances the formation of GS-ordered domains, whilst increasing r
promotes more disorder and T2,3 vertices. For a = 900 nm, little
variation is observed with r , indicating the relative strength of QD in
the system.
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FIGURE 6 | (A) Vertex populations ni vs. ramping rate r for samples with a = 500 nm (filled symbols) and a = 900 nm (open symbols). (B) The corresponding
average domain size Nd . Dashed lines represent the limiting random-state values.

structure develops by r ≈ 600 Oe/s. Here, n1 = 0.41 ± 0.01 and
Nd = 3.4 ± 0.2.

This observation is consistent with the picture that more active
rotations within the critical field window allows for increased
incremental propagation of T3 vertices, which has allowed them
to travel further and find opposite charges with which to anni-
hilate, increasingly forming coherent GS domains in their wake.
Once domains are established, they may further evolve or coarsen
by motion and annihilation of T3 vertices along their walls
[23, 32]. As r increases, there is less opportunity for T3 ver-
tices to travel before becoming trapped by the decreasing of Ha.
Interactions are still clearly important at r = 600 Oe/s, as few T4

vertices are found, however, the system is simply not active for
long enough to allow for strong GS order formation. This state is
not dissimilar to the a = 600 nm and 700 nm states for r = 6 Oe/s
discussed previously. Tuning �Ha appears to influence the extent
to which interactions can generate correlated GS order.

For the a = 900 nm sample only very weak effects are
observed. For all r, GS order is weak. Whilst there is some evi-
dence of GS order enhancement on reducing r, this is far from
conclusive. At r = 600 Oe/s, �Ha = 3.6 Oe which is ≈ H1(a =
900 nm) hence local variations in field due to interactions may
not be allowed to play a significant role in ordering. Interactions
are, however, not irrelevant as n4 is suppressed for all values
of r. Below r = 6 Oe/s, even though �Ha � H1, QD must dom-
inate the behavior via the local variation in macrospin properties
as σ 	 H1. The effect of QD can be emphasized by compar-
ing states for parameters sets (a = 500 nm and r = 3 Oe/s) and
(a = 900 nm and r = 0.3 Oe/s). �Ha/H1 are very similar in these
two cases, however, the final states achieved are clearly very differ-
ent. Neither state is random, however, the relative scale of QD is
much greater in the latter.

It is further interesting to compare these results with previ-
ous reports of ac demagnetized square ice states. It was reported
that ac demagnetization was notably superior to linearly ramped
field demagnetization [31], despite few details of state statis-
tics being given. Here, using a linear field, we report a closer
approach to the GS than those reported for ac demagnetization
[2, 3, 14]. Whilst this at first appears to be contradictory, this

can also be understood by considering the effects of QD. The
samples used in our current study which have the strongest GS
order possess less QD relative to the interaction strength, mean-
ing that stronger coherent ordering has been allowed. Evidence
for this can be found by comparing various electron microscopy
images of experimental square ice patterns previously reported
[41, 44].

4. DISCUSSION
To conclude, this rotating linearly-ramped applied field protocol
has been shown to produce effective and repeatable formation of
GS ordered domains in square ice systems. It is simpler to imple-
ment than the ac rotational demagnetization method [31], but
can yield superior results in terms of approaching the GS.

Whilst field-driven demagnetization is not as effective at larger
a, we have shown here that the field ramping rate is crucial, which
determines how many active rotations a system undergoes whilst
the applied field lies within a critical dynamical window. Whilst
this is also true of ac field profiles applied to rotating systems, an
oscillation of the applied field (as observed in the laboratory ref-
erence frame) is unnecessary in forming well-demagnetized states
possessing strong GS-order. The extent of GS domains, as quanti-
fied by an average GS domain size, is the strongest yet achieved by
field-driving reported in experimental literature, attributable to a
significant degree to sufficiently high ratio of interaction strength
to QD.

The observed tuning of domain structure in the final states
achieved by relative levels of QD is consistent with the results of
numerical simulations [24]. Finding a means of influencing the
levels of QD present [3, 8] is hence important for future studies
of field- and thermally-driven systems. Further work is needed to
better compare the various protocols employed, and understand
the subtle difference between their driven dynamics. This can be
further supported by numerical simulations, to understand how
final states and “effective equilibrium” are approached.

Further work could also involve studies of the effects of field
profile parameters, as well as the synchronization of field step with
sample rotation. Furthermore, in our samples, the domain size is
large enough and the domain walls are narrow enough to further
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study how GS ordered regions and defects respond to applied
fields.
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