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Introduction: Thiarubrine A, a fascinating class of linear carbon chains, can be
extracted from certain plants and are known for their photolabile pigment
properties.

Methods: In this study, a modified Hückel method to investigate the optical
properties of thiarubrine A has been employed, determining its absorption
spectrum and wavelength-dependent complex refractive index. Additionally,
using the nonequilibrium Green’s function formalism, the conductance of a
single thiarubrine A molecule has been derived.

Results and discussion: Light absorption, complex refractive index dispersion, and
conductance of thiarubrine A have been simulated. Exploiting its photolability, a
light-induced switch in single-molecule conductance has been demonstrated
through ultraviolet-visible irradiation, which produces a photoproduct
containing a thiophene group. These findings enhance our understanding of
the optical properties of naturally occurring polyynes and highlight their
potential applications in single-molecule junctions for nanoelectronics.
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Introduction

Linear chains of carbon atoms can exist in two idealized isomeric forms: cumulenes,
characterized by consecutive double bonds (C=C=C) (Fujiwara et al., 1991), and polyynes,
which feature alternating single and triple bonds (C-C≡C) (Matsutani et al., 2009; Chalifoux
and Tykwinski, 2010; Chalifoux et al., 2009). Polyynes are particularly intriguing due to
their unique optical and electrical properties (Milani et al., 2009; Fazzi et al., 2013; Milani
et al., 2017; Gao and Tykwinski, 2022; Marabotti et al., 2021). Many organisms can
synthesize polyynes (Minto and Blacklock, 2008). Among these, thiarubrines stand out as a
significant class, garnering attention for their distinctive reactivity, unique biological
activity, and potential medicinal applications (Block et al., 1996; Wang et al., 1998).
Thiarubrines are red, phototoxic polyynes found in the Asteraceae family (Balza and
Towers, 1993), notable for their high instability in light (Page and Towers, 2002). The
optical properties of these polyynes can be theoretically studied using various methods, such
as the Hückel method. In Hückel theory, molecular orbitals are expressed as linear
combinations of atomic orbitals (LCAOs). The key approximations in this theory
include the following: i) the Born–Oppenheimer approximation, which assumes fixed
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nuclei positions; and ii) the representation of molecular orbitals as
linear combinations of pz orbitals, neglecting electron–electron
interactions (Guy and Troy, 2022). With the Hamiltonian built
within the framework of the Hückel theory, it is possible to find the
conductance of the single molecule via the use of nonequilibrium
Green’s function formalism.

In this study, a modified Hückel method, as detailed by Solomon
et al. (2011), has been utilized to investigate the optical properties of
thiarubrine A. Its absorption spectrum and wavelength-dependent
complex refractive index have been determined. Additionally, using
nonequilibrium Green’s function formalism, the conductance of a
single thiarubrine A molecule has been derived. Finally, by
leveraging the photolability of thiarubrine A, which produces a
thiophene-containing photoproduct upon ultraviolet-visible
irradiation, a light-induced switch in the single molecule’s
conductance has been demonstrated.

Methods

Herein, a modified Hückel method, following has been Solomon
et al. (2011), followed.Within this framework, the time-independent
Schrödinger equation is given by the following Equation 1:

H ψ
∣∣∣∣ 〉 � E ψ

∣∣∣∣ 〉. (1)

Here, H represents the Hamiltonian, ψ represents the
eigenfunction, and E represents the eigenvalue. Subsequently,
eigenvalues and eigenfunctions have been determined. In order
to find the transition probabilities, the Fermi golden rule has
been used (Equation 2):

Γi→j � 2π
Z

〈ψj H| |ψi〉
∣∣∣∣ ∣∣∣∣2. (2)

The transition probabilities have been estimated between the
highest occupied molecular orbital (HOMO) and the lowest
unoccupied orbitals. Gaussian peaks have been used for the
simulation of the absorption spectra. Studying the transitions
from the ground state i to the different jth excited states, the
absorption coefficient can be written as in Equation 3:

α E( ) � ∑
j
Γi→j exp

E − Ej − Ei( )( )2
2c2

⎛⎝ ⎞⎠, (3)

with a linewidth c of the peaks of 0.2 eV. In order to extract from
the absorption spectrum the imaginary part of the complex
refractive index, the following expression (Equation 4) has been
used, modifying the one reported in Kohandani and Saini (2022):

k E( ) � Aα E( )
4π

, (4)

with the parameter A set to 1 × 1015. The real part of the
complex refractive index can be obtained via the
Kramers–Kronig relations (Pankove, 1975) (Equation 5):

n �]( ) − 1 � 2
π
P∫∞

0

ωk ω( )
ω2 − �]2

dω. (5)

It is noteworthy that the Kramers–Kronig relations are Hilbert
transforms (Ogilvie and Fee, 2013). In the case of the real part of the

refractive index, a constant offset of 1.5 has been applied, as in
Scotognella (2020); Wiebeler et al. (2014).

The complex refractive index can be thus written as in
Equation 6:

n E( ) � nreal E( ) + k E( ). (6)

For the calculation of the elastic transmission, nonequilibrium
Green’s function formalism has been employed, following Solomon
et al. (2011). Assuming that only a single site of the molecule couples
to each electrode, for thiarubrine A, the vector for the left electrode is
(Equation 7):

VL � γ 0 0 0 0 0 0 0 0 0 0 0 0 0 0[ ]. (7)

However, the vector for the right electrode is (Equation 8):

VR � 0 0 0 0 0 0 0 0 0 0 0 0 γ 0 0[ ]. (8)

The value of γ is −1 eV, following Solomon et al. (2011). The
broadening function is (Equation 9)

ΓL R( ) � 2πρVL R( )V†
L R( ), (9)

where ρ is the density of state of the electrode, set to 1/2π (eV)−1

[following Solomon et al. (2011)]. With the broadening function, it
is possible to determine the tunneling self-energy, which is purely
imaginary (Equation 10):

ΣL R( )
T � − i

2
ΓL R( ). (10)

The energy-dependent retarded Green’s function can thus be
determined as in Equation 11:

Gr E( ) � E −Hmol − ΣL
T − ΣR

T( )−1. (11)

The advanced Green’s function Ga(E) is the conjugated
transpose of the retarded Green’s function. With the broadening
functions and Green’s functions, it is possible to determine the
energy-dependent elastic transmission (Equation 12):

T E( ) � Tr ΓLGr E( )ΓRGa E( )[ ]. (12)

The transmission is related to the conductance through the
(Chang et al., 2014) (Equation 13):

G � G0T EF( ). (13)
G0 is the quantum of conductance (with value 7.748 × 10−5 S).

For density functional theory (DFT) calculations, the geometries
of molecules have been optimized with the Avogadro package
(Hanwell et al., 2012). The electronic transitions have been
calculated by means of the density functional theory, with the
ORCA package, developed by Frank Neese and coworkers
(Neese, 2012). In these calculations, the B3LYP functional has
been employed (Lee et al., 1988). Moreover, the Ahlrichs split
valence basis set (Schäfer et al., 1992), together with the all-
electron nonrelativistic basis set SVPalls1 (Eichkorn et al., 1997;
Schäfer et al., 1994), the Libint library (E.~F.~Valeev, 2014), and the
Libxc library (Lehtola et al., 2018; Marques et al., 2012), has been
employed. For the modified neglect of diatomic overlap method
(MNDO) calculations (Dewar and Thiel, 1977), the ORCA package
has been employed.
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Results and discussion

In Figure 1, the chemical formula of thiarubrine A has been
drawn. In order to construct the Hamiltonian in the framework of
the Hückel method, numbering of the molecule atomic site has been
adopted, as depicted in Figure 1.

Thus, the Hamiltonian for thiarubrine A has been built in the
following way (Equation 14):

H �

a b 0 0 0 0 0 0 0 0 0 0 0 0 0
b a bT 0 0 0 0 0 0 0 0 0 0 0 0
0 bT a b 0 0 0 0 0 0 0 0 0 0 0
0 0 b a bD 0 0 0 0 0 0 0 0 bS 0
0 0 0 bD a b 0 0 0 0 0 0 0 0 0
0 0 0 0 b a bD 0 0 0 0 0 0 0 0
0 0 0 0 0 bD a b 0 0 0 0 0 0 bS
0 0 0 0 0 0 b a bT 0 0 0 0 0 0
0 0 0 0 0 0 0 bT a b 0 0 0 0 0
0 0 0 0 0 0 0 0 b a bT 0 0 0 0
0 0 0 0 0 0 0 0 0 bT a b 0 0 0
0 0 0 0 0 0 0 0 0 0 b a bD 0 0
0 0 0 0 0 0 0 0 0 0 0 bD a 0 0
0 0 0 bS 0 0 0 0 0 0 0 0 0 aS bB
0 0 0 0 0 0 bS 0 0 0 0 0 0 bB aS

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(14)
In the Hamiltonian, a is the on-site energy for carbon atoms, b is

the carbon–carbon single-bond coupling element, bD is the
carbon–carbon double-bond coupling element, bT is the
carbon–carbon single-bond coupling element, aS is the on-site
energy for sulfur atoms, bB is the sulfur–sulfur single-bond
coupling element, and bS is the carbon–sulfur single-bond
coupling element. Taking into account the experimental absorption

spectrum of thiarubrine A (Page and Towers, 2002; Reyes et al., 2001),
with characteristic peaks at 345 nm and 490 nm, a fair agreement is
found with the parameters reported in Table 1.

The simulated absorption spectrum is depicted in Figure 2. The
peaks correspond to oscillator strengths of the different electronic
transitions, as described in Equation 3. In Supplementry Appendix
Figure A1 in the Appendix, the absorption spectrum of thiarubrine
A, calculated with the modified Hückel method, with DFT, and the
MNDOmethod, is reported. A fair agreement between the modified
Hückel method and DFT is found, with the lowest transition at
484 nm using the modified Hückel method and at 517 nm using the
DFT, respectively. The lowest transition using the MNDOmethod is
at longer wavelengths, i.e., 627 nm, but shows a small oscillator
strength, while the second lowest transition, with a higher oscillator
strength, is at 433 nm. The first 12 transitions used for the
absorption spectrum are reported in Supplementary Appendix
Table SA1, while the employed optimized geometry of
thiarubrine A is reported in Supplementary Appendix Table SA3.

By using Equations 4, 5, it is possible to determine the
wavelength-dependent complex refractive index of thiarubrine A,
starting from the calculated absorption spectrum. The real part
(black curve) and the imaginary part (red curve) of the refractive
index are depicted in Figure 3.

FIGURE 1
Chemical structure of thiarubrine A. The numbering of the atomic site corresponds to the index in the Hamiltonian.

TABLE 1 Parameters used in the Hamiltonian used in the time-independent
Schrödinger equation (Equation 1) for thiarubrine A.

Parameter Value (eV)

A 0

B −3

bD −4.2

bT −5.8

aS −3.33

bB −1.89

bS −2.07

FIGURE 2
Absorption spectrum with peaks corresponding to oscillator
strengths of the different electronic transitions for thiarubrine A (a
peak linewidth of 0.2 eV).
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By employing the nonequilibrium Green’s function formalism,
it is possible to determine the elastic transmission of thiarubrine A
(Equation 12), depicted in Figure 4.

Setting the Fermi energy at 0 eV, the conductance of the
molecule is 1.35 µS (Equation 13). Upon light irradiation,
thiarubrine A is converted to a photoproduct thiophene A,
depicted in Figure 5 (Page and Towers, 2002).

The Hamiltonian H′ related to the photoproduct thiophene A
can be written in the following way (Equation 15):

H′ �

a b 0 0 0 0 0 0 0 0 0 0 0 0
b a bT 0 0 0 0 0 0 0 0 0 0 0
0 bT a b 0 0 0 0 0 0 0 0 0 0
0 0 b a bD 0 0 0 0 0 0 0 0 bS
0 0 0 bD a b 0 0 0 0 0 0 0 0
0 0 0 0 b a bD 0 0 0 0 0 0 0
0 0 0 0 0 bD a b 0 0 0 0 0 bS
0 0 0 0 0 0 b a bT 0 0 0 0 0
0 0 0 0 0 0 0 bT a b 0 0 0 0
0 0 0 0 0 0 0 0 b a bT 0 0 0
0 0 0 0 0 0 0 0 0 bT a b 0 0
0 0 0 0 0 0 0 0 0 0 b a bD 0
0 0 0 0 0 0 0 0 0 0 0 bD a 0
0 0 0 bS 0 0 bS 0 0 0 0 0 0 aS

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(15)
The values of the parameters used in the Hamiltonian H′ for

thiophene A are the same ones of the HamiltonianH for thiarubrine
A. In Supplementry Appendix Figure A2 in the Appendix, the
calculated absorption spectrum, calculated with the modified
Hückel method, DFT, and the MNDO method, of thiophene A,
is reported. The DFT lowest transition is at 319 nm, significantly
higher with respect to that calculated with the MNDO method
(i.e., 394 nm) and modified Hückel method (i.e., 437 nm). There are
reports of incorrect results with DFT for thiophene (Prlj et al., 2015).
For this, a comparison of absorption spectra calculated by different
methods has proved necessary. The first 12 transitions used for the
absorption spectrum are reported in Supplementary Appendix
Table SA2, while the employed optimized geometry of thiophene
A is reported in Supplementary Appendix Table SA4.

For thiophene A, the conductance, calculated using Equation 13,
is 0.56 µS. Thus, a light-induced variation in the electrical behavior can
be achieved in the presented molecular system. The advantage of
using the thiarubrine Amolecule is twofold: (i) on one hand, polyynes
are considered good candidates for molecular wires as electronic

FIGURE 3
Real part (black curve) and the imaginary part (red curve) of the
refractive index of thiarubrine A.

FIGURE 4
Transmission spectrum of thiarubrine A determined via
nonequilibrium Green’s function formalism.

FIGURE 5
Chemical structure of thiophene A. The numbering of the atomic site corresponds to the index in the Hamiltonian.
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transport along the sp-carbon chain should be independent of
rotation about the single bonds (Gao et al., 2025); (ii) thiarubrine
A under the effect of light can be precisely converted to thiophene A
with the resulting change in conductance. It is noteworthy that the
conductance of thiarubrine A is more than double with respect to that
of the thiophene-based molecule T1 reported in Chang et al. (2014).
The conductance can also be studied by carefully analyzing orbitals for
the different molecules. There are relevant reports of the prediction of
charge transport parameters in organic semiconductors (Fazzi et al.,
2011). In this work, the highest occupied molecular orbital (HOMO)
and lowest unoccupied molecular orbital (LUMO) of thiarubrine A
and thiophene A are reported. However, a careful study on the
relationship between the orbitals of the two molecules and the
properties related to charge transport in them is beyond the scope
of this paper and could be the subject of future studies.

Conclusion

In this work, the optical and electric properties of the molecule
thiarubrine A have been simulated by using a modified Hückel method
[exhaustively described in Solomon et al. (2011)] and the
nonequilibrium Green’s function formalism. The strength of this
simple model lies in the fact that by constructing a Hamiltonian, it
is possible to simulate the optical and electronic properties of the
investigated molecules. The simulated absorption spectrum has been
determined, and by choosing the proper parameters in theHamiltonian,
good matching with the experimental data can be found. From the
simulated absorption spectrum, it is possible to derive the wavelength-
dependent complex refractive index.Moreover, with the employment of
nonequilibrium Green’s function formalism, the conductance of the
singlemolecule has been found. Taking into account the photolability of
thiarubrine A, via light irradiation, a change in conductance can be
achieved. Such findings can be interesting for the understanding of the
optical properties of polyynes occurring in nature and for their
exploitation in nanoelectronics.
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