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Diffuse reflectance spectroscopy (DRS) is a promising technique for non-invasive
monitoring of tissue oxygen saturation (StO2). However, the interpretation of DRS
data can be complicated by the presence of confounding factors such as the
volume fraction of blood, tissue scattering, and lipid content which both absorb
and scatter. Principal component analysis (PCA) is a multivariate statistical
method that can help overcome these challenges by extracting relevant
information from complex datasets and providing new dimensions used to
estimate parameters such as concentrations. In this study, we present a PCA-
based algorithm for estimating retinal StO2 from DRS measurements. We
evaluated the performance of our algorithm using simulated data and
experimental measurements on a retinal tissue phantom model. Our results
show that the PCA-based algorithm can estimate the value of StO2 with a
root-mean-square error of 6.38% in the presence of confounding factors. Our
study demonstrates the potential of PCA as a powerful tool for extracting the
concentration of components from complex DRS.
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1 Introduction

Blood oxygen saturation (SO2 when evaluated in blood vessels, StO2 when evaluated in
tissues) is a vital physiological measure that quantifies the proportion of oxygen-bound
hemoglobin in the bloodstream relative to the total available hemoglobin molecules (Hafen
and Sharma, 2018). This parameter plays a crucial role in tissue physiology (Swartz and
Dunn, 2003) and serves as a diagnostic indicator for a variety of conditions, including heart,
cerebral, and vascular diseases (Hoke et al., 2002; Zhang et al., 2011; McCully et al., 1994).
Recent advancements have facilitated the measurement of oxygen saturation in the retina,
which can be used to detect pathological changes and diseases such as diabetic retinopathy
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and age-related macular degeneration (Linsenmeier and Zhang,
2017). Abnormal SO2 has been associated with a range of health
issues including cancer, diabetes, choroidal disorders, and
cardiovascular health (Carmeliet and Jain, 2000; Wittenberg and
Wittenberg, 1989; Heitmar and Blann, 2022). Numerous research
studies have indicated that irregularities in oxygen levels in the eye
fundus are linked to various eye diseases including glaucoma
(Boeckaert et al., 2012; Olafsdottir et al., 2014; Tobe et al., 2013),
diabetic retinopathy (Jørgensen et al., 2014; Hardarson and
Stefánsson, 2012; Guduru et al., 2016), retinal vessel blockages
(Williamson et al., 2009; Yoneya et al., 2002), retinitis
pigmentosa (Battu et al., 2015), and age-related macular
degeneration (Geirsdottir et al., 2014). In addition, retinal
oximetry, in which blood oxygenation is evaluated in the large
retinal blood vessels, has proven to be effective in non-invasively
monitoring certain neurodegenerative diseases (Stefánsson
et al., 2017).

Diffuse reflectance spectroscopy (DRS) stands as a potent tool in
this context and can provide molecular-level information on tissue,
including evaluating StO2 based on the reversible binding of oxygen
to hemoglobin which changes its absorption spectrum (Stokes,
1864). The diffuse reflectance spectrum, obtained using an
illumination light source that is commonly UV- visible and can
extend to the near-infrared (NIR), is collected using a spectrometer
(Delori, 1988; Sircan-Kucuksayan et al., 2015). The absorption
coefficient (μa), the reduced scattering coefficient (μ,s), and the
light path length into the tissue are used to calculate the absorber
concentration in a semi-infinite medium according to the modified
Beer-Lambert law.

DRS has been widely applied non-invasively in biological tissues
for various purposes, primarily to quantify the concentrations of
chromophores such as melanin and hemoglobin (Malin et al., 1999;
Bender et al., 2009; Troncoso et al., 2021; Ridder et al., 2005; Hani
et al., 2011; Hernández et al., 2009). Among these, oxygenated and
deoxygenated hemoglobin (oxyhemoglobin and deoxyhemoglobin,
respectively) are particularly significant, as they provide critical
information on StO₂ and blood volume fraction (BVF). Both
parameters are essential for disease diagnosis, tissue health
assessment, and cancer monitoring (Chen and Lin, 2010;
Claridge et al., 2007). BVF, representing the proportion of tissue
occupied by blood (Claridge et al., 2007), offers valuable insights,
particularly in understanding tumor microcirculation, predicting
tumor behavior, and evaluating treatment responses (Qi et al., 2008).
BVF varies according to tissue type and region of interest; for
instance, it ranges from 1% to 10% in colon samples (Claridge
et al., 2007), 0.2%–7% in skin (Yudovsky and Pilon, 2010), and
averages around 8.4% in liver tissue (Chen et al., 2011). Techniques
used to measure blood oxygen saturation in the eye fundus often rely
on analyzing two or more wavelengths (Hickam et al., 1963; Pittman
and Duling, 1975), with the selection of these wavelengths
influencing the distinction between blood vessels and
surrounding tissue. These approaches typically require user-
specific calibration to optimize their accuracy and performance
(Delori, 1988; Harris et al., 2003; Schweitzer et al., 1999;
Smith, 1999).

Despite the many algorithms developed for this purpose,
achieving accurate in vivo measurements of absorber
concentration in semi-infinite media, such as biological tissues,

remains challenging. The presence of lipids in the tissue can have
a significant effect on its absorption and scattering properties and
alter the intensity and shape of the diffuse reflectance spectrum,
especially in the visible and NIR range. Calculating StO2 from the
diffuse reflectance spectrum is also complicated by the sample
geometry, such as thickness or curvature, or the composition of
the tissue being assessed.

One approach is to simplify all the equations by ignoring the
contribution of the non-blood layer in the tissue. Therefore, the
computational complexity is reduced. However, the accuracy is
decreased by considering that the reflected light would only
travel from the blood layer and neglecting the effect of the tissue
pigment (Delori and Pflibsen, 1989; Rajaram et al., 2010). If we
incorporate the optical properties of the non-blood components,
this method can provide a more comprehensive explanation of the
tissue, yet there needs to be prior knowledge of the concentration of
the non-blood part of the tissue (Cui et al., 1990). Many algorithms
are mostly based on parameters depending on the optical setup and
numerical computations of coefficients (Middelburg et al., 2011; Reif
et al., 2008; Akitegetse et al., 2022).

Here, we propose a principal component analysis (PCA)-based
algorithm to evaluate the blood oxygen saturation in retinal tissue
using DRS. PCA is used to find independent bases associated with
the variations in the dataset. Consequently, the oxygen saturation is
calculated by the projection of the dataset in the independent bases
onto the spectrum of the compounds of the dataset. The method’s
performance was evaluated by using both simulated data and data
collected on a liquid phantommimicking retinal properties, showing
consistent performance on both datasets. This novel approach is
poised to improve the assessment of blood oxygen saturation in the
eye and in other tissues. It is expected to strengthen our grasp of a
wide range of health conditions and facilitate the development of
more precise and comprehensive diagnostic procedures.

2 Method

2.1 Simulated data

Simulated data were created using modified Beer-Lambert law to
obtain absorption coefficient spectra similar to Equation 1 for
a tissue.

A λ( ) � Coxyμoxy λ( ) + Cdeoxyμdeoxy λ( ) + Cmμm λ( ) + CS log 1/λ( )
(1)

Where Coxy, Cdeoxy, and Cm are the concentrations of the main
photosorbent compounds present in retinal tissue, oxyhemoglobin,
deoxyhemoglobin, and melanin, and μoxy, μdeoxy, μm are their
respective molar extinction coefficients. The term CS log(1/λ)
accounts for the scattering logarithmic decay due to the effect of
blood cells in the tissue being assessed (Schweitzer et al., 2001). The
values for the different parameters were taken from the literature
(Budnik, 2017; Jacques, 2018; Kessel et al., 2010). These parameters
were used to create two sets of data to study the precision of the
estimated StO2 values. In each dataset, the scattering coefficient was
uniformly sampled from a range of 0.001–1.

A first dataset was prepared to study the effect of the melanin
content on the calculated StO2 values. We performed simulations
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with 50 mmol/L, 100 mmol/L, 200 mmol/L, 300 mmol/L, and
400 mmol/L melanin content (1000 spectra for each melanin
content). Additionally, spectra were generated for StO2 values
ranging from 50% to 95% with a uniform random StO2

distribution and the BVF ranging from 1% to 7.5%. This
approach allows for modeling variations in local vessel and
capillary density in both healthy and diseased tissues.

A second dataset was employed to evaluate the precision of the
algorithm when the BVF had different values. 1000 spectra were
simulated for each BVF value (0.75%, 1.5%, 2%, 4%, and 6%) with
uniform random StO2 values ranging from 50% to 95% and uniform
random melanin content ranging from 1 mmol/L to 500 mmol/L.

The third dataset was developed to evaluate the performance of
the proposed algorithm compared to three other algorithms from
literature: the 4-wavelength method (Hammer et al., 2002), the 3-
wavelength method (Middelburg et al., 2011), and the non-negative
least-square (NNLS) method (Akitegetse et al., 2022). The simulated
dataset included 5000 spectra with uniform random distribution
values for the concentration of different components. The StO2

ranged between 50% and 95% and BVF varied from 1% to 7.5%. For
melanin, the concentrations ranged from 1 mmol/L to 400 mmol/L.

The fourth dataset was developed to be used as the training set
for estimating the StO2 values from phantom samples with different
intralipid contents. The simulated dataset included 5000 spectra
with uniform random distribution values for the concentration of
different components. The StO2 ranged between 20% and 95% and
BVF varied from 4% to 7.5%. For melanin, the concentrations
ranged from 1 mmol/L to 400 mmol/L.

The coefficients for oxyhemoglobin and deoxyhemoglobin are
composed of the percentage of the oxy- and deoxyhemoglobin and
the value of BVF. The summation of all the concentrations of
hemoglobin equaled 1.0. In DRS, photon noise is a key source of
variability, arising from the inherent randomness in photon
detection, which follows a Poisson distribution. As the number of
detected photons increases, the signal fluctuations scale with the
square root of the photon count. This type of noise predominates
when the signal is high, surpassing other noise sources such as dark
current or read noise. The photon noise was considered in the
simulations by adding a random number generated with Poisson
distribution to the intensity of the raw reference spectrum at each
wavelength.

2.2 Experimental tissue phantom data

The tissue phantom model used in this study was a previously
established retina liquid phantom, comprising varying
concentrations of hemoglobin and intralipids (Akitegetse et al.,
2022). It was made of a waterproof black chamber and a VIS-
NIR-coated achromatic lens with a 17.5-mm focal length inserted
through an iris of 8-mm diameter. A 7-mL test tube was inserted
into the chamber, at 22 mm from the lens. Distilled water was used
in the chamber to simulate the vitreous and the test tube was filled
with a mixture of phosphate-buffered saline (PBS, pH 7.4), human
blood from human erythrocyte concentrates and lipid emulsion
(intralipid, 20% w/v).

Approval for this study was granted by the research ethics
committee at Héma-Québec, the blood operator in the province of

Québec, Canada. Healthy volunteers provided whole blood donations
using the Leukotrap RC system (Haemonetics Corp., Braintree, MA),
yielding approximately 485 mL (±10%) of blood. Within 24 h, the
blood was centrifuged, and components were separated using the
MacoPress automated blood components separator (Macopharma,
France). Red blood cell concentrates (RCC) units underwent
leukoreduction and immediate deoxygenation with the Hemanext
One device (Hemanext Inc.) for 3 h at room temperature under
constant agitation before storage at 2–6°C. Donation processing
ensures the availability of red blood cells and preservation for
potential use in experiments across different days.

Spectra were obtained using a spectrometer (Hamamatsu) with a
sensitivity range from 330 nm to 835 nm with a resolution of 1 nm.
The illumination source was a white light-emitting diode ranging
from 495 nm to 750 nm.

The actual oxygen saturation of the samples was assessed using a
blood gas analyzer (ABL90 Flex Plus, Radiometer). The range of
oxygen saturation tested was 20%–100%. Further details on the
estimation of the oxygen saturation of the samples can be found in
Akitegetse et al., 2022 (Akitegetse et al., 2022).

2.3 Principal components analysis

The absorbance spectra, A(λ), of the DRS data were calculated
using the following (Equation 2),

A λ( ) � −log I
raw

λ( ) − I
back

λ( )
I
ref

λ( )⎛⎝ ⎞⎠ (2)

where Iraw is the reflection spectrum, Iback is the baseline spectrum,
and Iref is the spectrum of the illumination light.

The spectra thus obtained were cropped to retain only the
spectral range between 530 nm and 585 nm. This specific
wavelength region is crucial because it encompasses the
characteristic peaks associated with oxyhemoglobin and
deoxyhemoglobin, which are of particular significance in our
analysis (Akitegetse et al., 2023). The presence and abundance of
these components in the tissue yield the absorbance spectrum of a
sample, which can be written using the modified Beer-Lambert law
described in Equation 1.

We applied principal component analysis (PCA) for
dimensionality reduction, focusing on the first four principal
components (PCs) that capture the primary sources of variance
associated with oxyhemoglobin, deoxyhemoglobin, melanin, and
lipid. These PCs are expected to contain the critical information
required for estimating the concentrations of these compounds. Our
objective was to estimate the concentrations using a PCA-based
algorithm that leverages a change of basis approach (Greenberg,
1998). To implement PCA, we projected the spectra onto the
eigenvector basis, where they were treated as independent and
reflective of the variations within the dataset. Given that we
anticipate four primary compounds in the retina, we conducted
the analysis using four independent bases. We assumed V �
e1, e2, e3 e4{ } to be the basis for PCA decomposition and B �
e,oxy, e

,
deoxy, e

,
m, e

,
s{ } to be the absorption spectra basis of the

main components (oxyhemoglobin, deoxyhemoglobin, melanin,
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and scattering) in the tissue. A given absorption spectrum A could
then be written in both spaces as

A � c1e1 + c2e2 + c3e3 + c4e4 (3)
A � coxye

,
oxy + cdeoxye

,
deoxy + cme

,
m + cse

,
s (4)

Equation 3 uses the coefficients of the dataset in the new space of the
PCA basis and Equation 4 shows the combination of the compounds at
different concentrations. To find the concentration of the components
cj(j � oxy, deoxy,m, s), we expanded ei in terms of B as

ei � q
i,oxy

e,oxy + q
i,deoxy

e,deoxy + q
1,m

e,m + q
i,s
e,s, i � 1, .., 4 (5)

From Equation 5, the transformation matrix from V to B
[qi,j] ( i � 1, .., 4, j � oxy, deoxy,m, s) could be calculated using
Equation 6.

q
i,j
� e,i.ej (6)

Therefore, the spectrum obtained from the retina could be
rewritten in space B by replacing Equation 5 in Equation 3 as

A � c1q1,oxy + .... + c4q4,s( )e,oxy + ... + c1qn,s + .... + c4q4,s( )e,s (7)

By comparing Equation 7 with Equation 4, the values of coxy and
cdeoxy in the assessed retina sample were determined. Finally, the
concentrations of oxyhemoglobin and deoxyhemoglobin are used to
calculate the StO2 based on Equation 8.

StO2 � coxy

coxy + cdeoxy( ) · 100% (8)

The flowchart of the proposed PCA-based algorithm is shown in
Figure 1. The program was written in Python v3.9. The calculated

absorption spectra were cropped as described above and PCA (python,
sklearn package) was performed to obtain an appropriate independent
basis. The absorbance coefficient of each tissue component was
transformed into the same PCA basis. The dot product of the
absorption spectra in the new space and the inverse of the
transformed components yielded the concentration of each component.

The simulated dataset described in Section 2.1 was used to train
the PCA model to evaluate the performance of the PCA-based
algorithm. It should be noted that, when employing a simulated
dataset, the PCA training utilized 90% of the data, with the
remaining 10% dedicated to evaluating the algorithm’s ability to
predict StO2 values not encountered during PCA training.

The performance of the algorithm was then evaluated using
experimental data from the tissue phantom containing blood at
different oxygen saturation levels. Additionally, the tissue phantom
data obtained with different hemoglobin concentrations and lens
yellowing were used to train a second PCA model and test the
performance of the proposed algorithm. While the algorithm
demonstrates satisfactory performance on simulated data, reliance
on simulations prior to StO2 concentration estimation may
introduce an unnecessary step. Consequently, validating the
performance of the algorithm on phantom data and concurrently
estimating StO2 concentrations offered a more direct approach,
thereby eliminating the need for simulation.

2.4 Comparison of algorithms

To evaluate the performance of the proposed algorithm, we
compared the performance of the PCA-derived algorithm to three
other algorithms. The first one was the 4-wavelength method

FIGURE 1
The flowchart of the PCA-based algorithm to calculate StO2 values from DRS spectra. A dataset, converted to absorbance and cropped between
530 and 585 nm to keep the relevant range of the blood spectral components, is used to train a PCA model. The test dataset and the absorbance of the
components are then transformed with the PCA. In the new basis, the test data are then projected onto the components to find out the concentrations.
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introduced by Hammer et al. (Hammer et al., 2002). This algorithm
was developed to compensate for the effect of non-hemoglobin
absorption as well as tissue scattering on blood spectra. It uses the
absorbance spectra of oxyhemoglobin and deoxyhemoglobin as
references at 522 nm, 560 nm, and 569 nm as isosbestic points,
and the measured spectrum is transformed between the absorbance
of oxyhemoglobin and deoxyhemoglobin spectra. The value of the
measured spectrum at 560 nm is then compared to the values of
oxyhemoglobin and deoxyhemoglobin at 560 nm to calculate
oxygen saturation. The second algorithm for comparison was a
three-wavelength method using two isosbestic wavelengths (569 and
586 nm) and one non-isosbestic wavelength (656 nm) (Delori, 1988;
Akitegetse et al., 2023). The third algorithm for comparison was a
linear regression that was used with a NNLS (Virtanen et al., 2020).
To better compare these multi-wavelength algorithms with the
PCA-based algorithm, we have used the same wavelength range
(from 530 nm to 585 nm) and the same components, namely,
oxyhemoglobin, deoxyhemoglobin, melanin, and the scattering term
(Akitegetse et al., 2022).

3 Results

To evaluate the performance of the developed PCA-based
algorithm, StO2 values were calculated on the simulated dataset
and the root-mean-square error (RMSE) was calculated for each
condition tested and for each algorithm tested. The average value of

RMSE and the standard deviation are shown in Figure 2. Figure 2A
shows that the RMSE values for all simulations with different
melanin content evaluated with the PCA-based algorithm were
under 1% while the estimated values were highly correlated with
the true values in all cases (r-value >0.99, p-value <0.05). Figure 2B
demonstrates the RMSE for different BVF values between the
calculated StO2 and the true values. All calculated values in each
simulation were highly correlated with the real values (r-value >0.99,
p-value <0.05). The error in StO2 values decreased with a higher
content of blood. Additionally, the algorithm was robust to different
blood volume fractions or melanin contents, since in all cases the
standard deviation of the RMSE was less than 0.15%.

Afterward, the model’s performance was compared against three
alternative methods—namely, the 4-wavelength method, the 3-
wavelength method, and the NNLS method. We generated
5000 simulated spectra five times. The RMSE values were computed
and depicted in Figure 2C for each dataset. For the 4-wavelength
method, the RMSE was approximately 30%, with a Pearson correlation
coefficient of 0.69 between estimated StO2 values and actual values. In
contrast, the three-wavelength algorithm showed an average RMSE of
12.9% and a higher Pearson correlation coefficient of 0.83 with the
actual StO2 values. Furthermore, the NNLS algorithm yielded an
average RMSE of 3.85% with a correlation coefficient of 0.97, while
the PCA-based algorithm demonstrated the lowest RMSE at 1.68% and
the highest correlation coefficient of 0.99 among all algorithms tested.
These results indicate that the PCA-based algorithm achieves the
highest accuracy compared to the other algorithms assessed.

FIGURE 2
RMSE of calculated StO2 using the PCA-based algorithm for different levels of (A)melanin content and (B) BVF. (C) RMSE on calculated StO2 using
four different algorithms (4-wavelength method, 3-wavelength method, NNLS, and PCA) on 5,000 spectra simulated 5 times.
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The performance of the PCA-based algorithm was evaluated on
the fourth simulated dataset. Using the same fitted PCA on the
simulated data, the StO2 values of the phantom data with different
intralipid concentrations were estimated. The coefficient of
determination for the calculated oxygen saturation with the PCA-
based algorithm on the simulated data (shown in Figure 3A) was
0.98 and the overall RMSE was 2.78%. The results of using the same
fitted PCA on the data from the tissue phantom model with various
intralipid concentrations are shown in Figure 3B. Samples at different
StO2 values (29.5%, 56.1%, 72.3%, and 91.9%) and intralipid contents
(0.25%, 0.72%, 0.95%, and 1.80% IL) were assessed through five
acquisitions each (49 spectra per acquisition). Figure 3 shows the
calculated StO2 values for tissue phantom blood samples at different
StO2 levels and lipid contents. The average RMSE between the StO2

values of each acquisition and the real values of all acquisitions made
with the PCA-based algorithm was 7.38%.

To evaluate the performance of the algorithm with tissues
having different micro-vessels densities, samples at five different
concentrations of hemoglobin (0.25 g/dL, 0.50 g/dL, 1.00 g/dL,
2.25 g/dL, and 4.50 g/dL) were prepared and assessed in the
tissue phantom. A total of 100 acquisitions were performed with
samples at different StO2 values. The absolute error between the
calculated StO2 and the value obtained from a blood gas analyzer is
shown in Figure 4 for the range of hemoglobin concentrations. The
average error, accounting for all cases tested, was less than 6.3%, and
we found there was no correlation between the error on the StO2

values and the concentration of hemoglobin (r =
0.69, p-value = 0.19).

The effect of lens yellowing on the performance of the algorithm
is shown in Figure 5. There were 15 samples for each level of StO2,
with three different levels of yellowing of the lens (without
yellowing, Y20, and Y60). The concentration of hemoglobin and
intralipid content were constant (at 1 g/dL and 0.25%, respectively)
in the samples. The statistical equivalency of the values obtained for
each of the three groups of measurements showed the algorithm is
robust to the yellowing of the lens.

4 Discussion

A PCA-based algorithm to estimate the blood oxygen saturation
in a semi-infinite tissue, specifically micro-vascularized regions of
the retina, using DRS has been introduced. The error on StO2

calculated by the algorithm was lower than that of previously
established algorithms based on four-wavelength, three-
wavelength, and NNLS analyses. The accuracy of values
measured by 2-, 3- or 4-wavelength methods can be affected by
artifacts, signal-to-noise ratio, optical interference, and the accuracy
of the oxygen standard that is used for calibration (Sinex, 1999). The
4-wavelength method uses absorbance values at four different
wavelengths to estimate SO2 or StO2, three of them are for
transforming the measured spectrum and only one wavelength is

FIGURE 3
Performance of PCA-based algorithm. (A) Calculated StO2 using the PCA-based algorithm compared to ground truth using 900 simulated spectra
for training and 100 simulated spectra for testing. (B) Calculated StO2 in the tissue phantom model with different oxygen saturation levels and intralipids
(IL) concentrations. Five acquisitions (n = 5) were done from each sample and the mean ± standard deviation is displayed.

FIGURE 4
Error in the calculated StO2 in a tissue phantom compared to the
value obtained with blood gas analyzer. The average value and the
standard deviation are plotted for each set of samples at the same
hemoglobin concentration.
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used for quantification (Pittman and Duling, 1975). Hence, this
approach is vulnerable to noise, especially at 560 nm. While multi-
wavelength techniques optimize regressors, they can result in
overfitting or underfitting when considering missing or excessive
components in regression, leading to less accurate estimates of
oxygen saturation (Su et al., 2012).

The performance of the PCA algorithm on the simulated dataset
with different concentrations of melanin shows a slight decrease in
accuracy as the melanin content increases. It is important to note
that the relationship between melanin content and the accuracy of
the algorithm may vary depending on the specific algorithm.
Melanin is a pigment responsible for absorbing light in the
visible and NIR spectrum. When the melanin content is higher,
it absorbs more light, leading to a decrease in the intensity of light
reaching deeper tissue layers and returning from the eye. Reducing
the fraction of captured light that has undergone interaction with
hemoglobin typically results in the attenuation of the characteristic
peaks observed in hemoglobin (Damodaran et al., 2018).

Based on the results of our simulations, the calculated errors for
different BVF values demonstrate a slight increase in the accuracy of
StO2 estimation (less than 1%) as the volume of blood increases. This
can happen for several reasons. When blood volume is greater, there
is a greater amount of hemoglobin available to absorb light which
provides more robust spectral information, making it easier for the
algorithm to estimate oxygen saturation accurately. This causes the
backscattered signal from blood cells to become stronger compared
to the background tissue. This improved signal-to-noise ratio makes
it easier for the algorithm to extract the oxygen saturation
information from the spectral measurements, leading to
increased accuracy.

The performance of the algorithm on the data acquired from
samples placed in tissue phantoms, using different levels of intralipid
and hemoglobin concentration, is evaluated in systems with
different optical properties including scattering and absorption.
This approach allows us to assess how well the performance of
the algorithm under varying conditions and provides a benchmark

for understanding the algorithm’s limitations and strengths.
Moreover, phantoms provide controlled experimental conditions
where the actual oxygen saturation values can be precisely
determined using a blood gas analyzer, the gold standard in the
field. By comparing the algorithm’s measurements with known
values, researchers can validate its accuracy and identify any
discrepancies or biases that need to be addressed.

The PCA-based algorithm showed that when the volume of
blood is greater, we observe consistent results when the intralipid
and hemoglobin contents are changing. Unlike simulations,
experiments conducted on phantoms do not exhibit a decrease in
error as the hemoglobin content increases, and it is confirmed by the
literature that the blood volume does not affect the accuracy of SO2

estimation (Chen et al., 2015).
Measurements made from simulated spectra showed superior

performance than those from phantom experiments, with errors
smaller than 1%. In addition, in phantom experiments, the error
increased with greater intralipid contents. This difference in
performance can be attributed to several factors. Simulations
provide a highly controlled environment in which scattering and
absorption are assumed to be homogeneous, whereas phantom
experiments introduce variability due to factors such as uneven
intralipid mixing, surface scattering effects, and the optical
heterogeneity of the phantom material. These complexities make
light-tissue interactions in phantom models more intricate than in
simulations. Moreover, the algorithm used to estimate oxygen
saturation assumes a homogeneous scattering and absorption
environment, which is an oversimplification in simulations. In
contrast, phantom data exhibit more variable scattering
properties that may deviate from the idealized model, thus
reducing algorithm accuracy. Consequently, phantom data serve
as a more realistic proxy for real tissues, offering a more
representative assessment of performance in in vivo applications.

Finally, the performance of the algorithm was evaluated using
lenses that simulate various degrees of yellowness. Yellowing of the
eye significantly alters the illumination of the fundus by filtering the

FIGURE 5
The calculated StO2 in a tissue phantom for samples with different levels of lens yellowing.
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blue and green light. Comparing the results of two lenses with
different yellowing levels and a lens without yellowness
demonstrates that the algorithm remains robust when the blue
and green light are filtered out. These promising results are a
positive step forward toward assessing StO2 in patients with
cataracts, although it’s worth acknowledging that they do not
provide an absolute guarantee of the algorithm’s robustness
against all types of cataracts. In particular, cortical cataracts,
which not only alter the light spectrum but also cause clouding
of the lens, are expected to pose significant challenges. The reduced
amount of light reaching and returning from the eye’s fundus can
lower sensitivity and introduce more errors in StO₂ measurements.
In this scenario, the problem extends beyond merely adjusting the
oximetry algorithm—it also involves identifying a more effective
method to allow sufficient light transmission and collection to
ensure accurate measurements.

Our evaluation of the algorithm’s performance involved two
distinct approaches. In the first approach, depicted in Figures 2, 3,
we utilized simulated data for training PCA, subsequently evaluating
its performance on novel data not encountered during training.
Conversely, for the outcomes presented in Figures 4, 5, we employed
phantom data for both training PCA and assessing algorithmic
performance. Remarkably, the algorithm exhibited robust
performance in both scenarios, underscoring its versatility. PCA,
in this context, is not employed for conventional feature extraction;
rather, it serves to establish a new basis for spectral analysis.
Consequently, the algorithm’s efficacy is upheld when trained
with a dataset showcasing variations in the concentration of a
target component, whether simulated or experimental (phantom).

The PCA-based method introduced here has the benefit of
having no fit and weights to estimate, so it could be run on
whole datasets without the need to exclude noisy spectra. The
method is easy to implement and there is less computational
complexity compared to methods with numerical or network-
based AI analysis. More importantly, using PCA in the algorithm
mitigates overfitting issues. To further prevent overfitting or
underfitting, we ensured that the dataset included sufficient
variability to represent real-world scenarios. Yet the algorithm
needs to be validated with the results from real eyes since the
simulations and the phantom do not perfectly represent a real
tissue; however, this is a complex endeavor as there is no gold
standard to establish a ground truth for blood oxygen saturation in
the tissues of the retina.

The tests conducted with tissue phantoms allowed us to evaluate
the strength and accuracy of our oximetry algorithm, even in the
presence of interfering elements. While the phantom incorporated
key structural features of the eye, it remains a simplified
representation of its actual complexity. This model provided a
controlled environment to isolate specific factors, facilitating real-
life mimicking measurements and validating the data collection
process. However, it does not account for critical variables such as
varying thickness, optical properties, or the composition of different
layers in the eye’s fundus. Furthermore, using red blood cells in
saline solution combined with components like intralipids presents
limitations in the modeling of real tissues. The assumption of
homogeneous tissue properties made in both phantom and
simulation models overlooks the influence of factors such as
variable blood flow velocities and red blood cell aggregation in

capillaries, which can significantly affect the tissue’s optical
properties, including light absorption and scattering, and
potentially impact StO₂ measurements. Future studies should
focus on developing more complex phantoms that better mimic
the eye and incorporate realistic parameters, as well as simulating
blood flow with whole blood and employing advanced models to
accurately represent tissue behavior.

5 Conclusion

Our study introduces a PCA-based algorithm for estimating
StO2 using DRS in the retina. The algorithm demonstrates superior
performance compared to existing methods, such as 4-wavelength,
3-wavelength, and NNLS algorithms, with reduced errors in
estimated values. Our evaluations encompassed simulated data,
experimental measurements on tissue phantoms, and assessments
under various conditions, highlighting the algorithm’s robustness
and versatility.

The discussion emphasizes the impact of confounding
factors, such as melanin content, blood volume fraction, and
optical properties of tissues, on the algorithm’s accuracy. It is
crucial to recognize the limitations of the algorithm, particularly
in the presence of increased melanin content and higher
intralipid concentrations, where accuracy may diminish.
Additionally, the study scrutinizes the algorithm’s
performance under conditions simulating different degrees of
yellowing of the lenses, showcasing its resilience against
alterations in the light spectrum.

The comparison between simulated and phantom data reveals
nuances in error rates, emphasizing the challenges associated with
real-world tissue complexities. The algorithm’s efficacy is upheld in
both scenarios, demonstrating its adaptability and robustness.
Importantly, our technique employs a simplified tissue model,
acknowledging its limitations in capturing the full complexity of
real tissue. Recommendations for future improvements include
incorporating capillary contributions, simulating blood flow, and
utilizing more complex tissue models.

Despite these considerations, the PCA-based algorithm offers
several advantages, including no need for fitting or weight
estimation, ease of implementation, and lower computational
complexity compared to alternative methods. However, it is
crucial to validate the algorithm using real eye data, as
simulations and phantom models may not perfectly represent the
intricacies of actual tissue.

In conclusion, our findings underscore the potential of the PCA-
based algorithm as a valuable tool for non-invasive monitoring of
oxygen saturation in clinical and research settings. With proper
optimization, validation, and consideration of its limitations, the
PCA-based approach holds promise for advancing the field of DRS
and enhancing our ability to accurately estimate tissue oxygen
saturation.
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