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In injury, fibroblasts are key for disintegrating the fibrin clot, secreting collagen
proteins, and constructing extracellular matrix Altered fibroblast function is
among the common characteristics of delayed wound healing and
development of chronic wounds. Thus, treatment methods for effective
wound healing require agents that affect the complexed wound milieu,
including fibroblast cells. Diabetes mellitus (DM) is a common cause of
impaired fibroblast cell function, delayed wound healing, development of
chronic ulcers, and limb amputation. Photobiomodulation (PBM) promotes
fibroblast cell proliferation, migration, release of growth factors and wound
healing. Yet, its use is limited largely due to an incomplete understanding of
its underlying mechanisms at the molecular and cellular level. In this review, we
summarise the involvement of fibroblast cells in wound healing, and the effect of
PBM on fibroblast cell function and diabetic wound healing. PubMed, Google
Scholar, and Research Gate were used to find pertinent academic articles.
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1 Introduction

The global morbidity rate of diabetes mellitus (DM) is increasing, and by 2030 it is
estimated to increase from approximately 5%–8% (Liao et al., 2022). Several complications
develop as a result of DM, accompanied with high treatment costs, disability, and lowered
life expectancy of the affected individual. Diabetic foot ulcers (DFUs) are a critical marker
for high mortality in diabetic patients, and is characterised by infection, persistent wound
formation, and destruction of the deep tissue. The development of diabetic ulcers is largely
due to neuropathy and peripheral arterial disease, and the risk of developing chronic
wounds in diabetic patients is reported to have increased to approximately 25% (Jais, 2023).
Literature elucidates that in DM, dermal fibroblast activity is reduced, and is closely related
to the reduced wound healing process (Evangelatov et al., 2022). Treatment for diabetic
ulcers is a challenge, frequently resulting in minor or major limb amputation which
increases the mortality rate within 5 years to as high as 39%–68% (Petersen et al., 2020; Liao
et al., 2022; Liu et al., 2022; Jais, 2023).

The notion that dermal fibroblasts comprise numerous separate subpopulations is a
significant development in the field of skin pathophysiology and provides a fresh viewpoint
that could lead to the development of innovative wound remedies (Des Jardins-Park et al.,
2018). This review discusses the involvement of fibroblast cells in wound healing, and PBM
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as a treatment technique for fibroblast cell regeneration and survival
in diabetic wounds. A search was conducted online using terms like
“diabetic wound healing,” “fibroblast cell,” “fibroblast cell in wound
healing,” “diabetes mellitus,” “effect of photobiomodulation,” and
“laser therapy in diabetic wound healing” on PubMed, Google
Scholar, and Research Gate. The heterogeneity of healthy
fibroblast cells is well explained elsewhere (Liu et al., 2022).

2 Influence of hyperglycaemia on
fibroblast cells during skin
wound healing

During the skin wound healing process, the granulation tissue is
basically composed of ECM, inflammatory cells, small blood vessels,
and fibroblast and myofibroblast cells. Myofibroblast cells
characteristically differ from normal fibroblasts due to their
increased ability to synthesize large amounts of ECM proteins
and tighten the wound. They express alpha-smooth muscle actin
(α-SMA), an isoform of actin, and is found in the majority of
connective tissues of healing wounds (Evangelatov et al., 2022).
Fibroblasts are mesenchymal-derived cells, and are widely found in
most tissues. This cell type express vimentin, but neither desmin nor
α-SMA are expressed, and under normal circumstances, fibroblasts
are essential for controlling the turnover of ECM. Fibroblasts are
activated in injured tissue, and undergo differentiation into
myofibroblasts (Figure 1) that shrink the wound and release
ECM proteins to aid in the healing process (Li and Wang, 2011).
Fibroblasts possess a variety of functions including creation of the
basic tissue and organ framework, and are among the critical cell
types for effective wound healing (Dick et al., 2023). Fibroblast cells
are responsible for coordinating the entire wound healing process by
producing a range of regulatory molecules and interacting with
other cell populations involved in the healing mechanism. Injury

provokes the release of cytokines, resulting from platelet
degranulation, which sets off an inflammatory response. During
this time, tumour necrosis factor-alpha (TNF-α), inducible nitric
oxide synthase (iNOS), interleukin-1 (IL-1), interleukin-6 (IL-6),
interleukin-12 (IL-12), and other pro-inflammatory mediators are
further elevated, thereby promoting inflammation and fibroblast cell
recruitment and activation (Francesca et al., 2022).

Although fibroblast cells are essential for an acute wounds’
ability to heal, they can also cause fibrosis and excessive scarring,
andmay prevent a lesion from healing as in the case of ulcerative and
diabetic wounds (Samuel et al., 2023). Dysfunctional fibroblast cells
is a critical factor in the development of chronic wounds, and
abnormal deposition of ECM and collagen often cause
permanent organ dysfunction. Research has demonstrated that
fibroblasts from chronic wounds have aberrant characteristics,
such as reduced proliferation, early senescence, and changed
cytokine release patterns, in addition to aberrant MMP and
tissue inhibitor of metalloproteinases (TIMP) activity (Wall et al.,
2008; Li and Wang, 2011). Furthermore, it has been demonstrated
that hyperglycaemia reduces migration, proliferation, and
production of collagen, and enhances apoptosis of fibroblast cells
(Xuan et al., 2014). Buranasin et al. (Buranasin et al., 2018)
elucidated that hyperglycaemia affects fibroblast cell proliferation
and migration, elevates inflammation, and hinders the wound
healing process.

Delayed and postponed wound healing in DM is largely due to
dysregulated differentiation of fibroblasts to myofibroblasts,
disordered action of myofibroblasts, and insufficient deposition of
ECM (Wan et al., 2021). Dysfunctional myofibroblasts can cause
postponed or suspended wound repair process mostly due to failure
in ECM reconstruction (Cialdai et al., 2022). One of the key
pathogenic influences in diabetic complications is oxidative stress
due to high concentrations of advanced glycation end products
(AGEs). Increased oxidative stress is a vital mechanism that triggers

FIGURE 1
Dermal fibroblast and myofibroblast cells in tissue injury.
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cellular defects and accelerated tissue damage, mostly via the
increased reactive oxygen species (ROS) and activated receptor
for AGEs (RAGE). During the wound repair process, several pro-
inflammatory cytokines and other signalling pathways, including
transforming growth factor-beta (TGFβ)/Smad, similarly activate
fibroblast cells and cellular fibrosis, and, increased expression of
MMPs, TGF, Angiotensin II (Ang II), and TNF-α are associated with
fibrous tissue remodelling (Zheng et al., 2019). High blood glucose
activates the advancement of tissue fibrosis, and during diabetic
wound healing is linked to reduced and malfunction of
myofibroblasts (Deb et al., 2017). To demonstrate the effect of
hyperglycaemia on fibroblasts, Haas et al. (Haas et al., 2021)
noted a decreased expression of fibrosis-related genes and
myofibroblasts in diabetic wounds. Lerman et al. (Lerman et al.,
2003) found a significant reduction in fibroblast cell migration,
transformed production of matrix metalloproteinase 9 (MMP-9),
and a huge reduction in the production of vascular endothelial
growth factor (VEGF) from diabetic mice. In addition, Zheng et al.
(Zheng et al., 2019) showed that hyperglycaemia increases the
expression of MMP-9, a protein that regulates the pathological
remodelling processes involving prolonged inflammation and
fibrosis, and intracellular domain of Notch receptor in fibroblasts.
Recent studies have shown that hyperglycaemia reduces fibroblast
proliferation and migration, and these findings clearly point out the
failure of fibroblasts to hastily migrate into the wound milieu,
reconstruct the ECM, and effectively promote angiogenesis in
DM (Wall et al., 2008; Deng et al., 2021).

3 Therapeutic methods that target
fibroblast cells in diabetic
wound healing

There are several therapeutic methods that classically focuses on
offloading, maintaining a moist environment, and preventing
infection and formation of biofilm. Growth factor and cell-based
therapies have been used to target and improve the performance of
fibroblasts (Berger et al., 2021). Recently, attempts have been made
to transform the wound bed into an environment where maximum
wound healing may be successfully obtained. In clinical practice,
cells including fibroblasts have all been utilised to promote wound
healing (You and Han, 2014). Also, nanotechnology-based therapies
for chronic diabetic wounds have emerged, with numerous designed
nanotechnologies exhibiting distinct qualities and diverse
applications for wound repair beeing put forth (Hamdan et al.,
2017). Furthermore, treatment approaches based on stem cells have
been suggested, and their potential to enhance both the speed and
calibre of wound healing as well as skin regeneration has been
demonstrated (Nourian et al., 2019). However, these options are not
satisfactory, and many patients still require amputation, with
approximately 30% of patients with chronic diabetic wounds
undergoing amputation (Deng et al., 2021). In recent years, the
understanding of fibroblast cell behaviour in wound healing has led
to discoveries of novel therapeutic techniques including
photobiomodulation (PBM) (Des Jardins-Park et al., 2018).

Recently, the application of PBM therapy in medicine has gained
a lot of interest. PBM induces a photobiomodulatory effect on tissue
and cells to modulate cellular behaviour and enhance tissue repair.

Previously known as low level laser/light therapy (LLLT), PBM is
able to induce cellular proliferation, migration, and differentiation
without causing tissue or cell’s temperature to rise. It is a non-
invasive treatment technique effective for pain relief, reduction of
inflammation, and enhanced wound healing (Dompe et al., 2020). It
is believed that the mitochondria and gated ion channels for light
and heat are the likely location for the primary effects of PBM,
resulting in enhanced production of ATP and alteration of ROS,
leading to downstream stimulation of transcription factors for cell
proliferation, migration, and survival (Figure 2). This mechanism
involves mitochondrial cytochrome c oxidase (CoX), a membrane
protein having a binuclear copper (CuA) and a heme centre (a3-
CuB). These proteins facilitate the transportation of electrons from
CoX to oxygen in the electron transport chain. It is suggested that
CoX represents the primary photoacceptor for the red and near
infrared (NIR) light spectrum in mammalian cells (Farivar et al.,
2014). The mechanisms of PBM and the mitochondrial redox
signalling is well explained elsewhere (Hamblin, 2018). Different
from pharmaceutical agents, PBM is described by parameters
including wavelength, power output, energy density, frequency,
and time of irradiation. It is believed that a reduced dosage may
result in an insignificant cellular response, and an excessive dosage
may completely impede positive cellular responses and induce
apoptosis (Arndt–Schulz law). However, these cell responses have
also been reported in some irradiated tumour cells, raising fear that
PBM may enhance growth of tumours, as well as highlighting the
importance of understanding the effects of PBM at the cell level for
proper interpretation of treatment protocols in cancer patients (Tam
et al., 2020).

Various transcription factors including nuclear factor kappa B
(NF-κB) are regulated with the status of cellular redox to activate
several intracellular signalling pathways for nucleic acid and protein
synthesis, progression of cell cycle, and activation of enzymes. This
process stimulates cell differentiation, increases cell proliferation
and migration, and release of cytokines and growth factors. PBM
modifies cellular transcription factors and gene expression resulting
in various phenotypic cellular variations (Khalkhal et al., 2020).
Different researchers have elucidated on the advantages of PBM in
advancing human fibroblast cell proliferation and survival when
used at appropriate parameters (Almeida-Lopes et al., 2001; Rani
et al., 2005).

4 Effect of photobiomodulation (PBM)
on fibroblast cells in diabetic
wound healing

The equations should be inserted in editable format from the
equation editor. Several studies have demonstrated the effect of PBM
on fibroblast cell proliferation and migration in diabetic wound
healing. In vitro, PBM has demonstrated a significant increase in the
proliferation rate of human fibroblasts (Kreisler et al., 2002). When
Khadra et al. (Khadra et al., 2005), used PBM using a diode laser at a
fluence of 1.5 and 3 J/cm2 at a wavelength of 830 nm, they noted a
significant improvement in human fibroblast cell attachment and
proliferation on titanium discs. Using a diode laser at a wavelength
of 670 nm, 780 nm, 692 nm, and 786 nm at a fluence of 2 J/cm2,
Almeida-Lopes et al. (Almeida-Lopes et al., 2001) noted a significant
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increase in human fibroblast proliferation. Jere et al. (Jere et al.,
2021) noted a significant increase in fibroblast cell migration when
they used PBM at a wavelength of 660 nm and energy density of 5 J/
cm2 on diabetic wounded and hypoxic diabetic wounded human
fibroblasts. Furthermore, when Rajendran et al. (Rajendran et al.,
2021) used PBM at a wavelength of 660 nm (fluence of 5 J/cm2, and
power density of 11.2 mW/cm2), or 830 nm (fluence of 5 J/cm2, and
power density of 10.3 mW/cm2), they observed enhanced migration
in irradiated diabetic wounded fibroblast cells. Giannakopoulos et al.
(Giannakopoulos et al., 2023) noted an increased activation of
cellular migration and proliferation when they tried to investigate
the role of red light at a wavelength of 661 nm on 3T3 fibroblast cell
proliferation and migration. Similarly, Zhao et al. (Zhao et al., 2022)
aimed to assess and relate the outcomes of 630 nm and 810 nm PBM
on the proliferation of mouse fibroblast cells (L929) in wound
healing in vitro and in vivo. They noted that both 630 nm and
810 nm irradiation significantly stimulated cell proliferation and
migration. In another study, Oyebode and Houreld, (Oyebode and
Houreld, 2022), noted a significantly increased human fibroblast cell
proliferation and migration when they investigated the potential of
PBM at 830 nm in accelerating cell proliferation and migration.

The differentiation of fibroblasts to myofibroblasts is regulated by
different growth factors and the stiffness of the ECM (Sassoli et al.,
2016). When Oyebode and Houreld, (Oyebode and Houreld, 2021),
used diode lasers at a wavelength of 830 nm and 660 nm at a fluence of
5 J/cm2 on diabetic human fibroblast cells they reported successful
initiation of fibroblast cell differentiation into myofibroblasts at a
wavelength of 660 nm than 830 nm. However, they noted better
results at a wavelength of 660 nm than at a wavelength of 830 nm.
It should be noted that this was in vitro, and most studies make use of
NIR as it has a deeper penetration depth than red light. Myofibroblasts
demonstrate the competence to release ECM proteins and adopt a
contractile phenotype to regulate tissue remodelling and wound
contraction. Lau et al. (Lau et al., 2015) assessed the effects of near
infrared (808 nm) PBM on diabetic wounds in rats at a fluence of 5 J/

cm2 with power densities of 0.1W/cm2, 0.2W/cm2 and 0.3W/cm2 and
exposure time of 50 s, 25 s and 17 s, respectively. They noted that
wound contraction was optimised with a power density of 0.1W/cm2,
and that PBM was able to enhance epithelialisation and collagen fibre
synthesis, indicating effective transformation of fibroblasts to
myofibroblasts. When Sassoli et al. (Sassoli et al., 2016) assessed
NIH/3T3 fibroblast cells cultured in medium with reduced serum
and additional TGF-β1 that were irradiated with a 635 nm diode
laser at a fluence of 0.3 J/cm2, they noted that PBM inhibited TGF-
β1-induced fibroblast differentiation to myofibroblast. They observed a
significant reduction in the formation of stress fibres, α-SMA and
expression of type-1 collagen, indicating that PBM at a lower fluence
may negatively affected the differentiation of fibroblasts to
myofibroblasts, critical for the reduction of fibrosis.

5 Photobiomodulation (PBM) enhanced
release of growth factors by fibroblast
cells in diabetic wound healing

The wound healing process is largely regulated by mitogenic
mediators including cytokines and growth factors that are produced
by occupant and infiltrating cells within the wound milieu (Chen et al.,
2014). The dermal fibroblast cells are critical for reconstructing the
injured tissue, and produce essential growth factors and cytokine that
contribute to the wound healing process. According to Rahbar et al.
(Rahbar et al., 2020) dysfunctional fibroblast cell proliferation and
communication within the dermis is the major cause of disrupted
wound healing in DM. In DM the production of the mitogenic factors
and their downstream cellular signalling that promote fibroblast cell
activity is altered, further diminishing the wound healing process
(Huang et al., 2018). Several studies have shown that PBM induces
impaired diabetic fibroblasts for effective and enhanced diabetic wound
healing. Rahbar et al. (Rahbar et al., 2020) demonstrated that PBM at a
wavelength of 632.8 nm and a fluence of 0.5 J/cm2 stimulates the release

FIGURE 2
Mechanism of photobiomodulation (PBM) at cellular level.

Frontiers in Photonics frontiersin.org04

Jere and Houreld 10.3389/fphot.2024.1423280

https://www.frontiersin.org/journals/photonics
https://www.frontiersin.org
https://doi.org/10.3389/fphot.2024.1423280


of 7 growth factor/cytokines [eotaxin-3, brain-derived neurotrophic
factor (BDNF), fibroblast growth factor 6 and 7 (FGF-6 and -7),
fractalkine, fit-3ligand, and granulocyte chemotactic protein (GCP-
2)] mainly involved in cell-to-cell communication and cell proliferation
in diabetic fibroblast cells. Literature shows that PBM induces
therapeutic benefits and increases the healing of diabetic wounds via
the release of growth factors including FGFs (Kasowanjete et al., 2022).
Karkada et al. (Karkada et al., 2023) showed that PBM stimulates the
release of IL-6 and bFGF in human skin fibroblasts (HSFs) cultured in
high glucose concentration medium. In addition, Khoo et al. (Khoo
et al., 2014) observed a significant increase in the expression of FGF,
platelet-derived growth factor (PDGF) and VEGF in irradiated diabetic
fibroblast cells with a single dose of PBM at a wavelength of 810 nm and
a fluence of 1 J/cm2. This suggests that PBM may play a critical role in
diabetic wound healing by stimulating fibroblasts and the release of
growth factors. Literature shows that PBM enhances wound healing,
particularly diabetic wounds, and its effect in cellular function as a result
of growth factor and cytokine production (Oyebode and Houreld,
2021). Research on the impact of repeated exposures to PBM on the
responses of injured skin fibroblasts shows that appropriate energy
density or fluence and exposure frequency can enhance the responses of
injured fibroblasts and encourage cell migration and proliferation by
promoting mitochondrial activity and preserving viability without
adding to the stress or harm to the injured cells. The results show
that the stimulatory effect is determined by the cumulative effect of
lower dosages, while multiple exposure at larger concentrations
produces an inhibitory effect that causes more damage (Rocha
Júnior et al., 2007).

6 Conclusion

During the wound healing process, fibroblast cells play a key role
in all the phases of wound healing, and crosstalk with other types of
cells via the production of chemokines, growth factors, MMPs, and
construction of ECM. In an effort to close and remodel the wounded
tissue, fibroblasts differentiate into contractile myofibroblasts, which
are responsible for increased production and construction of ECM,
mainly aimed at reestablishing the normal function of the tissue after
injury. Fibroblast dysfunction, therefore, is a distinctive attribute of
impaired wound healing and the development of chronic non-
healing wounds. For this reason, most therapeutic techniques
target the regulation and progression of fibroblast cell
performance. Diabetic wounds are problematic to heal, become
chronic, and may necessitate limb amputation. However, the

molecular and cellular modifications that lead to this deficiency
is not completely known. PBM is a novel treatment technique that is
able to induce and enhance tissue repair, and research shows that it
compensates most impairments in diabetic fibroblast cells. Could
this non-invasive and cheap treatment technique with limited side
effects be effective in mitigating fibroblast dysfunction in diabetic
wound healing? Due to controversy surrounding the use PBM, more
research may be critical to understand its effect, at a cellular and
molecular level, and the optimal dosage of PBM in diabetic
wound healing.
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