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Leafy vegetables are widely consumed around the world for their rich nutritional
qualities. To ensure a reliable and cost-effective supply of leafy vegetables in the
future, advancements in their production are essential. Deficiencies of nitrogen
(N), phosphorus (P), and potassium (K) impair growth of leafy vegetables and the
ensuing visual symptoms make the plants unmarketable. We studied the use of
non-contact large area hyperspectral imaging (HSI) for early detection of N, P and
K deficiencies in the leafy vegetable, Choy Sum, before the appearance of visual
symptoms. The wide spectral data of 500–900 nm extracted from the plants
were subjected to advanced feature mining, facilitating the creation of novel
spectral indices tailored to each vital nutrient by leveraging the Pearson’s
correlations of 0.85 for N, 0.64 for P, and 0.68 for K with gold standard
elemental concentration data. Early detection of deficiencies and timely
replenishment of macronutrient(s) can prevent the development of obvious
symptoms and thus maintain the visual quality of Choy Sum. These newly
created spectral indices hold the potential to provide non-destructive
estimation of nutrient content in plants, offering a promising avenue for future
advancements in precision agriculture and resource-efficient cropmanagement.
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1 Introduction

Nitrogen (N), phosphorus (P), and potassium (K) are vital macronutrients for plants,
essential for growth and cellular functions. Three macronutrient deficiencies impact crop
yield significantly. These deficiencies are addressed using synthetic fertilizers, but this leads
to environmental issues like greenhouse gas emissions (Burney et al., 2010) and aquatic
eutrophication (Vitousek et al., 2009). For balanced crop yield and reduced environmental
harm, early detection and optimized fertilizer application are crucial.

Nitrogen deficiency manifests as leaf yellowing due to chlorophyll degradation.
Phosphorus-deficient plants display purple discoloration from anthocyanin
buildup. Potassium-deficient plants have yellowed/brown leaf edges (Veazie et al.,
2020). However, diagnosing these signs requires expertise, and assessing the deficiency’s
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degree is challenging. Farmers often miss early detection, while
traditional nutrient evaluation methods are time-consuming,
destructive, and costly (Li et al., 2023). Early detection and
intervention can mitigate damage and maintain yield, reducing
environmental impacts. In leafy vegetables, nutrient deficiencies
not only hinder growth but create visible quality-degrading
symptoms, resulting in economic losses. Early deficiency
detection in leafy vegetables is therefore crucial.

The global demand for sustainable agriculture is an escalating
challenge that necessitates the exploration of cutting-edge
technologies for crop improvement and yield maximization. The
agricultural sector has made notable strides in utilizing modern tools
for plant phenotyping, particularly regarding nutrient management
(Williams et al., 2023; Yang et al., 2023). Among these, hyperspectral
imaging (HSI) stands out as an indispensable technique that offers
transformative potential in agricultural practices as it is inexpensive,
reliable in situ analysis with unparalleled detail, and non-destructive
(Grieco et al., 2021). Previous research has indicated the usability of
HSI in assessing various physiological attributes like nutrient status,
disease resistance, and various abiotic stress responses (Takehisa
et al., 2022; De Silva et al., 2023). HSI has successfully estimated N, P,
and K contents in various plants including tea leaves (Wang et al.,
2020a; Wang et al., 2020b), Valencia-Orange (Osco et al., 2020),
maize (Pandey et al., 2017), soybean (Pinit et al., 2022), rice (Pinit
et al., 2022), and wheat (Mahajan et al., 2014). On the other hand, in
leafy vegetables, HSI has been extensively used only to measure the
levels of contaminants like Escherichia coli, slugs, worms, faecal
matter (Siripatrawan et al., 2011; Mo et al., 2017; Cho et al., 2018),
water potential (Tung et al., 2018), shelf-life (Simko et al., 2015)
except for its application in assessing the nutritional status of lettuce
(Eshkabilov et al., 2021; Eshkabilov et al., 2022; Pandey et al., 2023).
In lettuce studies focusing on nutrition deficiencies, plants were
subjected to deficient conditions for a long time (3–8 weeks) and the
HSI were done after plant harvest (Eshkabilov et al., 2021;
Eshkabilov et al., 2022; Pandey et al., 2023). To our knowledge,
the use of HSI for early detection of nutrient deficiencies in leafy
vegetables is unexplored, making it an emerging frontier.

In our study, we explored non-invasive HSI to monitor early
deficiencies of N, P, and K in Choy Sum.We formulated a diagnostic
method correlating HSI signals with elemental concentrations
during initial deficiencies. The uniqueness of our work lies in the
application of feature mining, a data-driven technique, to develop a
diagnostic method that correlates HSI signals with elemental
concentrations during initial deficiencies. Using HSI for early
nutrient deficiency detection could revolutionize sustainable,
productive agriculture. By automating data collection, processing,
and fertilizer recommendations, our study bridges plant science,
remote sensing, and data analytics, advancing technological
applications in agriculture.

2 Materials and methods

2.1 Experimental design and data collection

Seeds of Choy Sum (Brassica rapa var. parachinensis) were
surface sterilized and sown onto 0.8% agar media containing
Murashige and Skoog (MS) salts, 1% (w/v) sucrose and 2.5 mM

MES, pH 5.6. After imbibition at 4°C/dark for 1 day, seedlings were
germinated in a growth chamber at 22°C with 60% relative humidity
and a 16 h light/8 h dark cycle with a light intensity of
100 μmol·m−2·s−1. After 7 days, Choy Sum seedlings were
transplanted to hydroponic trays containing 3 L of Hoagland’s
solution with each tray holding six plants. The plants were
placed in a growth chamber for the next 2 weeks under the same
chamber conditions used for seed germination and the nutrient
solution was renewed every 4 days. All plant experiments comply
with local and national guidelines and regulations. For all
experiments, samples were collected from six plants representing
each growth condition. Two plants were combined into one
replicate, resulting in three biological replicates per experiment.
Each experiment was repeated three times using different
biological samples.

On Day 0, HSI data was collected from leaves #3 and #4 of six
plants growing under sufficient-medium conditions. The selection
of leaves #3 and #4 was strategic, considering nutrient
remobilization during nutrient stress. These older leaves are key
indicators of the nutritional status in plants. By focusing on these
leaves, we aimed to detect the N, P, and K deficient response from
older to younger tissues. Next, leaf discs were taken for qRT-PCR
analysis and frozen immediately in liquid nitrogen. Similarly, leaf
discs were taken for chlorophyll and anthocyanin analyses and the
rest of the leaves were dried in an oven at 65°C for N, P, and K
determination. The nutrients solutions for the remaining plants
were replaced as follows. For the control trays, the old nutrient
solution was replaced with fresh sufficient media. Similarly, for -N,
-P, and -K trays, N, P, and K content were reduced to 0 mM,
respectively. For the -NPK treatment, the nutrient solution was
devoid of N, P, and K. Four trays were used for each condition.

On Day 4, HSI data were collected from six plants under each
specific condition, and the leaves were processed for various analyses
as described above. The nutrient solutions in all the trays were again
replaced with sufficient medium and the plants were allowed to grow
for another 4 days under recovery conditions.

On Day 8, HSI data were once again collected from six plants
under each condition, and the leaves were processed for various
analyses as described above.

2.2 Measurement of chlorophyll and
anthocyanin content

Chlorophyll levels were measured as previously described (Porra
et al., 1989). Total chlorophyll levels (mg·g-1 FW) were calculated
from 80% (v/v) acetone extracts using the equation: [(8.29 x
Absorbance663nm) + (19.54 x Absorbance646nm)] x [extraction
volume (mL)/(1,000 x sample weight (g)]. Anthocyanin levels
were measured as previously described (Porra et al., 1989).

2.3 Measurement of N, P, and K content

For N, P and K elemental analysis, the leaves were dried at 60°C
and ground into a fine powder. N determination was carried out
using the organic elemental analyzer - vario EL cube (Elementar,
Langenselbold, Germany). For the measurement of P and K
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contents, samples were prepared and analyzed using Agilent
720 Inductively Coupled Plasma–Optical Emission Spectrometry
(ICP-OES; Agilent, Santa Clara, California, United ) as described in
previous research (Suraby et al., 2023).

2.4 Quantitative real-time PCR (qRT-PCR)

Total RNA isolation cDNA synthesis, and qRT-PCR were
carried out as described in existing research (Dhandapani et al.,
2023). The primers used in this study are given in
Supplementary Table S1.

2.5 Data collection using HSI camera

The experimental setup utilized a single aluminum frame
mounted on top of two tripods (Brand: Tristar), creating a
gantry-like configuration (Figure 1A). A Senop HSC–2.1-C
camera was employed to capture spectral reflectance
measurements across a wavelength range of 500–900 nm,
acquiring 400 spectral bands (Figure 1B). The camera was
securely housed in a custom-designed black aluminum casing
attached to the aluminum frame. It had a field of view of
36.8 degrees, with a lens aperture set at f/4 and a focal length of
8 mm. For uniform illumination of the sample trays, two 120 W
halogen lamps (RS Pro – 791-8,264) were strategically positioned on
either side of the camera, emitting light across a spectrum
of 350–3600 nm.

The camera’s proprietary software (Senop HSC-2) facilitated
camera control and data visualization. The process of extracting
samples using the HSI camera and software was meticulously
executed. Initially, the camera was connected to the Senop
software, and a live image along with a histogram was observed
in the data visualization tab to ensure proper image exposure. The
desired wavelengths (500–900 nm) and number of spectral bands
(400 spectral bands) were defined and displayed in the data
visualization tab. The exposure time was set to 20 m, and the
camera operated in live mode to observe the sample. The
snapshot function was used to capture the desired frames as
defined by the settings. Finally, the captured data was saved as a
measured data cube and stored for further analysis in dat and hdr
file formats.

The frame-based spectral system was capable of capturing
comprehensive snapshot images of the plant samples with
settings configured to a 10-bit depth. At a distance of 70 cm, the
lamps irradiated the plant with an intensity of 19.49 W·m-2. The
hyperspectral image obtained had a resolution 1024 × 1024 pixels.

2.6 HSI pre-processing and
preliminary analysis

To account for intraleaf variations, ten 10 × 10 pixel bounding
boxes were randomly chosen at various locations on a leaf sample for
each of the growth conditions, including control, -N, -P, -K, -NPK
on Day 4. The size of the bounding box was chosen because some
leaves were smaller due to nutrient deficiencies. This sampling

method ensured that the analysis captured a representative range
of variation within individual leaves. The spectra within each
bounding box were normalized using the corresponding
coordinates of white and dark reference (Equation 1) to account
for variations in illumination and sensor response. Normalization
effectively corrected uneven illumination and bidirectional
distribution function characteristics of leaves. This ensured that
the resulting spectra accurately reflected the intrinsic properties of
the sample. Following normalization, the quality of the spectra was
further enhanced by employing a Savitzky-Golay filter for
smoothening. Then, the spectra within the defined bounding box
of each leaf sample for each condition were summed, resulting in ten
representative spectra per leaf.

Normalized Reflectance � I x,y( ) −D x,y( )
W x,y( ) −D x,y( )

(1)

where I represented the acquired spectra, D was the dark reference
collected by covering the camera shutter, and W was the white
reference obtained using SphereOptics Zenith Polymer®, positioned
at the same height as the leaves to ensure that the illumination
accurately reflected the conditions the leaves were subjected to.

An Analysis of Variance (ANOVA) test was conducted to
compare the spectra of different locations on each leaf. The
ANOVA test provided the F-statistic, which measures the ratio of
variance between the groups to the variance within the groups.
Additionally, the degrees of freedom for both between-group and
within-group comparisons were calculated, along with the p values,
which indicate the statistical significance of the observed differences
among the various locations on the leaf.

By comparing the p values from the ANOVA test, we
determined if there were significant intraleaf variations. The
ANOVA test evaluated the null hypothesis that there were no
significant differences within the leaf. A low p-value (<0.05)
indicated that the null hypothesis could be rejected, suggesting
significant differences within the leaf. Conversely, a high p-value
suggested that any observed differences were not significant. All data
can be found in Supplementary Table S2. It was found that there
were no significant intraleaf variations after preprocessing.

2.7 HSI analysis to derive novel indices

From the hyperspectral images, a 10 × 10 pixel bounding box
was defined to encapsulate the regions of interest (ROI), from which
spectral data were subsequently obtained (Figure 1C). This resulted
in a total of 200 spectra per plant. These spectra were preprocessed
as mentioned in the previous section, resulting in a consolidated
spectral representation considered representative of the leaf and
consequently, the plant. This representative spectrum served as the
basis for all subsequent analyses in our study, ensuring that our
findings accurately reflected the overall spectral characteristics of the
plant specimens under investigation.

To derive novel spectral indices for assessing plant nutrient
content, we drew upon established plant indices as a foundation and
systematically devised a range of potential indices, including both
two-band and three-band indices, as shown in Table 1. We explored
various mathematical operations, including simple arithmetic and
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exponential functions, to model nutrient growth and decay
dynamics. Additionally, we examined several potential indices in
a normalized format, as research has indicated that normalization
significantly mitigates the impact of sensor calibration degradation
(Bannari et al., 1996). This normalization approach aligns with
established practices in the development of plant indices and
highlights its common usage in its analytics (Gitelson et al.,
1996). Subsequently, the spectral data from two plants were
combined, resulting in three samples per nutrient per
experimental day, totaling 39 samples across the entire study
period (from Day 0 to Day 8).

We then embarked on a comprehensive feature mining
spanning the spectral range of 500–900 nm. This process

involved systematically testing numerous combinations of
reflectance intensities at various wavelengths, evaluating the
spectral information at each discrete point. By doing so, we
aimed to identify the specific combination of wavelengths that,
when used to calculate the respective nutrient index using their
respective reflectance intensities, exhibited the strongest Pearson’s
correlation with the N, P, and K concentrations determined using
the gold standard elemental concentration analysis. Through this
rigorous evaluation process, we identified the index with the highest
correlation coefficient relative to the gold standard elemental
concentration analysis. We then collated the wavelengths
corresponding to each nutrient to formulate the final index for
estimating nutrient concentrations within plant specimens.

FIGURE 1
Hyperspectral detection of nutrients. (A) Schematic representation of the experimental setup featuring the aluminium frame, Senop HSC–2.1-C
camera, halogen lamps, and custom-designed casing for hyperspectral data acquisition. (B) Composite visual representation presenting an image of the
plant sample alongside the corresponding hyperspectral spectra, illustrating the comprehensive spectral information collected during the experiment.
(C) Sample image captured from Senop Camera. 10 × 10 pixel black boxes indicate selected ROIs.
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2.8 Statistical analysis

To validate the index, Pearson’s correlation coefficient was
calculated between the estimated nutrient content (obtained from
the index using the spectra averaged from three representative
samples for each growth condition on their respective days) and
the corresponding gene expression data. This analysis provided the
R-value, R2-value, and p-value for the correlation.

3 Results

3.1 Plant growth and leaf color were not
altered during early nutrient deficiency

First, we investigated the effects of 4-day -N/-P/-K/-NPK
treatment on plant growth and observed that growth rate of the
-N/-P/-K/-NPK treated plants did not differ from the control plants
(D4; Figure 2A). In addition, leaf yellowing, leaves turning purple,

and browning of the leaf margins, the visual symptoms of N, P, and
K deficiencies, respectively, were also absent in the -N/-P/-K/-NPK
treated plants on Day 4. In other words, for visual inspection, the leaf
color of both the control and the treated plants appeared comparable
(Figure 2A). Since the plant morphology was unaffected by the 4-day
nutrient deficiency treatment, the replenishment of the missing
nutrients in the recovery media on Day 4 forestalled the further
development of visual symptoms. Thus, by Day 8, the treated plants
remained indistinguishable from the control plants (D8; Figure 2A).

Next, we examined the total chlorophyll content and total
anthocyanin content in the control and -N/-P/-K/-NPK
treatment plants. The results demonstrated no statistically
significant difference in the total chlorophyll content and total
anthocyanin content of -N/-P/-K/-NPK treated plants compared
to the control plants on Day 4 (Figures 2B, C). As expected,
consistent with the similarity observed between control and -N/-
P/-K/-NPK treated plants on Day 8, the chlorophyll and
anthocyanin contents were also not substantially different
between control and -N/-P/-K/-NPK treated plants (Figures 2B, C).

TABLE 1 Potential indices for N, P, and K quantification.

Bands Index N P K

2-Bands [lw1] − [lw2]
[lw1] + [lw2]

R = 0.42, p-value = 7.43e-03 R = 0.55, p-value = 3.05e-04 R = 0.58, p-value = 1.00e-04

w1, w2 = 845, 847 w1, w2 = 804, 802 w1, w2 = 568, 682

log( 1
[lw1 ]) − log( 1

[lw2 ])
log( 1

[lw1]) + log( 1
[lw2 ])

R = 0.42, p-value = 7.27e-03 R = 0.54, p-value = 4.20e-04 R = 0.58, p-value = 9.62e-05

w1, w2 = 842, 876 w1, w2 = 804, 802 w1, w2 = 830, 669

1

log( 1
[lw1])

− 1

log( 1
[lw2])

R = 0.42, p-value = 7.72e-03 R = 0.52, p-value = 6.98e-04 R = 0.57, p-value = 1.34e-04

w1, w2 = 805, 806 w1, w2 = 804, 802 w1, w2 = 630, 670

1

ln( 1
[lw1])

− 1

ln( 1
[lw2])

R = 0.42, p-value = 7.72e-03 R = 0.52, p-value = 6.98e-04 R = 0.57, p-value = 1.34e-04

w1, w2 = 805, 806 w1, w2 = 804, 802 w1, w2 = 630, 670

3-Bands log( 1
[lw1]) − log( 1

[lw2 ]) − log( 1
[lw3 ])

log( 1
[lw1]) + log( 1

[lw2 ]) + log( 1
[lw3 ])

R = 0.56, p-value = 1.98e-04 R = 0.55, p-value = 2.56e-04 R = 0.67, p-value = 3.83e-06

w1, w2, w3 = 533, 538, 529 w1, w2, w3 = 804, 803, 802 w1, w2, w3 = 581, 550, 625

([lw1] − [lw2])([lw1] − [lw3])
([lw1] + [lw2])([lw1] + [lw3])

R = 0.55, p-value = 2.91e-04 R = 0.55, p-value = 2.74e-04 R = 0.65, p-value = 8.57e-06

w1, w2, w3 = 831, 787, 830 w1, w2, w3 = 804, 702, 802 w1, w2, w3 = 591, 594, 682

[lw1] − [lw2] − [lw3]
[lw1] + [lw2] + [lw3]

R = 0.60, p-value = 5.04e-05 R = 0.56, p-value = 2.04e-04 R = 0.66, p-value = 4.03e-06

w1, w2, w3 = 533, 539, 527 w1, w2, w3 = 804, 802, 803 w1, w2, w3 = 573, 551, 625

e[lw1] + e[lw2]

e[lw1] − e[lw3]
R = 0.85, p-value = 5.17e-12 R = 0.64, p-value = 1.12e-05 R = 0.68, p-value = 2.09e-06

w1, w2, w3 = 836, 850, 853 w1, w2, w3 = 824, 821, 862 w1, w2, w3 = 620, 678, 646

[lw1][lw2]−[lw2][lw3]
[lw1][lw2]+[lw2][lw3] R = 0.42, p-value = 7.43e-03 R = 0.55, p-value = 3.05e-04 R = 0.58, p-value = 1.00e-04

w1, w2, w3 = 845, 738, 847 w1, w2, w3 = 804, 576, 802 w1, w2, w3 = 568, 763, 682

[lw1] + [lw2] + [lw3] R = −0.28, p-value = 8.99e-02 R = 0.09, p-value = 5.68e-01 R = −0.20, p-value = 2.25e-01

w1, w2, w3 = 500, 501, 507 w1, w2, w3 = 628, 629, 630 w1, w2, w3 = 500, 501, 507

tan−1[lw3][lw1] − tan−1[lw2][lw1] R = 0.58, p-value = 1.02e-04 R = 0.51, p-value = 9.21e-04 R = 0.66, p-value = 3.98e-06

w1, w2, w3 = 529, 538, 533 w1, w2, w3 = 583, 617, 602 w1, w2, w3 = 536, 625, 586

aFor each nutrient, a total of three samples were used for analysis per nutrient per experimental day. Each sample contains the sum of 400 spectra obtained from two plants. Iw1, Iw2, Iw3

represents intensity at wavelength 1 (w1), wavelength 2 (w2), and wavelength 3 (w3) from feature mining.
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3.2 Elemental concentrations and gene
expression were altered during early
nutrient deficiency

Despite no differences in growth rate, chlorophyll, and
anthocyanin contents on Day 4, the elemental concentrations of
N, P, and K in -N/-P/-K/-NPK treated plants were significantly
lower compared to the control plants (Figure 3A). Concurrently, on
Day 4, transcript levels of the nitrogen starvation-induced genes
(EIN3, ORE1, and SAG29), phosphate starvation-induced genes

(PHR1, IPS1, and PAP1) and potassium starvation-induced genes
(HAK5, KUP3, and KEA5) were significantly higher in plants grown
under -N, -P, and -K, conditions, respectively, compared to the
control plants (Figures 3B–D). The mRNA levels of N/P/K
starvation-induced genes were also upregulated in -NPK treated
plants on Day 4. Interestingly, when the plants were returned to
sufficient conditions of N, P, and K and the mRNA levels of the
nutrient deficiency-marker genes had recovered on Day 8
(Figures 3B–D).

3.3 HSI results description

Based on these findings, we analyzed the spectral data
obtained from the plant specimens (Figure 4A). Among the
range of indices explored in the Materials and Methods
section, one index demonstrated the strongest correlation with
gold standard elemental concentrations data for all nutrients
(Equation 2).

IndexN/P/K � eIw1 + eIw2

eIw1 − eIw3
(2)

N: w1 � 836,w2 � 850,w3 � 853,
P: w1 � 824,w2 � 821,w3 � 862,
K: w1 � 620,w2 � 678,w3 � 646
where Iw1, Iw2, Iw3, represents the intensity at unique wavelengths
(w1, w2, w3) for each nutrient.

This index showed significant correlations of 0.85 (p-value: 5.17e-
12) for N, 0.64 (p-value: 1.12e-5) for P, and 0.68 (p-value: 2.09e-6) for K
to the elemental concentrations of N, P, and K, respectively. Optimized
wavelengths for assessing key nutrients in plants were identified.
Specifically, wavelengths at 836, 850, and 853 nm were pinpointed
for N assessment (Table 1). For differentiation of P content,
wavelengths at 821, 824, and 862 nm were identified. Similarly,
wavelengths at 620, 646, and 678 nm were found to be optimized
for assessing K content. This is illustrated in Figure 4B, where the
observed trends align with the experimental design, depicting nutrient
deficiency on Day 4 and nutrient recovery on Day 8.

3.4 Validation of index

All estimated N, P, and K nutrients from the index (Equation 2)
showed negative correlation with their respective gene expression
data as shown in Table 2. Specifically, for N, the genes EIN3, ORE1,
and SAG29 exhibited weaker negative correlations with R-values
of −0.27, −0.26, and −0.19, respectively, and none of these
correlations were statistically significant (p values > 0.5). For
phosphorus (P), the genes PHR1, IPS1, and PAP1 also showed
weak negative correlations, with R-values of −0.28, −0.26, and −0.27,
respectively, and similarly, these were not statistically significant (p
values > 0.5). In contrast, the potassium (K) genes showed stronger
negative correlations, particularly for HAK5, which had an R-value
of −0.81 and a significant p-value of 0.026. KEA5 and KUP3 had
R-values of −0.69 and −0.72, respectively, with p values of 0.085 and
0.070, indicating moderate negative correlations but not reaching
statistical significance. These results show an overall trend of inverse
relationship between the estimated nutrient content and gene

FIGURE 2
Plant growth and leaf color were not altered during early stages
of nutrient deficiency. (A) The experimental plan and the
morphological phenotype of the plants grown under control, deficient
and recovery conditions. Representative images of plants are
shown here. Analysis of total chlorophyll (B) and total anthocyanin (C)
in plants grown under control, N, P, K, and NPK deficient, and recovery
conditions. Values are mean ± SD, n = 3 (two plants pooled into one
replicate). Asterisks indicate statistical difference as determined by
two-tailed t-test (*p < 0.05). The p values are given in Supplementary
Table S3.
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FIGURE 3
Elemental concentrations and gene expression were altered during early stages of nutrient deficiency. (A) Elemental concentrations of N, P, and K in
plants grown under control, N, P, K, and NPK deficient, and recovery conditions. Values are mean ± SD, n = 3 (two plants pooled into one replicate).
Transcript levels of nitrogen deficiency markers (B), phosphate deficiency markers (C), and potassium deficiency markers (D) in plants grown under
control, N, P, K, and NPK deficient, and recovery conditions. EIN3, ethylene-insensitive 3; ORE1, ORESARA1; SAG29, senescence-associated gene
29; PHR1, phosphate starvation response 1; IPS1, induced by phosphate starvation 1; PAP1, production of anthocyanin pigment 1; HAK5, high affinity K+

transporter 5; KUP3, potassium transporter; KEA5, K+ efflux antiporter 5. Values are mean ± SD, n = 3 (two plants pooled into one replicate). Asterisks
indicate statistical differences as determined by two-tailed t-test (*p < 0.05, **p < 0.01, ***p < 0.001). The p values are given in Supplementary Table S4.
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expression levels, with potassium-related genes showing the
strongest correlations.

4 Discussion

Our research highlights the potential of HSI technology for early
detection of macronutrient deficiencies in crops. In Choy Sum, HSI

identified deficiencies before visible symptoms appeared. This early
detection is crucial for prompt intervention to maintain optimal
crop health and yield. Nutrient deficiencies significantly impact the
quality of leafy vegetables, leading to potential economic losses (de
Bang et al., 2021). Visible symptoms often manifest only after
prolonged exposure to deficiencies. Pak Choi, a relative of Choy
Sum in the B. rapa family, exhibited deficiencies in N and K levels
11 days after being transplanted into deficient conditions and P

FIGURE 4
Detection of nutrients using hyperspectral imaging. (A) Representative averaged spectra obtained from plant samples on Day 4. (B) Analysis of N, P,
and K content using optimized HSI indices. Statistical differences were determined by a two-tailed t-test. The p values are given in Supplementary
Table S5.
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deficiencies after 16 days (Vitousek et al., 2009). Studies have
documented notable reductions in chlorophyll and increases in
anthocyanin levels after approximately 14 days (Juszczuk et al.,
2004). Despite the absence of immediate phenotypic changes in -N/-
P/-K/-NPK treatments on Day 4 (Figure 2), reductions in elemental
concentrations and increased expression of deficiency marker genes
on Day 4 (Figure 3) indicate earlier molecular responses. This
highlights the critical importance of early nutrient
supplementation in preventing long-term damage to plants.

The process of selecting wavelengths through feature mining in
our study provides a significant advantage by allowing the use of a
narrower bandwidth for analysis compared to the entire
hyperspectral image. It is unsurprising that the selected
wavelengths are within specific ranges: the 630–690 nm range is
absorbed by chlorophyll, while the 760–900 nm range is strongly
reflected by leaf cellular structures (Gitelson et al., 1996). Moreover,
incorporating exponential functions into the most effective index
aligns with their mathematical utility in realistically modelling both
growth dynamics and responses to nutrient deficiencies (Werf et al.,
1993; Litaor et al., 2008). This strategic selection of wavelengths not
only optimizes the spectral information for nutrient assessment but
also carries practical implications, particularly in real-world
applications. By focusing on a subset of wavelengths,
computational efficiency is greatly enhanced, leading to faster
and more streamlined data processing. In precision agriculture
and agricultural management scenarios, where timely decisions
are imperative, this reduction in computational time provides
significant benefits.

In contrast to conventional analysis methods such as Partial
Least Squares Regression (PLSR) demonstrated in several prior
studies (Wang et al., 2020a; Wang et al., 2020b; Pandey et al.,
2023), feature mining presents a more robust and versatile
methodology for extracting pertinent information from
hyperspectral data. It facilitates the identification of critical
spectral features linked to nutrient deficiencies in plants. Unlike
PLSR, which relies on linear modelling and may encounter
challenges with intricate, nonlinear relationships within
hyperspectral data, feature mining employs data-driven feature
selection. This approach enables the extraction of meaningful
patterns and relationships, even from high-dimensional
hyperspectral datasets.

In comparing traditional methods of nutrient assessment
with HSI technology for detecting nutrient deficiencies in
Choy Sum, HSI offers significant advantages. Traditional
methods, such as visual inspections, Inductively Coupled
Plasma (ICP) testing, chlorophyll content measurement, and
total anthocyanin content analysis, are typically time-
consuming and destructive. They require laboratory analysis
that may overlook early signs of deficiency. In contrast, HSI
provides a non-contact, rapid, and non-destructive approach to
capturing detailed spectral data across the range of 500–900 nm.
This capability enables early detection of deficiencies before
visible symptoms emerge. HSI technology reduces the time
and cost associated with sample preparation and analysis. The
development of novel spectral indices through feature mining
further enhances the precision and practicality of HSI,
positioning it as an effective alternative for efficient and
proactive nutrient management in precision agriculture.

The inverse correlations observed between the estimated
nutrient content and the gene expression data align with
expectations, as these genes are known to respond to
nutrient starvation. This suggests that the index effectively
captures the anticipated trends, validating its methodology.
However, while the overall trend is promising, the lack of
statistically significant p values indicates the need for further
investigation. This limitation is likely attributable to the small
sample size, with only seven samples per nutrient, which may
have constrained the statistical power of the analysis. Future
research will focus on increasing the sample size and conducting
studies on a larger scale to achieve more robust validation of the
index, ensuring its reliability and accuracy across various
conditions.

Consequently, these indices, characterized by their
sensitivity to specific wavelengths associated with nutrient-
related spectral features and structural attributes, have the
potential to provide a suitable and effective means for
quantifying nutrient content in Choy Sum plants. Their
capability to promptly detect both nutrient deficiency and
recovery phases emphasizes their effectiveness as valuable
tools for real-time monitoring and management of plant
nutrient status. This facilitates proactive nutrient
management strategies in agricultural practices.

TABLE 2 Correlation of nutrient index and gene expression.

Condition Gene R-value (n = 7) R2-value (n = 7) p-value (n = 7)

N EIN3 −0.27 0.07 0.553

ORE1 −0.26 0.07 0.567

SAG29 −0.19 0.04 0.680

P PHR1 −0.28 0.08 0.545

IPS1 −0.26 0.07 0.570

PAP1 −0.27 0.07 0.553

K HAK5 −0.81 0.66 0.026

KEA5 −0.69 0.48 0.085

KUP3 −0.72 0.51 0.070
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5 Conclusion

In conclusion, our study employed HSI technology for early
detection of nutrient deficiencies in plants. The feature-mined
indices (Equation 2) exhibited high sensitivity to early
deficiencies in N, P, and K and demonstrated the capability to
monitor nutrient replenishment (Table 1; Figure 4B). This ability
can facilitate real-time analysis and prompt management of plant
nutrition. However, it is important to acknowledge certain
limitations in our findings. Environmental factors such as
variable weather conditions and sunlight inconsistency can
impact the accuracy of hyperspectral data. Further experiments
are necessary to validate the developed index against gold
standard elemental concentrations analyses of N, P, and K
deficiencies beyond the current experimental dataset. Moreover,
optimal indices may vary among different plant species, highlighting
the need for more tailored research efforts. While our study focused
on N, P, and K deficiencies, future investigations should explore
other nutrients and a broader range of plant species on a larger scale.
The wavelengths identified through feature mining also offer
potential for developing an affordable and compact multispectral
imaging system in future research, optimizing data collection for
applications in agricultural settings. We are currently developing a
distribution plot using our index to map nutrient distribution in
leaves. Additionally, efforts are underway to establish an automated
and robust selection and analysis of ROI, which is crucial for
automating the screening process for early nutrient deficiencies
in plants.

By integrating principles from plant science, remote sensing, and
data analytics, our research emphasizes the value of real-time
automated surveillance of crop health. This advancement marks a
transition towards precision agriculture and accentuates the
significance of HSI technology in modern agricultural practices.
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