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Photoacoustic imaging is a novel biomedical imaging modality that has emerged
over the recent decades. Due to the conversion of optical energy into the
acoustic wave, photoacoustic imaging offers high-resolution imaging in depth
beyond the optical diffusion limit. Photoacoustic imaging is frequently used in
conjunction with ultrasound as a hybrid modality. The combination enables the
acquisition of both optical and acoustic contrasts of tissue, providing functional,
structural, molecular, and vascular information within the same field of view. In
this review, we first described the principles of various photoacoustic and
ultrasound imaging techniques and then classified the dual-modal imaging
systems based on their preclinical and clinical imaging applications. The
advantages of dual-modal imaging were thoroughly analyzed. Finally, the
review ends with a critical discussion of existing developments and a look
toward the future.
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1 Introduction

Medical imaging plays a critical role in various aspects of patient care. Whether it is
diagnostic, interventional, or surgical, medical providers rely heavily on imaging
technologies to make important decisions at every stage of disease diagnosis and
treatment planning. Subsequently, there has been immense innovation to make medical
imaging more efficient, effective, and error-free. Imaging technologies are based on
exploiting different properties of biological tissue upon its interaction with
electromagnetic or acoustic waves. Each imaging modality provides unique and relevant
information necessary to understand and interpret different biological contrasts.
Researchers in dual-modal imaging systems aim to integrate the contrasts from
different modalities for improved disease diagnosis and decision-making. In this article,
we focus on one such integration—dual-modal imaging with photoacoustic (PA) and
ultrasound (US) technologies. Ultrasound (US) imaging is a popular clinical tool that is
portable, cost-effective, and provides real-time imaging capabilities. Photoacoustic (PA)
imaging is a relatively newmethod that combines optical absorption and acoustic detection.
Different wavelengths can be used to differentiate various tissue chromophores. The main
advantage of the PA/US dual-modal imaging is the shared hardware. Both PA and US use
ultrasonic transducers for acoustic detection. Thus, existing ultrasound systems can
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potentially be upgraded to PA/US systems by adding an optical
source (laser, LED, etc.), thereby leading to faster clinical translation
as opposed to a completely new system.

In the past few years, there are already a few reviews in the field
of dual-modal photoacoustic and ultrasound imaging (Wang et al.,
2020; Wen et al., 2022; Lee et al., 2023). However, they typically
focused on a very specific area, such as ultrasound guided
photoacoustic imaging or clinical translational imaging. In this
review, we aim to provide a comprehensive overview of dual-
modal PA/US systems for both preclinical and clinical
applications. Section 2 provides a brief overview of the
fundamental principles of photoacoustic and ultrasound imaging.
In Section 3, we review various PA/US systems based on their
preclinical and clinical applications. We will explain the current
research progress and highlight the crucial methodologies for each
research field. Section 4 briefly touches upon various advancements
in PA and US. The final section also summarizes the benefits of dual-
modal configurations and states existing challenges in the area.

2 Principles

Photoacoustic (PA) imaging is a hybrid imaging modality that
integrates optical illumination and acoustic detection (Beard,
2011a). In PA imaging, a pulsed laser is used to induce thermal
expansion in the tissue, which generates acoustic waves. This
acoustic signal is measured with an ultrasound transducer and
the initial distribution of light absorption is reconstructed to
form an image (Attia et al., 2019). As acoustic waves scatter
much less than light in tissue (Lengenfelder et al., 2019), PA
imaging allows high-resolution imaging in depth beyond the
optical scattering limit. When different wavelengths are used, PA
can spectrally quantify a wide range of endogenous and exogenous
chromophores via their spectral absorption signatures (Jacques,
2013; Wu et al., 2014). Common intrinsic chromophores include
hemoglobin, melanin, lipids, and water. Since hemoglobin is one of
the major components of blood, PA modality can quantify
functional features of vessels such as oxygen saturation (Xia
et al., 2013a) and blood flow (Wang et al., 2013). Moreover,
vascular abnormalities are an early indicator of various diseases.

Therefore, PA’s ability to provide functional information about
blood vessels through monitoring hemoglobin makes it a
promising technique for a wide range of clinical applications (Hu
and Wang, 2010). Exogenous chromophores refer to chemical dyes
or nanoparticles that can be introduced into the body. They improve
PA imaging contrast and/or serve as targeting agents for molecular
imaging (Luke et al., 2012a; Luke et al., 2012b).

Photoacoustic tomography (PAT) can be majorly classified into
three categories based on its applications: photoacoustic computed
tomography (PACT), photoacoustic microscopy (PAM) and
photoacoustic endoscopy (PAE) (Wang, 2008a; Beard, 2011a;
Wang, 2017). PA computed tomography (PACT), is based on the
reconstruction of acoustic waves generated from the photoacoustic
source (Figure 1A). In general, an unfocused ultrasonic transducer
array is scanned over the source to generate an image (Wang,
2008b). PA microscopy (PAM), on the other hand, employs
raster-scanning of optical and acoustic foci (focused single-
element transducer) and forms images directly from acquired
depth-resolved signals (Yao and Wang, 2013). PAM maximizes
its detection sensitivity by confocally aligning its optical illumination
and acoustic detection (Figure 1B). While the axial resolution of
PAM is primarily determined by the imaging depth and the
frequency response of the ultrasonic transducer, its lateral
resolution is determined by the combined point spread function
of the dual foci (Yao and Wang, 2013). Photoacoustic endoscopy
(PAE) is a variation of PAM for internal organ imaging, which uses
rotational scanning (Wang and Hu, 2012). Detailed reviews of
different PA implementations can be found in (Xia et al., 2014;
Zhou et al., 2016; Wang, 2017).

Conventional ultrasound (US) imaging typically operates in
reflection or pulse-echo mode. A US image is obtained by
transmitting acoustic waves in tissue and detecting reflected
echoes to locate the target. As acoustic reflection is induced by
impedance mismatch among tissue structures, ultrasound imaging
provides insight into tissue morphology and properties. Depending
on the application, researchers have combined photoacoustic
imaging with various ultrasound-based techniques such as
reflection-mode ultrasound, ultrasound computed tomography
(USCT), ultrasound elastography, and Doppler ultrasound.
Doppler ultrasound utilizes shifts in ultrasound frequencies,

FIGURE 1
Schematic drawings of various PA and US imaging modalities. (A) Schematic of PACT with a linear array. (B) Schematic of PAM with single-element
transducer and confocal light illumination. (C) Schematic of Doppler US. (D) Schematic of USCT with ring array. (E) Schematic of US elastography.
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caused by the movement of hemoglobin molecules, to quantify the
speed and direction of blood flow (Figure 1C) (Szabo, 2004). USCT
is a transmission-mode approach that can reveal distributions of the
speed of sound (SOS) and acoustic attenuation of tissue, leading to
more comprehensive tissue characterization (Figure 1D) (Li et al.,
2009). Ultrasound elastography involves perturbing the tissue using
a quasi-static, harmonic, or transient mechanical source and then
tracking the internal tissue displacements to deduce the stiffness
information (Figure 1E) (Gennisson et al., 2013). Similar to PA,
ultrasound can also be implemented as ultrasound tomography
(Watson, 2022), ultrasound microscopy (Couture et al., 2018), or
ultrasound endoscopy systems (Ang et al., 2018). Table 1 highlights
the key features, imaging depth, and spatial resolution of
each modality.

Combining PA and ultrasound imaging is an obvious choice, as
most of the equipment remains the same. PA/US dual-modal
configurations can provide a more comprehensive evaluation of the
target tissue than stand-alone PA or US modality. In the following
section, we will review the various PA/US techniques and highlight their
applications in the preclinical and clinical space.

3 Applications

3.1 Oncology

Cancer is a substantial public health problem worldwide (Siegel
et al., 2019). Early detection of cancer would significantly increase
the success rate of the treatment and patient survival. The analysis of
tumor microenvironment can reveal its behavior and growth
pattern. One such key feature is tumor angiogenesis, which is the
formation of new blood vessels around the tumor region (Kerbel,
2008). In addition, most tumors are prone to hypoxia during their

growth. It is caused by insufficient blood supply to the tumor region
(Hockel and Vaupel, 2001). Hypoxia can be: 1) diffusion-limited
(permanent hypoxia) in areas far away from blood vessels; or 2)
perfusion-limited which is caused by leaky and irregular capillary
growth in tumors (Rofstad et al., 2007). Morphological features of
tumors include stiffness, heterogeneity, anisotropy, etc. (Masuzaki
et al., 2007; Partridge et al., 2010; Seewaldt, 2014). While MRI and
CT have been widely used in the clinic for cancer imaging, PA/US
dual-modal systems have unique advantages due to their non-
invasiveness, low cost, and radiation-free nature. Therefore,
several groups have used PA/US imaging for different types of
cancer applications. Table 2 summarizes the PA and US
characteristics for oncological applications.

3.1.1 Preclinical imaging
Various dual-modal small animal imaging systems have been

proposed for pre-clinical cancer imaging and research. Merčep et al.,
2019 designed a hybrid transmission-reflection optoacoustic
ultrasound (TROPUS) system shown in Figure 2A. Transmission
USCT provided speed of sound and acoustic attenuation maps,
while reflection USCT and PA provided optical absorption and
acoustic reflectivity. Overall, this technique revealed vascularization,
organ parenchyma, tissue reflectivity, density, and stiffness in live
mice (Figures 2B–E). With this dual-modal approach, results from
one modality could be used as an a priori knowledge to enhance the
reconstruction of another. For instance, the speed of sound maps
can be used to enhance PA image reconstruction to render sharper
PA features.

To understand the vascular morphology and functionality in the
tumor microenvironment, Bar-Zion et al., 2016 used dynamic
contrast-enhanced ultrasound (DCEUS) and dual-wavelength
photoacoustic imaging as a tool to monitor anti-vascular
treatment. In different murine tumor models, the DCEUS system

TABLE 1 PA and US imaging characteristics.

Resolution Depth Contrast

PACT (Wang, (2009)) −50 μm −1 mm −1–10 cm Tissue optical absorption

PAM (Wang, (2009)) −0.5–50 μm −1–10 mm Tissue optical absorption

Ultrasound (Szabo, (2004)) −50 μm −1 mm −1–10 cm Difference in acoustic impedance among tissues

US Doppler (Poelma, (2017)) −0.5–2 mm −1mm - 10 cm US frequency shift (blood flow)

US microDoppler (Christensen-Jeffries et al., 2020) −10–200 μm −1mm - 2 cm Blood flow in microvasculature

USCT (Duric et al., 2005) −50 μm - 1 mm −1cm - 10 cm Acoustic attenuation and speed of sound

US elastography (Ormachea and Parker, (2020)) −50 μm - 2 mm −1–10 cm Tissue stiffness

TABLE 2 Oncology.

Application PA characteristics US characteristics

Oncology Total concentration of hemoglobin (CHb) of tumor
Oxygen saturation of hemoglobin (sO2) of tumor
Peripheral vasculature

Tumor boundary

Shape

Echogenicity

Acoustic enhancement/shadowing
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detected changes in perfusion using gas-filled microbubbles as
acoustic contrast, whereas PA imaging measured oxygenation
and hemoglobin levels. Combining the two modalities, viable and
necrotic tissue could be distinguished from hemorrhagic regions,
resulting from leaky capillaries. However, the system is only capable
of 2D imaging with low resolution and poor sO2 separation for
low values.

Besides cancer screening and diagnosis, PA/US can also be used
to monitor the response to treatment. Radiation therapy is widely
used in cancer treatment which involves inducing cancer cell death
by disrupting the DNA via ionizing radiation. Endothelial cell
damage within the tumor microvasculature is another effect of
radiation (Garcia-Barros et al., 2003). Ultrasound-stimulated
microbubbles have been demonstrated as radiation enhancers. To
investigate the extent of microvascular disruption caused by
radiation therapy using US-stimulated microbubbles, Briggs et al.,
2014 used PA imaging and US power Doppler to study the oxygen
saturation and therapy response. PA was used to detect oxygen
saturation and power Doppler imaging was used to assess blood
flow. In a murine pancreatic model designed to distinguish
responders from non-responders to photodynamic therapy,
Mallidi et al., 2015 used US to identify the tumor region and
obtain B-scans while multi-wavelength PA to obtain sO2 images
of the tumor in a murine model with glioblastoma. The average
oxygen saturation (sO2) was calculated before and after therapy to
predict tumor reoccurrence.

3.1.2 Clinical imaging
3.1.2.1 Breast cancer

Breast cancer has the highest mortality rate in cancer-related
deaths in women (Jemal et al., 2011). To achieve good resolution,
deep penetration and large field of view, different groups used
different detection geometries, as discussed by Nyayapathi and
Xia, 2019; Manohar and Dantuma, 2019; Das et al., 2021;
Kratkiewicz et al., 2022 have also provided comprehensive
reviews on this topic. In most of these systems, PA is used to
obtain breast vasculature and oxygen saturation, while US provides
tissue morphology. The additional functional information obtained
by PA would be useful to assess tumor microenvironment and
growth rate, thus reducing unnecessary biopsies. Furthermore,
monitoring changes in tumor vasculature can also be a useful
tool in monitoring therapy response and provide tailor made
treatment plans.

Recently, Seno Medicals received FDA approval for Imagio®,
their handheld PA/US imaging system (Stephens, 2021). This
system provides two modes: 1) US mode for real-time grayscale
images, and 2) PA/US mode for functional information overlaid on
grayscale US. PA/US mode, which uses dual lasers (755 nm and
1,064 nm), generates oxy- and deoxy-hemoglobin maps as shown in
Figures 3A–C (Oraevsky et al., 2018a). Multicenter clinical trials
were conducted in the United States (Neuschler et al., 2018) and
Netherlands (Maestro) (Menezes et al., 2018). Results from the trials
indicate that the specificity of PA/US was 14.9% higher than US

FIGURE 2
(A) A schematic of transmission-reflection ultrasound optoacoustic system (TROPUS) (B) Representative cross-sections acquired in the
optoacoustic mode. (C) The corresponding reflection-mode ultrasound images. (D and E) The corresponding transmission-mode ultrasound images
show the distribution of the speed of sound and acoustic attenuation, respectively. Annotations: 1: spinal cord; 2: liver; 3: vena porta; 4: vena cava; 5:
aorta; 6: stomach; 7: ribs; 8: skin/fat layer; 9: spleen; 10: right kidney; 11: cecum; 12: pancreas; 13: intestines; 14: muscle. Reproduced with
permission from (Merčep et al., 2019).
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alone, and sensitivity was comparable (PA/US = 96%; US = 98.6%).
Moreover, this PA/US system was able to downgrade (from BI-
RADS 4A to 3 or lower; BI-RADS 3 to 2) 34.5% of benignmasses and
upgrade (from BI-RADS 3–4A or higher)) 47% of malignant masses
in comparison to US (Neuschler et al., 2018). Here, Breast imaging
and reporting data system, or BI-RADS is a standard diagnostic tool
used to standardize terminology and report tumor grade
classification across various imaging platforms (Pesce et al., 2019).

PA/US tomography systems, when compared to their handheld
counterparts, have the advantage of being operator independent. To
this date, three dual-modal PA/US breast tomography systems have

been developed. First, the Kyoto-Canon PAM-02 system used a 600-
element rectangular grid CMUT array for PA acquisition with
2 MHz central frequency (Asao et al., 2016). A separate linear
array transducer (central frequency: 6 MHz) was used to obtain
pulse-echo US data. PA was used to generate hemoglobin saturation
maps from 756 nm to 797 nm (Figure 3B). Craniocaudal and
mediolateral oblique imaging views were obtained. Second,
Oraevsky et al., 2018b developed and arc-shaped array-based
system called LOUISA-3D (laser optoacoustic imaging system
assembly) to rotationally scan the breast. The pendant breast is
imaged using two wavelengths (757 nm and 797 nm) to obtain

FIGURE 3
(A) A schematic of the handheld imaging system. (B) and (C) Optoacoustic functional images upgraded radiologist interpretation to BI-RADS 5
(highly suspicious for malignancy) from BI-RADS 3 (probably benign) based on conventional ultrasonic morphological images. (B) The PA total
hemoglobin map is shown in yellow and subjected to a threshold. (C) The PA relative map shows oxygenated blood in green and relatively deoxygenated
blood in red and is not subjected to a threshold. (D) A schematic of Dual Scan Mammoscope (DSM). PA depth-encoded MIP image of a volunteer
with scattered fibroglandular breast density and thickness after compression of 7 cm (craniocaudal view): (E) right breast, (F) left breast. (G) PA and US
images from a 50-year-old patient with invasive ductal carcinoma, SBR grade II with scattered fibroglandular breast density. The tumor mass is marked
with an asterisk. Grayscale US was acquired fromDSM. PA features are shown in color scale as they represent the hemoglobin map in the breast: stronger
PA amplitudes indicate a higher concentration of hemoglobin. Most PA features are concentrated at the periphery of the tumor. Reproduced with
permission from (Oraevsky et al., 2018a; Nyayapathi and Xia, 2019; Nyayapathi et al., 2021). © 2021 Optica Publishing Group © 2020 IEEE.

Frontiers in Photonics frontiersin.org05

Nyayapathi et al. 10.3389/fphot.2024.1359784

https://www.frontiersin.org/journals/photonics
https://www.frontiersin.org
https://doi.org/10.3389/fphot.2024.1359784


oxygen saturation as well as the hemoglobin map. However, this
system used two different transducers for US and PA acquisition,
thus the imaging speed is relatively slow. Third, Nyayapathi et al.,
2019 developed a system with two linear arrays to scan the breast in
the craniocaudal plane, called the dual-scan mammoscope or DSM
(shown in Figures 3D–F). The DSM is a dual transducer imaging
system that simultaneously acquired PA and US images and
therefore obtained naturally co-registered images. The DSM was
able to acquire PA features of the tumor region based on the tumor
subtype (Nyayapathi et al., 2021) (see Figure 3G). In the next
iteration (DSM-2), Zheng et al., 2021 improved resolution and
incorporated quasi-static ultrasound elastography for better tissue
characterization. However, with single wavelength illumination, this
system is only able to obtain the total hemoglobin map.

3.1.2.2 Thyroid cancer
As thyroid nodules are detected in about 60% of healthy subjects,

the primary goal in screening for thyroid cancer is to detect thyroid
cancer accurately and avoid unnecessary biopsies (Gharib et al.,
2016). Yang et al., 2017 compared PA/US imaging of thyroid
nodules to color Doppler ultrasound. In comparison to color
Doppler, PA could image blood vessels with slow blood flow
speed and provide functional information. However, along with
penetration depth, another limitation for this study was acoustic
reflection artifacts due to impedance mismatch in the trachea region.
Another PA/US system was developed by Kim et al., 2021 to image
human thyroid nodules in real-time with the goal of reducing
unnecessary biopsies. Multispectral PA imaging (690–930 nm)
was performed to assess oxygen saturation along with B-mode
US imaging. Also, based on the American Thyroid Association
(ATA) guidelines and this multiparametric PA/US analysis, a new
classification method was developed with about 40% greater
specificity. However, due to carotid pulsation, breathing and
other movements, motion artifacts were unavoidable.

3.1.2.3 Ovarian cancer
Another area of clinical interest is ovarian cancer, as it is the

most lethal gynecological cancer [ref]. Most diagnosed women are
already at the late stages of cancer due to a lack of proper early
screening procedures (Clarke-Pearson, 2009; Torre et al., 2018).
Various groups have made significant contributions to this field
(Zhu, 2022). Amidi et al., 2019 developed a PA/US imaging system
for ovarian lesions in humans. Using a transvaginal probe, pulse-
echo US provided the morphological information, while PA
provided functional information of the ovarian lesions. PA/US
images were co-registered and benign ovaries were differentiated
from patients with ovarian cancer using a generalized linear model
and SVM (support vector machine). PA features (total hemoglobin,

etc.) were added to improve classification results. However, a larger
sample size is needed to strengthen the analysis.

Several groups are developing PA/US imaging systems to address
other types of cancer as well. Kothapalli et al., 2019 developed a
transrectal US and PA imaging system (TRUSPA) for prostate
cancer imaging (Schröder et al., 2009; Ferlay et al., 2015; Agrawal
et al., 2020). Colorectal cancer is one of themost common cancers in the
United States (Siegel et al., 2017). Leng et al., 2018 combined US with
acoustic resolution PAM (AR-PAM) on ex vivo colorectal tissue. AR-
PAM relies on acoustic focusing instead of optical focusing and thus
penetrates deeper than optical resolution PAM. This system was able to
differentiate benign frommalignant tissues. However, these systems are
yet to be tested in vivo.

3.2 Brain imaging

The brain has various functions, such as maintaining autonomic
functions, delivering sensory information, and conducting motor
control, so brain-related diseases can severely affect essential body
functions. Various imaging techniques have been proposed to reveal
the disease-induced pathological changes of the cerebral vasculature.
However, existing imaging approaches have their limitations, such
as small FOV (microscopic system), poor spatial resolution (non-
invasive optical modalities), low sensitivity to cellular events (MRI
and CT), and low spatial resolution [positron emission tomography
(PET) and single-photon emission computed tomography
(SPECT)] (Razansky et al., 2021). Thus, photoacoustic has
attracted increased attention because of its ability to conduct
non-invasive functional imaging with high resolution and deep
penetration. Applications of PA/US brain imaging include
functional and molecular imaging, which allows a better
understanding of brain functions and monitoring of drug
delivery procedures. Furthermore, the anatomic information
obtained through the US can improve the performance of PA in
different aspects, including signal segmentation, focus adjustment,
and the application of contrast agents for longitudinal imaging. All
those applications will be covered in this section. Table 3
summarizes the PA and US characteristics for brain imaging
applications.

3.2.1 Preclinical imaging
Several research groups have made significant advancements in

functional brain imaging with PA/US microscopy (Ning et al.,
2015a; Rebling et al., 2018a; Estrada et al., 2020a; Li et al., 2022).
As shown in Figure 4A, PA/US microscopy involves a confocally
aligned focused laser beam and ultrasonic transducer for co-
registered high-frequency (30–35 MHz) imaging. This modality

TABLE 3 Brain imaging.

Application PA characteristics US characteristics

Brain imaging Total concentration of hemoglobin (CHb) Skull-cortex interface

The oxygen saturation of hemoglobin (sO2) Skull contour

Cerebral blood flow (CBF) Tumor boundaries

Accumulated contrast agent TUS-based BBB-open procedure
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utilizes a laser wavelength of 532 nm for vessel mapping (Li et al.,
2022). To provide additional functional information, many research
groups have incorporated another wavelength in the range of
565–595 nm for spectral unmixing (Ning et al., 2015a; Rebling
et al., 2018a; Estrada et al., 2020a).

One of the biggest challenges faced by stand-alone PA modality
for brain imaging is the inability to differentiate signals generated by
the brain from those originating from the skull (Nie et al., 2012). PA/
US modality overcomes this limitation by utilizing the US-provided
anatomical information for vascular segmentation, which can be
accomplished by extracting the maximum signal in each A-line to
map the surface contour of the skull (Ning et al., 2015a) or by
combining complementary information from dual-modal imaging
to estimate skull thickness and separate calvaria and cerebral
vasculature networks (Rebling et al., 2018a). Furthermore, the
US-provided anatomical information enables dynamic adjustment
of the PAM focus. By focusing the PAM on the target cortical
vasculature, the team reached a remarkable 2 μm lateral resolution
on the uneven brain surface, allowing for the distinction of single
capillaries (Ning et al., 2015a).

The PA/US modality integrates multispectral imaging, vessel
segmentation, and dynamic focus adjustment techniques to access
functional parameters of the mouse brain at the microvascular level.
Experimental studies on mice have confirmed the efficacy of PA/US
microscopy in multi-parametric transcranial imaging, including
measurements of total hemoglobin concentration (CHb), oxygen
saturation of hemoglobin (sO2), cerebral blood flow (CBF), and
cerebral metabolic rate of oxygen (CMRO2) (Ning et al., 2015a;
Rebling et al., 2018a; Estrada et al., 2020a; Li et al., 2022). Figure 4B
illustrates an overlaid PA/US image with US-obtained anatomical
information and the corresponding vasculature obtained through
PA. Subsequent studies have employed the PA/US modality with
various algorithms to track changes in the morphology of vascular
structures for longitudinal imaging. Potential applications of this
system include monitoring the recovery of supplemental vessels in
calvarial bone marrow following radiation exposure (Estrada et al.,

2020a), as well as tracking abnormalities in bone vascular structures
during skull bone growth in mice, which is an indicator of diseases
like osteoarthritis and osteoporosis (Li et al., 2022).

Another application to aid in PA modality is drug delivery and
pharmacokinetic monitoring. The blood-brain barrier (BBB) is
formed by the tight junctions of endothelial cells that separate the
central nervous from the brain. The BBB shields the body from
pathogens and other harmful substances but also makes
pharmaceutical treatment and contrast-agent-added brain imaging
challenging (Zloković et al., 1985). An earlier study demonstrated
that the BBB influenced the performance of PA in longitudinal
imaging by clearing the injected contrast agent in a short period
(Figure 5A) (Leng et al., 2019). Incorporating the acoustic technique
can overcome this limit through the transcranial-focused ultrasound
(TUS) BBB-open procedure. This procedure utilizes a low-frequency
(<1 MHz) focused transducer with a low f-number setting, such as 1,
to traverse the skull and create localized disruption, thereby opening
the BBB barrier (Hartman et al., 2019). As shown in Figure 5B,
combining the TUS opening procedure and contrast agents enables
PAM to visualize brain tumors at late/early stages with a superior
signal-to-background ratio (15.4 and 7.2, respectively) compared to
MRI (Guo et al., 2017). This approach also allows for real-time
imaging of individual plaques and proteins (Hartman et al., 2019).
While low frequency allows TUS to transfer through the skull, it
affects the system’s capability to perform targeting imaging
(Constans et al., 2017). A more advanced mechanical setup
(Figure 5C) was proposed to address this issue (Estrada et al.,
2020b). The system contains a 512-element spherical transducer
with a radius curvature of 4 cm, a covering angle of 140°, and an
adjustable transmission delay that allows for a 5.5 ns time resolution.
Together, these features optimize the focusing capacity of the system
close to the diffraction limit for highly selective imaging, and the
large covering angle also makes real-time volumetric PA images
across the entire murine brain possible.

Microscopic modalities in brain imaging face significant
limitations in penetration depth and acquisition time. Current

FIGURE 4
(A) A sketch of the PA/US dual modal microscopy. The PA/US microscopy can conduct co-registered PA and US imaging of the brain. (B) Co-
registered (i) US and (ii) PA images. Based on the estimated skull thickness, the segmented vascular structure can be divided into calvarial (hot) and
cerebral (cold) vascular networks. Reproduced with permission from (Ning et al., 2015b; Rebling et al., 2018b).
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literature indicates a maximum penetration depth of approximately
6 mm, while the largest field of view (FoV) of 7 × 7 mm2 requires
several minutes to cover with a micro-meter level step size. These
constraints pose challenges in capturing quick functional signals and
reducing motion artifacts during clinical trials. Although
tomographic configurations have addressed the FoV challenge to
some extent (Estrada et al., 2020b), the acoustic attenuation and
aberration caused by the human skull remain unresolved. However,
a recent study proposed by Na et al. suggested a potential solution to
this issue by utilizing numerical skull models to correct skull-
induced acoustic aberration (Na et al., 2022a). The team stated
that a signal-to-noise ratio of 77 at a depth of around 10 mm below
the cortical surface is theoretically achievable. Recently, Tang et al.,
2023 used a spherically focused 2D array for combined PA and ULM
imaging of the brain. The deep vascular structures obtained from
ULM can be overlaid on top of the functional PA image for
comprehensive study of the brain function (Eisenstein, 2023)

Given the comprehensive insights provided by the materials in
this section, we believe the future directions in clinical brain imaging
should emphasize the incorporation of acoustic imaging techniques
into existing PA tomographic configurations (Demene et al., 2017;

Imbault et al., 2017; Na and Wang, 2021; Na et al., 2022b). This
integration provides several advantages, including improved signal
discrimination, increased spatial resolution, microvascular-level
functional imaging, and drug delivery capabilities. Overall, PA/
US holds great promise for revolutionizing clinical brain imaging
and advancing diagnosis. Table 4 summarizes the PA and US
characteristics for vascular applications.

3.3 Cardiology and endovascular
applications

Atherosclerosis, the thickening of the arterial wall caused by the
accumulation of cholesterol, lipids, and other constituents, is the
leading cause of cardiovascular death and disease. A blockage in
blood flow is caused by blood clots formed by vulnerable plaques
rupturing from the arterial wall. These plaques are non-obstructive
lesions with an elevated risk of breaking down and may cause fatal
cardiac events (Richardson et al., 1989; Falk et al., 1995; Schaar et al.,
2004; Virmani et al., 2005). Plaque morphology and composition are
important diagnostic features for cardiac intervention and

FIGURE 5
The effect of the blood-brain barrier (BBB) on longitudinal imaging and approaches for opening the BBB barrier through acoustic techniques. (A) An
example of imagingwithout opening the BBB barrier. Real-time PA/US visualization results after the injection of indocyanine green (ICG) contrast agent in
a coronal view. Due to the intact blood-brain barrier, the contrast through the cortical surface of the rat declined within 30 min after injection. (B) An
imaging example with the BBB barrier opened for comparison. The overlapped PA/US images of the brain tumor were obtained at different time
points following the TUS-BBB-opening procedure. The BBB opening procedure allows the applied nanoparticle to pass through the barrier and
accumulate inside the tumor location for longitudinal imaging. The USmodality provides structural information, such as the skin and skull margin, and the
PA reveals the tumor entity marked by the applied nanoparticle. (C) A schematic drawing of the PA/US system for BBB opening and PA/US imaging.
Transcranial-focused ultrasound was used to open the BBB, while PA/US dual-modal imaging could be performed with the same spherical array.
Reproduced with permission from (Guo et al., 2017; Na et al., 2022a).

TABLE 4 Cardiology and endovascular applications.

Application PA characteristics US characteristics

Cardiology and Endovascular Applications Lipid concentration in plaque Lesion localization

Lipid deposition and quantification Arterial wall thickness
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subsequent treatment (Kolodgie et al., 2001). Therefore, it is
essential to identify and monitor potentially vulnerable areas to
prevent and monitor coronary disease progression. Dual-modal
intravascular ultrasound (IVUS) and intravascular photoacoustic
(IVPA) imaging have made notable contributions to cardiac
imaging (Wang et al., 2010a; Karpiouk et al., 2010; Jansen et al.,
2014a; Zhang et al., 2014; Hui et al., 2016; van Soest et al., 2017).
IVUS/IVPA together is powerful for analyzing atherosclerotic
plaques. IVUS differentiates tissues as fibrotic, necrotic, lipidic,
and calcified. IVPA provides details of the chemical compositions
of vulnerable plaques (see Figures 6A,B) (Wang et al., 2010b; Shin
et al., 2011). Advances in transducer design and development are
further propelling this dual-modal technique toward smooth clinical
translation (Hui et al., 2017; Wu et al., 2017; Cao et al., 2018). In this
section, we discuss recent innovations in this field.

3.3.1 Preclinical imaging
IVUS/IVPA was proposed for quantifying perivascular adipose

tissue (pVAT), a known symptom of early atherosclerosis (Verhagen

and Visseren, 2011; Lee et al., 2013; McKenney-Drake et al., 2017;
Tanaka and Sata, 2018), as well as plaque burden for early assessment of
the disease. Kole et al., 2019 compared IVUS/IVPA (Figure 6A) with
dual-modal near-infrared spectroscopy and IVUS (NIRS/IVUS)
(Gardner et al., 2008; Madder et al., 2016; Schuurman et al., 2018)
as both NIRS and IVPA are capable of quantifying lipid cores. IVUS/
IVPA was able to detect early stages of atherosclerosis in swine in vivo
based on pVAT, a known cause of atherosclerosis. In terms of depth
resolution, IVUS/IVPA outperformed NIRS/IVUS by their ability to
localize the lesions. Using IVUS and spectral IVPA at two spectral
bands of 1.2 (Figures 6B–E) and 1.7 μm (Figures 6F–H), Jansen et al.
demonstrated lipid detection and the resultsmatch with histology stains
(Figures 6I–K) (Jansen et al., 2014b). The results indicate that the
1.2 μm wavelength allows the differentiation of lipids from the arterial
wall (Allen and Beard, 2009; Jansen et al., 2011). The 1.7 μmwavelength
provides higher sensitivity to lipid absorption with lower pulse energy
(Wang et al., 2012). Plaque lipids (cholesterol) and peri-adventitial
lipids were differentiated. However, there is a strong calcium absorption
signal at both wavelength ranges.

FIGURE 6
(A) A schematic of the IVUS/IVPA collinear catheter design, in which the acoustic and optical paths overlap, after a series of reflections off the rod
mirror and optical fiber surfaces. (B) Sketch of the intravascular photoacoustic imaging (IVPA) principle. A laser pulse (green) is sent from the catheter C to
the vessel wall containing a plaque (yellow). The light excites an acoustic wave (blue curves) through optical absorption and the associated thermoelastic
expansion (red star). The graph on the right shows a time trace of the acoustic signal after the laser fires at time t = 0; Lipid detection in an
atherosclerotic human coronary artery using sIVPA at 1.2 μm and 1.7 μm. (C) 1,205 nm and (D) 1,235 nm combined IVUS/IVPA images (IVPA 25 dB, IVUS
40 dB). (E) Lipid map based on 2-wavelength relative difference between the PA signal at 1,205 nm and 1,235 nm. (F) 1710 nm and (G) 1,680 nm
combined IVUS/IVPA images (IVPA 25 dB, IVUS 40 dB). (H) Lipid map resulting from the 2-wavelength relative difference between the PA signal at
1710 nm and 1,680 nm. Both lipid maps are shown overlaid on the corresponding IVUS image. (I) Lipid histology stain (ORO); lipids are stained red;
calcification is stained black. (J) ×5magnification of the part of the atherosclerotic plaque indicated as lipid rich by the lipid stains (area outlined in black in
(i)), shows larger extracellular lipid droplets, while the lipids in all other parts of the lesion are intracellular or contained in small extracellular droplets.
(K) ×4 magnification of area outlined in black in (H). Reproduced with permission from (Jansen et al., 2014a; Jansen et al., 2014b; Kole et al., 2019).
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To obtain multiple lipid components and evaluate lipid
concentration, Leng et al., 2021 combined PA/US imaging in a
0.9 mm catheter that performed 360-degree rotation. PA
spectroscopy imaging with 11 wavelengths (1,690 nm–1778 nm)
was performed. The correlation coefficient was calculated
between the experimental PA spectrum and the optical
absorption spectrum of lipids to indicate regions of increased
lipid deposition. Abran et al., 2014 also designed a PA and US-
based catheter, which was also tested for intravascular elastography
on phantom.

The limitations of IVUS/IVPA imaging are the slow imaging
speeds of −5 frames per second and the lack of real-time capabilities.
Hui et al., 2017 addressed this issue by proposing a real-time IVUS/
IVPA imaging system with a frame rate of −25 frames per second,
comparable to commercial IVUS and NIRS/IVUS systems. This was
achieved by utilizing a 2 kHz repetition rate master oscillator power
amplifier-pumped OPO (optical parametric oscillator) laser.
VanderLaan et al., 2017 also proposed a real-time system with
online image processing and display capability of ≥30 Hz
frame rates.

IVUS/IVPA technology needs to be thoroughly tested in small-
animal atherosclerotic models before moving into clinical space.
Along with real-time imaging capabilities, other factors that require
improvement are catheter size and the sheath properties. Real-time
visualization of the catheter tip is necessary for the operator to
identify the correct region of interest. Furthermore, the sheath
should be optically and acoustically transparent in the
ideal situation.

3.4 Obstetrics

Ultrasound has long been the modality of choice to monitor fetal
and maternal health during gestation and detect any complications
or developmental defects. However, US alone does not provide
functional information, which may be essential (Lawrence et al.,
2019). Functional changes in the development of an embryo are
essential to understanding developmental abnormalities during
pregnancy. Several complications of pregnancy, including genetic
defects, preeclampsia, gestational diabetes, or teratogens, can be
assessed by studying functional parameters in the conceptus or
placental hemoglobin. Furthermore, environmental factors that
contribute to toxicity, such as pollution, radiation, and heavy
metals, are also leading to an increase in embryonic disorders.
These can also be monitored by studying oxygen saturation and
hemoglobin concentration. Additionally, more than 50% of
congenital heart defects are missed with US imaging (Tegnander
and Eik-Nes, 2006; DeVore et al., 2017; Dhillon et al., 2020).

Therefore, functional information can be crucial in monitoring
both fetal and maternal health during pregnancy. Hence, there is
a need to develop imaging methods that are noninvasive and
sensitive, as well as provide functional information. Combining
PA and US modalities can fill this gap. In this section, recent
advances in this field are discussed. Table 5 summarizes the PA
and US characteristics for obstetrics.

3.4.1 Preclinical imaging
Preeclampsia, which has led to numerous pregnancy-related

deaths, is primarily caused by placental ischemia due to reduced
uteroplacental perfusion (Gilbert et al., 2009; Fujii et al., 2017).
Placental ischemia is an indicator of preeclamptic risk before the
onset of maternal symptoms (Gilbert et al., 2007). Bayer et al., 2017
demonstrated a US-guided spectral PA method for pre-clinical
studies of the maternal-fetal environment. Lawrence et al., 2019
demonstrated noninvasive PA/US imaging of a reduced uterine
perfusion pressure model (RUPP) to detect placental ischemia
(Figures 7A–F). PA images obtained at 690, 808, and 950 nm
were obtained and co-registered with B-mode US images. PA/US
imaging showed a hypoxic placental environment, which further led
to hypertension and proteinuria during late gestation, symptoms for
preeclampsia. Arthuis et al., 2017 used PA/US to study the effect of
variations in maternal hypoxia in pregnant rats. They found that the
placenta is sensitive to oxygen variations. To detect levels of
placental oxygenation at different stages of pregnancy,
Yamaleyeva et al. used PA/US imaging to monitor regional
differences in placental sO2 (Yamaleyeva et al., 2017; Yamaleyeva
et al., 2018). PA was used to accurately detect placental sO2 across
various mouse models (ACE2-KO and C57Bl/6). Also, sO2 at
different placental regions (labyrinth and junctional zone plus
decidua) through normal and hypertensive gestations was
recorded. Due to limited penetration depth (−1 cm), fetal organs
were not studied.

Fetal asphyxia, or oxygen deprivation, leads to various health
defects such as cerebral palsy, hypoxic-ischemic encephalopathy, and
mental impairments (Vannucci, 2000; Sandström et al., 2017). Yan
et al., 2021 designed and developed a US, PA, and Doppler endocavity
imaging system (ECUSPA) using a commercially available
transvaginal ultrasound probe to address fetal asphyxia at birth.
Oxygenation maps were obtained from PA (sPA), while structural
and blood flow parameters were obtained from US and power
Doppler imaging. The system achieved 200 μm spatial resolution at
30 mm depth and a real-time frame rate of 30 Hz. A sO2 estimation
error of less than 10% was evaluated using ex-vivo sheep brain and in
vivo study. While this system can monitor fetal brain blood volume in
vivo (see Figures 7G,H) and dye distribution ex vivo (Figure 7I), the
effects of the fetal skull and scalp are yet to be studied.

TABLE 5 Obstetrics.

Application PA characteristics US characteristics

Obstetrics Oxygen saturation of hemoglobin (sO2) for placenta Blood flow from power Doppler

Total hemoglobin Position of placenta

Embryo size

Embryo orientation
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To investigate the effect of heavy metal toxicity on fetal
development, Qiu et al., 2022 used PA and US tomography to
detect developmental toxicity in fetuses exposed to Methylmercury
Chloride (MMC). Mice embryos at different stages of development
were studied. Various parameters, such as US and PA signal
intensity, oxygen saturation, total hemoglobin content for the
heart, and PA signal ratio of the embryonic heart and amniotic
fluid, were recorded. PA/US imaging was able to detect changes in
these parameters in utero. While these results promise the detection
of aberrant embryonic development, further studies with larger
sample sizes and different toxicity models need to be conducted.

Placental insufficiency can lead to numerous complications,
such as preeclampsia, fetal growth restriction, gestational
diabetes, spontaneous preterm birth, and even pregnancy loss.
Therefore, studying functional changes in the placenta is essential
(Wu and Bayer, 2018). While the above-mentioned studies have
shown that a hypoxic placental environment leads to preeclampsia,
additional preclinical studies are necessary to thoroughly
understand the functional characteristics of the placenta along
with its role in other pregnancy-related issues.

3.5 Joint imaging

Joint disorder refers to a set of chronic arthritic conditions
associated with considerable pain, mobility impairment, and
reduced quality of life. Among joint diseases, rheumatoid
arthritis (RA) and osteoarthritis are the two representative
arthritis diseases, with osteoarthritis being the most common
form of arthritis (Barbour et al., 2017), and arthritis being the
leading cause of disability in the last 15 years (Yelin et al., 2016).
The adaptation of high-frequency gray-scale B-mode in
conjunction with power Doppler allows visualization of
anatomic structures and abnormal blood flow toward arthritis
diagnosis (Schmidt, 2007). However, due to the principle of
Doppler imaging, the US-PD system is angle-dependent and
more sensitive to fast blood flow in relatively large vessels,
whereas blood flow in smaller capillaries has a closer
correlation with early arthritis symptoms (Goldie, 1969). PA/
US thus has been studied as a complement to US-PD for imaging
small vessels. Table 6 summarizes the PA and US characteristics
for joint imaging.

FIGURE 7
(A) The custom-integrated US and photoacoustic imaging system (image of Vevo 2100 reproduced with permission from FUJIFILM VisualSonics).
The Phocus Benchtop laser triggers the dual acquisition of US and PA images. Images are acquired using an ultrasound transducer integrated with a
fiberoptic bundle for laser light delivery. (B) The sequence of the experimental procedures. (C–F) B-mode US images of the placental environment of
pregnant mice: (C and E) show normal pregnant mouse (NP). (C and D) shows the reduced uterine pressure model (RUPP). (E and F) show mice at
gestational day (GD 16). (D and F) The oxygen saturation (colormap) of the placental region is segmented and superimposed on the ultrasound image. Red
denotes completely oxygenated blood, while blue denotes completely deoxygenated blood. Scale bars are 3 mm. (G) Power-Doppler ultrasound (PDU)
of cortical arterial and venous blood flow in fetus brain (in vivo). (H) Normalized FMBV (fractional moving blood volume) image (green mask) overlaid on
top of acquired Doppler image, indicating the blood volume is 31%. (I) Spectrally unmixed sPA measurements for the relative concentration of ICG and
Cy5.5 in excised sheep brain. Color-coded maps indicating the relative concentration of ICG and Cy5.5 and showing the ability of sPA to distinguish and
measure the concentration of two spectrally different absorbers. Reproduced with permission from (Lawrence et al., 2019; Yan et al., 2021).
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3.5.1 Preclinical imaging
Wang et al. proposed a microscopic-based PA/US system for

joint evaluation. The system used a 532 nm laser wavelength and a
central frequency of 25 MHz to image the mouse knee joint (Wang
et al., 2023a). The results of coaxial dual-modal imaging showed that
the US can effectively visualize the synovial erosion area as a
hypoechoic region within the tibiofemoral tendon-tibia-femur
(TTF) complex. On the other side, the PA signal generated in the
same region can be correlated with the grades of Rheumatoid
Arthritis (RA).

Despite a relatively rapid scanning speed of 10 mm/s, one of the
limitations of this system is its limited penetration depth
(1.5–2.1 mm) compared to other configurations. Moreover,
factors such as the cost and ease of use hinder the widespread
clinical utility and acceptance of PA/US microscopy. As a result, the
application of PA/US microscopy for joint evaluation is restricted to
mouse models. In contrast, PAT configuration has gained
prominence in clinical research due to its superior penetration
depth. The following section covers the ongoing exploration of
human joint experiments utilizing dual-modal
tomographic platforms.

3.5.2 Clinical imaging
Based on the system configurations, joint imaging setups using

PA/US tomography can be divided into linear arrays (Xu et al., 2013;
Daoudi et al., 2014; Yuan et al., 2014; Jo et al., 2017; Daoudi et al.,
2021) and ring arrays (Mercep et al., 2015; van Es et al., 2015; Liu
et al., 2016; Oeri et al., 2017). Linear array configurations perform
joint evaluation by placing the hand-hold transducer in direct
contact with the skin over the targeting area (Figure 8A) (Daoudi
et al., 2014). Linear arrays offer a comprehensive visualization of the
joint, including the skin, blood vessels, tendons, and underlying
bone (Figure 8B). The clinical experiment verified that the acquired
PA signal around the US-acquired phalanges structure can be used
for assessing inflammation-induced hyperemia (Jo et al., 2017). A
later study adapted a central frequency of 21 MHz for PA to visualize
capillaries and a frequency of 40 MHz for the US to track sub-
millimeter skin thickness in superficial regions (Oh et al., 2006). The
resulting multi-spectral PA/US images provide accurate
quantification of the target joint, including capillary density (PA),
skin thickness (ultrasound), and oxygen saturation inside the nail
region. These findings stated the potential of using specific central
frequencies to target distinct features. Additionally, real-time dual-
modal imaging has been successfully achieved by employing a
specially designed GPU-compatible back-projection algorithm
(Wang et al., 2016).

One limitation of the linear transducer is the limited view angle.
Cross-sectional ring-shaped configurations have been investigated
to address this issue (Mercep et al., 2015; van Es et al., 2015; Liu et al.,
2016; Oeri et al., 2017; Guo et al., 2019) (Figure 8C). For cross-
sectional imaging, the finger was placed at the center of the ring-
shaped transducer array and immersed into the water tank. Ring
arrays generate images that cover the full cross-sectional depth of the
joint. With hardware advancements (Oeri et al., 2017) and improved
reconstruction methodologies (Mercep et al., 2015), Oeri et al. (Oeri
et al., 2017) achieved real-time finger imaging with full-angle
coverage. The array can further move along the finger for
volumetric imaging. Stacking images along the scanning direction
yields a volumetric imaging window of 20 × 20 × 20 mm3, with
isotropic in-plane image resolutions of 150 μm and 160 µm for PA
and US, respectively. Figure 8D shows coronal and axial images of
the figure acquired by such a system. The cross-sectional PA/US
image reveals the finger tendon, bone, tissue surface, upper
aponeurosis, and finger vasculature structures. These
characteristics can indicate rheumatoid arthritis symptoms such
as edema, joint effusion, and bone erosions for joint diagnosis (van
Es et al., 2015).

Another method to achieve ring-shaped imaging is to employ a
beam splitter in conjunction with numerous fibers to evenly split the
emitted laser beam at 360° and conduct illumination (Liu et al., 2016;
Guo et al., 2019). The PA image area can be used to estimate
corresponding joint size and angiogenesis to supplement the US
anatomic information for joint evaluation. The human experiment
validated the system’s ability to track rheumatoid arthritis
progression and recovery. However, the system’s resolution of
80 and 600 µm along lateral and axial directions prevent the
differentiation of small vessels and capillaries in the cross-section
images (Guo et al., 2019).

Researchers have also investigated the performance of functional
PA/US for joint evaluation. Previous preclinical studies have shown
that biomarkers, including hyperemia location, hypoxia in synovial
tissue, and the number of high amplitude PA pixels could be used to
diagnose joint disease (Jo et al., 2017; van den Berg et al., 2017). Zhao
et al. developed a dual-modal system diagnosis protocol that
integrates those factors into a novel parameter named PA + sO2

pattern, and the combined parameter’s performance was validated
in human experiments (Zhao et al., 2021a). The proposed parameter
was compared against standard clinical scores, including the
simplified disease activity index (SDAI), clinical disease activity
index (CDAI), and the disease activity score, in 28 joints
(DAS28). Statistical analysis reveals that the PA + sO2 pattern is
highly correlated with those parameters of the targeted joint and

TABLE 6 Joint imaging.

Application PA characteristics US characteristics

Joint Neovascularization in the TTF region Low echo area generated in the TTF region

Synovium hyperemia Synovium boundary delineated by bones and tendon

Nailfold capillary Skin thickness between the nail fold and the distal interphalangeal joint

Oxygen saturation in the nailbed Cross-sectional tendon, bone, tissue surface, aponeurosis

Cross-sectional vascular structures, skin surface layer, epidermal-dermal
junction
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outperforms the traditional power Doppler in certain joints due to
its greater sensitivity to small vessels. Assessing sO2 concentration
can also help with patient treatment because hypoxia is associated
with higher visual analog scale (VAS) and patient’s global activity
(PGA) scores.

The application of PA/US in joint evaluation has been
extensively studied with various configurations. While circular
scanning configurations generally outperform linear arrays in
terms of imaging angle and penetration depth, the
implementation of this approach in clinical practice is hindered
by the impracticality of the bulky water tank. In contrast, linear
transducers offer advantages for clinical translation due to their
compatibility with existing commercial ultrasound imaging units.
The penetration depth is the major limit of linear configurations that
hindered its applications. Clinical research on linear arrays has
primarily focused on finger evaluation, with limited exploration
of larger joints. Toward this issue, Jo et al. stated in their study that a
wavelength around 580 nm is adequate for PA diagnosis of human
hand joints, and wavelengths in the optical spectrum of 650–950 nm
are theoretically sufficient for larger joints such as the ankle (Xu
et al., 2013). Further research is necessary to provide experimental
support toward this expectation. Another potential solution worth
exploring involves the rotation of the transducer. The study
proposed by Francis et al. demonstrated a linear configuration by
rotating the linear transducer and employing repeated side
illumination with a calculated number of angular views to
achieve full-view tomographic imaging (Francis et al., 2020). This

innovative approach holds promise for achieving significant
penetration depth within a clinical setting using a linear setup.

Finally, achieving higher imaging quality is paramount for PA/US
to potentially replace well-established clinical imaging methods such as
MRI (Zhao et al., 2021b). There is existing research that holds promise
for future implementation in PA/US. In terms of hardware, the use of
LEDs as the PA light source has been investigated as ameans to identify
inflammatory arthritis with increased system portability (Jo et al., 2021).
As for image reconstruction, efforts are made to improve image quality
by mitigating artifacts stemming from acoustic reflection by bone
surfaces (Biswas et al., 2015) or by estimating the initial pressure
distribution and speed-of-sound distribution (Matthews and
Anastasio, 2017a). It is necessary to explore the performance of both
reconstruction algorithms in patient imaging with PA/US, as it may
prove critical for the clinical advancement of the PA/US modality.

3.6 Dermatology

While skin diseases are often overlooked in terms of health
priorities, they affect 27% of the population in the US (Barbour et al.,
2017) and are the fourth leading cause of non-fatal disability (Seth
et al., 2017). The most common method for skin diagnosis is a skin
biopsy. However, due to its limited field of view, reliance on lesion
age, and invasive nature, alternative approaches are actively explored
(Li et al., 2021). PA/US has the potential to meet this clinical need.
Table 7 summarizes the PA and US characteristics for skin imaging.

FIGURE 8
Two kinds of system configurations that have been investigated for PA/US joint imaging. (A) The combination of a light source and linear US array can
obtain cross-sectional images of the target joint (B) The overlapped PA/US image contents anatomic and functional information to detect diseases. (C) A
segmented full-ring-shaped transducer captures the target finger with the finger being placed in the center of the transducer. (D) Arrows 1-4 in the axial
image highlight the anatomical structures provided by the US and arrow 5 highlights the microvasculature structure provided by PA. The finger
structure along the coronal direction was formed by stacking the axial slices along the scanning direction. Reproduced with permission from (Daoudi
et al., 2014; Jo et al., 2017; Oeri et al., 2017).
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3.6.1 Preclinical imaging
Melanoma is the most dangerous type of skin cancer, and

sonography can be used to diagnose skin cancer by measuring
tumor-induced melanoma thickening (Pellacani et al., 2005;
Scotto di Santolo et al., 2015). However, because of the low
contrast in the superficial region, this method shows poor
accuracy in early-stage melanoma (Swetter, 2003). On the
other hand, while PA is effective at characterizing superficial
vasculature changes (Oh et al., 2006), it is incapable of deep
penetration due to high light attenuation. To overcome the
limitations of stand-alone imaging modality, multiple PA/US
preclinical models have been proposed for a comprehensive
diagnosis of melanoma by monitoring different tumor features
(Wang et al., 2016; Wang et al., 2021). Microscopic PA/US
imaging is well suited for small animal imaging as it offers
high spatial resolution. As shown in Figure 9, the fused PA
image obtained with visible and NIR light gives accurate
volumetric mapping toward the melanoma entity and
surrounding tissue, and the US allows more accurate
localization of tissue boundaries. Moreover, the near-infrared
light increased the penetration depth of PA to 8mm, which
facilitates the correlation between PA and US modalities for
more precise volumetric localization of the melanin boundary
(Wang et al., 2021). Despite all these advantages, the acquisition
time required by existing configurations lasts from several

minutes (Wang et al., 2016) to close to an hour (Wang et al.,
2021). As a result, the application of PAM for melanoma
diagnosis remains in animal models so far.

On the other hand, researchers also constructed novel contrast
agents that improve the PA/US signal for melanoma imaging (Li
et al., 2018). The melanoma-targeting nanoprobe is encapsulated in
liquid perfluorohexane, a substance that can be vaporized and
transformed from droplets to microbubbles via optical
irradiation. The nanoprobe is applied to the tumor-bearing
mouse, followed by dual-modal transducer imaging with a
central frequency of 21 MHz. The team revealed a progressive
increase in PA and US signals due to the applied nanoprobe and
the micro-bubbles generated from the light-excited nanoprobe.
Thus, they verified the nanoprobe’s capability to enhance the
contrasts between tumor-induced vessel structures and
corresponding anatomical structures.

3.6.2 Clinical imaging
As stated in the preclinical section, the existing microscopic-

based PA/US system for skin diagnosis is limited by the acquisition
time and unsuitable for clinical imaging. So, in human imaging
studies, linear-array-based PA/US systems are used to increase
imaging speed (Breathnach et al., 2015a; Breathnach et al., 2018;
Park et al., 2021a). Combining PA and US modalities enables
comprehensive diagnosis of melanoma. As shown in Figure 10,

FIGURE 9
Fused image between (A) Visible light PA image and US image, (B) NIR light PA image and US image, and (C) Visible light PA image and NIR light
image. Each imagingmodality reveals different information about the target tissue, which allows amore comprehensive evaluation ofmelanoma through
cross-correlation. Reproduced with permission from (Wang et al., 2021) © Optical Society of America.

TABLE 7 Dermatology.

Application PA characteristics US characteristics

Dermatology NPs accumulated in the melanoma Gas bubbles generated in the melanoma

Feeding vessels extend from the melanoma Normal tissue surrounding the melanoma

Melanin distribution Melanoma contour

CTC concentration Depth extension of melanoma

Content of melanin in each CTC Structural information of the target veins for CTC tracking (size, depth, flow velocity, etc.)

The moving speed of CTC
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PA image reveals the feeding vessels, while US assesses the tumor
extension in the depth direction. Furthermore, one of the studies
confirms that melanoma-generated PA signals mainly came from
wavelengths of 800 and 1,064 nm, while signals generated from the
interface between melanoma and normal tissue mainly came from
680 nm excitation (Zhao et al., 2021a). Taking advantage of this
characteristic, spectrally unmixed PA gives a precise measurement
of the shape and location of the melanoma (Figure 10C). Combining
the structural and functional information facilitates more accurate
surgical excision targeting different stages of the disease.
Furthermore, the research proposed by Park et al. (Park et al.,
2021a) achieved a penetration depth of 9 mm so that it is possible to
analyze the boundary architecture of the melanoma entity and
correlate it with the sub-type of melanoma.

Aside from imaging the melanoma entity, the PA/USmodality is
also studied as an alternative approach to tracking melanoma
metastasizes in regional lymph nodes. Clinical experiment (Dean-
Ben and Razansky, 2021) has verified the PA/US configuration’s
potential to replace the conventional radioactive
lymphoscintigraphic imaging approach (Stoffels et al., 2019). A
following study proposed by Stoffels et al. shows that PA/US can
achieve comparable melanoma metastasizes detection against the
lymphoscintigraphic, which is the clinical gold standard, with a
maximum penetration depth of 5 cm (Stoffels et al., 2015). The
imaging results obtained from 20 patients reveal a system in vivo
sensitivity of 100%, which outperformed the traditional
lymphoscintigraphic, and the anatomic information provided by
the US also paved the way for PA/US-guided minimally invasive
surgery in the future. Due to the high false positive rate caused by the
presence of other optical absorbers in the tissue, the team reported
the system specificity to be 48.6%. However, the team believes
incorporating a contrast agent could potentially solve this
problem in the future.

Also aiming to assist melanoma diagnosis, Galanzha et al., 2019
proposed a novel approach utilizing PA technology to detect
circulating tumor cells (CTCs) disseminating from the primary
tumor into the bloodstream, which can lead to early metastases

and blood clot formation. The team used the PA modality to
visualize the cell in conjunction with the vessel structure
provided by the US to anatomically localize the CTCs.
Experiment results revealed the relationship between the CTCs
flowing velocity and position within the vessels. However, the
examination of the approach varies from 10 to 20 s to 1 h for
patients with different CTCs concentrations, making it unsuitable
for individuals with a lower CT concentration.

Finally, one non-cancer-related PA/US clinical skin imaging
used PAM and high-frequency ultrasound to characterize skin
aging, featured with increased skin vessels (Saijo et al., 2019). The
team has confirmed that the system can achieve a spatial
resolution of 24 × 16 µm in horizontal and axial directions,
with a penetration depth of 2 mm to visualize superficial
microvascular structures and oxygen saturation status with the
multi-spectral PA modality. The US modality, on the other hand,
can provide the corresponding tissue structures across the
dermis layer.

3.7 Dental applications

Oral diseases pose a significant global public health challenge
due to their widespread occurrence, negative impact on the quality
of life, and the considerable resources needed for treatment
(Sheiham, 2005). Among the oral conditions that affect both the
hard and soft tissues of the oral cavity, periodontal disease, tooth
decay, and oral cancer are the most prevalent (Feldchtein et al.,
1998). Despite more than 60% of adults regularly undergoing dental
evaluations each year, current imaging methods have certain
limitations when it comes to the early detection of oral diseases
(O Connor et al., 2015). Previous research has indicated that for
existing imaging modalities, CT has limited precision, MRI lacks
sufficient spatial resolution, wide-field autofluorescence imaging
suffers from low diagnostic specificity, and dental X-ray exposes
patients to ionizing radiation (Pierce et al., 2012; Sarrion Perez et al.,
2015; Hwang et al., 2018). Recognizing the necessity to evaluate

FIGURE 10
PA/US melanoma entity imaging results. (A) The B-mode US imaging result of a nodular type of melanoma (B) The PA amplitude and (C) spectrally
unmixed PA images are overlapped to the US image to provide corresponding functional information. The blue arrows indicate the location of invasive
sites marked by feeding vessels, and the yellow arrow marked the bottom boundary of the melanoma. Reproduced with permission from (Breathnach
et al., 2015b).
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features from various hard and soft tissues, several dual-modal
imaging approaches have been developed to enhance the
diagnostic accuracy of oral diseases (Hucker et al., 2008; Niedre
and Ntziachristos, 2008; Kalchenko et al., 2011; Nam et al., 2012; Lee
et al., 2018). One such approach is the utilization of the dual-modal
PA/US, which is concluded in this section. Table 8 summarizes the
PA and US characteristics for dental imaging.

3.7.1 Preclinical imaging
PA/US has been investigated for clinical dental implant testing

(Lee et al., 2018). The team imaged a dental implant-anchored
porcine jawbone wrapped in 1 cm thick chicken breast. The results
verified the ability of the PA/US modality to penetrate through the
covered tissue and produce co-registered volumetric images of soft
tissue, jawbone position, and implant site, as shown in Figure 11 (Lee
et al., 2017). This approach can potentially help dentists plan and
execute implant treatments more effectively in dental clinics.

The integration of Fluorescence Lifetime Imaging Microscopy
(FLIM) configuration toward PA/US modality has been investigated
by Fatakdawala et al. for carcinoma diagnosis (Fatakdawala et al.,
2013a). The tri-modal system incorporated a ring ultrasonic
transducer attached to 16 optical fibers for the PA/US subsystem
and another fiber bundle extended from the middle for the co-
registered FLIM imaging. The team examined the performance of
the system with twenty-four male, golden/Syrian hamsters. The
FLIM provides metabolic information by differentiating normal

tissue from cancerous tissue based on differences in fluorescence
signatures owing to changes in collagen content. This innovative tri-
modal design offers the potential to identify regions of high
metabolic activity in tumors using FLIM and further characterize
these regions using PA and US to assess blood vessel density and
structural changes in the surrounding tissue, thereby providing a
comprehensive assessment of tissue structure and function.

3.7.2 Clinical imaging
While the previously proposed dual-modal imaging

configuration is too bulky (Fatakdawala et al., 2013a), Guo
et al., 2018 construct a compact transducer probe for dual-
modal carcinoma diagnosis inside the human oral cavity. The
team condensed a 2 mm optical bundle and a focused transducer
into a side-view probe with a diameter of 14.7 mm. Figure 12A
depicts the system’s construction along with the acquired PA/US
images. During imaging, the probe was attached to a motorized
rotator and employed within the oral cavity, performing
360 A-line scanning to cover a 270-degree field of view (FoV)
with a step size of 250 µm. Human imaging outcomes revealed
that the configuration could generate 3D images of vasculature
and tongue structures with a penetration depth of 5.5 mm,
allowing tumor detection in the flattened tongue. However,
the calculated spatial resolution of the system was limited to
420 and 340 µm for the PA and US modalities, which makes
distinguishing smaller vessels challenging.

FIGURE 11
Preclinical study for PA/US dental implant imaging. (A) The system is utilized for dental implant assessment. (B) and (C) The cross-sectional dual-
model imaging results. The team covered 10 mm thick chicken breast tissue on the target jawbone. Structures (implant, teeth, and jawbone) can be
visualized with the PA signal to identify the location of the implant. This result suggests the potential of the PA/US technique to be used for implant
treatment, such as to guide needles and drills. Reproduced with permission from (Lee et al., 2017). © Optical Society of America.

TABLE 8 Dental.

Application PA characteristics US characteristics

Dental Tongue vessel (clusters for small ones) Internal structure of the tongue

Contrast agent labeled pocket, gingiva and occlusal surface Periodontal structure (gingiva, occlusal surface, pocket, etc.)

Embedded implant Structure/thickness of the soft tissue surrounding the implant
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In addition to its applications in oral cancer imaging, the PA/
US modality has also been investigated for periodontal
applications. The current methods used to evaluate periodontitis
often involve invasive imaging of pocket depth using a metallic
probe to evaluate the destruction of the supporting structures of the
teeth (Khan and Cabanilla, 2009). Given that deeper periodontal
probing depths and gingival inflammation are the most common
biomarkers of the disease, PA/US is investigated as a potential non-
invasive approach. To address the lack of blood supply in the
periodontal site, Fu et al., 2022 explored the usage of a contrast
agent derived from cuttlefish ink to distinguish the periodontal site
from the surrounding soft tissue for functional imaging. The
feasibility of this contrast agent was verified in human teeth
located at the distobuccal, mesiobuccal, and buccal sites (Moore
et al., 2018). Subsequently, the team constructed a toothbrush-
shaped compact probe with a central frequency of 19 MHz to
achieve full-mouth coverage, including the posterior teeth (Khan
and Cabanilla, 2009). To mitigate motion artifacts caused by the
handheld configuration, the researchers also devised a modality-
independent neighborhood descriptor (MIND)-based image
registration technique, reducing motion-induced errors by a
factor of ten (Mozaffarzadeh et al., 2021). Patient imaging
studies showed that the PA/US images can reveal full-pocket
geometry with co-registered anatomic information (Figure 12B).
The contrast agent provides an SNR higher than 10 dB at 11 mm,

which is more than sufficient for periodontal pockets (typically
around 4 mm in depth). The PA/US method can predict gingival
inflammation by exploiting the PA signal intensity, and the
comparison between the US image and the conventional
invasive methodology demonstrates good agreement (less than
7% difference).

PA/US oral imaging has been investigated for different
applications in preclinical and clinical studies. The studies
covered in the preclinical section are still in the early stages but
hold great potential for clinical studies in the future. For implant
examination, further investigation is necessary to evaluate implant
integration and peri-implant bone health and perform longitudinal
monitoring of implant stability. Such advancements can enhance the
success rates of dental implant procedures and facilitate long-term
monitoring of implant stability, contributing to improved clinical
outcomes. Integrating PA/US with other imaging modalities, such as
FLIM in oral imaging, expands the capabilities of the system,
enabling a more comprehensive assessment of oral tissues. The
combination of metabolic, vascular, and structural information
provides a holistic view of the pathology, offering the potential
for more accurate diagnoses and individualized treatment,
ultimately leading to better patient outcomes. Continued research
and development in integrating PA/US with other modalities will
drive advancements for PA/US oral imaging and its clinical
applications.

FIGURE 12
Different applications of translational PA/US oral imaging. (A) and (B) present the system configuration, image acquisition procedure, and PA/US
image outputs for studies mentioned in this section. (A)Dual-modal imaging system used for carcinoma imaging. A motorized rotator is integrated into a
focused transducer to conduct PA/US imaging inside the oral cavity. H: resinous holder, T: Transducer, F: Fiber bundle, P: Prism. Both generated images
contained a 60-degree FoV, and the red dashed line symbolized the surface of the tongue. (B) The specially designed hand-hold probe with a small
tip in the front facilitates full-mouth scanning. The system can conduct pocket depth measurements with a contrast agent applied to generate PA signals
in the pocket. Reproduced with permission from (Khan and Cabanilla, 2009; Moore et al., 2018).
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We believe there’s more potential in the PA/USmodality for oral
diagnosis. In the current PA/US applications for oral imaging,
single-wavelength imaging restricts the system’s capability. There
is a need to explore multi-spectral imaging for functional oral
diagnosis. Evaluating parameters such as blood flow and
oxygenation levels can offer valuable information, leading to a
more comprehensive understanding of oral pathologies and
potentially improved diagnosis of oral diseases. Additionally,
while existing research has demonstrated the advantages of
microscopy and tomography-based PA in detecting and
characterizing early-stage oral pathologies, none of these studies
have extended to dual-modal configurations (Li and Dewhurst,
2016; Zhang and Wang, 2022). Integrating the PA system with
ultrasonic modality can potentially enhance the identification of
subtle abnormalities and lesions in the early stages, providing a more
effective diagnostic approach.

3.8 Foot ulcer imaging

Millions of Americans are affected by peripheral vascular
disorders associated with pain, functional impairment,
amputation, and higher risk of death (Nelson et al., 2007; Sen
et al., 2009; Boyko et al., 2018). In addition, diabetes affects the
entire vascular system due to long duration of high blood glucose
levels, which causes changes in blood viscosity and arterial wall
tension. Also, a hyperglycemic state causes altered metabolism,

which further leads to altered vascular function at the tissue and
cellular level (Pinhas-Hamiel and Zeitler, 2005; Shrikhande and
McKinsey, 2012; Cho et al., 2018). Therefore, patients with diabetes
are at increased risk of vascular damage and diabetic foot ulcers.
Treatment involves revascularizing the limb surgically in order to
restore blood flow and perfusion (Ma et al., 2019). Thus, foot
perfusion monitoring pre- and post-sugery is necessary to
effectively assess the treatment outcome (Huang et al., 2023).
Dual-modal PA/US systems are well suited for this application as
external contrast is not needed (Wang and Hu, 2012; Choi et al.,
2018). Table 9 summarizes the PA and US characteristics for
foot imaging.

3.8.1 Clinical imaging
Using a PA/US real-time foot imaging system with an arc-

shaped transducer array, Yang et al., 2020 compared diabetes
mellitus patients to healthy volunteers. The PA signal intensity
and oxygen saturation (sO2) were compared with and without
vascular occlusion in both groups. Doppler US was used to
establish landmarks and regions of interest. PA images were
acquired at 760 and 840 nm before occlusion and at 800 nm
during vascular stimulation. In diabetic patients, after vascular
occlusion, slow recovery of PA signal was observed in the
arteries. Thus, researchers found that diabetic patients had a
unique peripheral hemodynamic response and a lower sO2 in
comparison to healthy subjects. However, this system imaged
only cross sections of the foot.

TABLE 9 Foot ulcer imaging.

Application PA characteristics US characteristics

Foot Ulcer Imaging Oxygen saturation of hemoglobin (sO2) post occlusion Foot contour

Vascular structure Bone structure

FIGURE 13
(A) Schematic of the 3D PA/US bimodal foot scanning system. Multispectral noncontrast PA/US images obtained from a healthy 32-year-old male
volunteer’s foot. (B) USmaximum intensity projection (MIP) bone image. (C) US vessel image. (D) PA vessel image. a.u. = arbitrary units, max =maximum,
min = minimum. Reproduced with permission from (Choi et al., 2022).
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To detect microvascular changes in the healthy foot with
occlusion, Choi et al., 2022 developed a 3D PA/US foot imaging
system (Figure 13A). The contour of the foot was mapped by
scanning the foot with US, and then a refined scanning along the
mapped contour was performed in both PA and US. As shown in
Figures 13B–D, the US modality provides bone and macrovascular
information, while the PA modality provides microvascular
information. Images from the two modalities were merged to
provide 3D morphologic information about the foot. The current
setup requires the foot to be completely immersed in water, which
may be inadvisable for patients with wounds.

3.9 Stem cell therapy

Stem cells have gained significant recognition in tissue
engineering as a cell source capable of replacing or enhancing
tissue functions through their remarkable capacity for
differentiation into specialized cell types (Li and Dewhurst,
2016). PA/US imaging has emerged as a valuable tool for
monitoring stem cells. By combining PA mapping of stem cell
distribution with anatomical information obtained through
ultrasound, stem cells can be visualized and accurately tracked.
This integrated approach enables researchers to monitor the
migration, homing, and engraftment of stem cells, thereby
contributing to the advancement of effective stem cell-based
therapies. This section provides a comprehensive overview of
various PA/US applications related to stem cells. Table 10
summarizes the PA and US characteristics for stem cell imaging.

3.9.1 Preclinical imaging
Stem cells lack the optical absorption required for PA

visualization. As a result, contrast agents are prevalently used to
label stem cells for targeted PA imaging (Ricles et al., 2011; Chung
et al., 2013). Various studies have reported the application of gold
nanoparticles in tissue engineering as the contrast agent due to their
biostability and non-toxicity (Nam et al., 2015; Nagao et al., 2016;
Kubelick et al., 2019; Mohd-Zahid et al., 2020). Aside from that,
another type of nanoparticle named Prussian blue nanocubes
(PBNCs) is applied in a tri-model study for spinal cord therapy
(Kubelick and Emelianov, 2020a; Kubelick and Emelianov, 2020b).

As shown in Figure 14, the nanoparticle-aided PA/US modality
utilized US to offer structural information of the target region and
PA to monitor the injected stem cell via the nanoparticle signal.
Mouse experiment quantified the lowest detectable stem cell
concentration to be 1 × 104 cells/mL for the nanoparticle-aided
PA modality (Nam et al., 2012), which is superior to other
noninvasive stem cell tracking methods (Li et al., 2010). High-
frequency (20–40 MHz) tomography-based multi-spectral PA/US
configuration has been studied as a longitudinal stem cell
monitoring platform for various applications. Existing research
has demonstrated the capability of the system in visualizing stem
cell delivery in the anterior eye (Figure 14A) (Lee et al., 2018), stem
cell-mediated wound healing progress (Figure 14B) (Nam et al.,
2015), and cell distribution in the acellular scaffold (Figure 14C)
(Nagao et al., 2016). Imaging results show that the PA/US offers a
favorable balance between penetration depth (several centimeters)
and spatial resolution (at the micron level). Multi-spectral imaging
enables researchers to separate the signal produced by nanoparticles

FIGURE 14
Various applications of dual-modal PA/US in combination with contrast agents to track stem cells. (A) The anterior chamber of the eye, with the US
to visualize the trabecular meshwork and PA to visualize the circulation of the injected stem cells. (B) Cross-sectional wound bed with stem cells marked
in green and new-grownmicrovasculature structures in red. The USmodal can visualize the wound closure procedure. (C) Re-endothelialization of lung
scaffold. The US shows the scaffold entity, and the overlapped PA can monitor the stem cell distribution over the scaffold to monitor the capillary
formations. Reproduced with permission from (Sun et al., 2012; Nam et al., 2015; Nagao et al., 2016; Kubelick et al., 2019).

TABLE 10 Stem cell therapy.

Application PA characteristics US characteristics

Stem cell therapy Nano tracer for the stem cell Tissue structure of the imaging site

Subcutaneous bleeding levels Morphological changes during wound closure

Re-establishment of blood perfusion The entity of the implanted scaffold

Re-endothelialization of the scaffold

Needle guidance for cell delivery
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from other naturally occurring compounds, such as hemoglobin or
melanin to provide functional information (Nam et al., 2015;
Kubelick et al., 2019).

Aside from stem cell monitoring, another application of PA/US
modality is guided-needle placement for direct stem cell injection.
This approach has been used for real-time stem cell delivery to the
spinal cord by mounting the PA/US transducer to the spinal
injection platform to visualize the needle orientation and the
labeled stem cells simultaneously (Donnelly et al., 2018). The
team stated that this method can more effectively ensure the
proper needle placement compared to preoperative imaging
methods such as the MRI. The study proposed by Kubelick et al.
evaluated the performance of the technique with MRI modality as
the reference standard (Kubelick and Emelianov, 2020a; Kubelick
and Emelianov, 2020b). The team utilized both PA/US and MRI
modalities to track tagged stem cells in the spinal cord. The
experiment result revealed strong agreement between the PA/US
and MRI images. Notably, the PA/US modality demonstrated a
minimum detectable cell concentration (100 cells/µL) that is ten
times higher compared to MRI and also shows advantages in terms
of real-time imaging, portability, and footprint size. Although the
team stated the imaging depth to be the limit of the PA/USmodality,
they believe that incorporating previously published innovation
detection mechanisms can enhance the current imaging modality
(Kubelick et al., 2019; Demissie et al., 2020). It is worth mentioning
that the characteristics of PA/US needle guidance extends beyond
stem cell injection. Studies have proved PA/US to be a viable tool for
other minimally invasive procedures such as brachytherapy (Su
et al., 2011) and nerve blocks revolutionize (Xia et al., 2016). These
studies have reported minimized radiation exposure and improved
delivery precision with PA/US guidance, indicating its potential to
enhance treatment outcomes and reduce side effects.

While promising preclinical studies have demonstrated the
feasibility and potential of PA/US for stem cell tracking, the
clinical translation of this technique is still limited at the current
time. The application of dual-modal exogenous contrast agents can
enhance the specificity and sensitivity of the system, enabling precise
localization and monitoring of stem cell populations in vivo.
Therefore, one of the key aspects of the clinical transformation of
PA/US is the validation of the safety, efficacy, and reliability of the
contrast agents in human subjects. Validating the contrast agents for
clinical use involves longitudinal studies to investigate the long-term
behavior of transplanted stem cells and assess their therapeutic
outcomes. Additionally, it necessitates the establishment of
regulatory standards and the acquisition of appropriate
certifications. This process is time-consuming and requires
scrutiny to ensure patient safety and optimize clinical efficacy. To
expedite the clinical translation of PA/US, it may be advantageous to
focus efforts on optimizing existing molecules that have already
received approval from regulatory bodies such as the FDA (Moore
et al., 2019) for prolonged retention within the cells and strong PA
signal generation.

Another aspect to consider is that existing contrast agents
employed in PA/US provide limited functional information
beyond the location of the labeled cells that have been implanted.
Therefore, developing standardized and validated quantitative
analysis techniques for PA/US imaging of stem cells is crucial for
clinical translation. Quantitative imaging goes beyond merely

tracking the migration of stem cells; it has the potential to offer
immediate feedback on the status of transplanted stem cells, guide
procedures during stem cell transplantation, and monitor potential
immune responses or adverse reactions. This capability holds
tremendous potential for revolutionizing regenerative medicine
and deserves more attention in future work.

4 Discussion and outlook

As discussed in the previous section, a dual-modal approach
provides more insight into organ or tissue characteristics. In contrast
to imaging configurations that require a significant amount of time
ranging from minutes to hours, researchers are increasingly
adopting tomographic PA/US configurations for clinical use. The
combination of metabolic, vascular, and structural information
provides a holistic view of the pathology, offering the potential
for precise diagnosis and individualized treatment, ultimately
leading to better patient outcomes. Continued research and
development in the integration of PA/US with other modalities
will drive advancements for PA/US oral imaging and its clinical
applications.

In this review, we mostly focused on preclinical and clinical
applications of integrated PA/US systems with some insight into
future clinical translation. Independently, the field of PA imaging
has seen tremendous growth over the past 2 decades. Research and
development have focused primarily on miniaturizing the light
source, improving the imaging depth and speed, and enhancing
the image quality. Compact light delivery systems, such as laser
diodes, and LEDs are being studied, which could lead to portable and
wearable PA devices (Hariri et al., 2018; Zhong et al., 2018; Fatima
et al., 2019; Kuniyil Ajith Singh and Xia, 2020; Zhu et al., 2020).
Replacing the laser with an LED significantly reduces the system
cost. While the optical energy is much lower for an LED, it opens the
door for point-of-care applications.

With novel contrast agents and super-resolution imaging
(Conkey et al., 2015), deeper imaging has been made possible
(Chitgupi et al., 2019; Fu et al., 2019; Li et al., 2020; Han et al.,
2022). With obesity becoming a global epidemic, this is especially
useful. Ultrasound signal gets attenuated and scattered as tissue
thickness increases, especially adipose (Glanc et al., 2012; Uppot,
2018; Heinitz et al., 2023). Real-time imaging is being developed by
utilizing fast scanning mechanisms and lasers with higher repetition
rates (Manwar et al., 2018; Jeon et al., 2019; Kim et al., 2020a). This is
especially needed for IVUS/IVPA systems where it maybe
imperative for the operator to adjust imaging parameters with
real-time feedback. It is also essential to catheter positioning for
precision, as well as to analyze any identified are of concern.

Detection systems with various transducer geometries have
evolved (Nyayapathi and Xia, 2019; Manwar et al., 2020).
Numerous groups have been devoted to developing more
advanced imaging hardware to enhance the performance of the
PA/US modality, and novel transducers play a significant role in this
endeavor. For the US modality, the US transducers are typically
placed close to the imaging target to reduce acoustic attenuation.
However, the transducer might also block light delivery. The
transparent transducers provide direct light delivery through the
transducer (Park et al., 2021b; Ren et al., 2021) (Figures 15A,B).
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While the low piezoelectricity of the transducer material can affect
the system performance, a two-matching-layer design can solve this
issue (Chen et al., 2021). The transparent transducer’s ability to
perform co-axial dual-modal imaging with reduced system
complexity and cost (Park et al., 2020a) makes it a viable tool for
various clinical applications, such as ophthalmology (Park et al.,
2021c), oncology (Park et al., 2022), and intravascular imaging
(Yildiz et al., 2018; Li et al., 2019; Wu et al., 2019). The same
design is also applied in PAM system to replace traditional reflectors
for less acoustic loss (Park et al., 2020b).

In addition to transparent transducers, other novel transducer
designs have also been proposed. As shown in Figure 15C, Gao et al.,
2022 developed a wearable PA/US soft patch comprised of vertical-
cavity surface-emitting lasers (VCSEL) and piezoelectric transducer
elements, all integrated into a flexible pad. The patch allows
noninvasive continuous mapping of the volumetric distributions
of hemoglobin and core temperature at a depth beyond the skin
surface. In conjunction with recent advances in wearable ultrasound
(Wang et al., 2022), we envision a wearable PA/US sensing patch can
be developed for wellness monitoring and imaging. The USmodality
can be integrated with PA without additional pulse-receive circuits,
by generating US pulses from the “clutter” PA signals generated by
the absorption of backscattered laser radiation by the metalized
surface of the PA detector (Subochev et al., 2015; Johnson et al.,
2018). As the same laser is used for both PA and US excitation, the
system compactness is greatly improved.

Vast improvements have also been made to reconstruction
methods. US interferometry can assess the acoustic
inhomogeneity of tissue based on the correlation and phase
difference between adjacent receiver locations. Yin et al., 2015
used US interferometry in conjunction with a subsequent time-
reversal algorithm to recover PA images from scattered signals. This
approach eliminated the influence of acoustic inhomogeneity on PA

image quality. For the same purpose, PA and US tomography
(PACT/USCT) have been combined to simultaneously estimate
the initial pressure distributions and speed of sound (Xia et al.,
2013b; Matthews and Anastasio, 2017a). A PA-guided focused US
imaging method has also been proposed to reduce reflection artifacts
caused by PA sources (Kuniyil Ajith Singh and Steenbergen, 2015).
The US focal zone is set to match the optical absorber to start the
signal acquisition. The US signal thus mimics PA acquisition to aid
the identification of PA reflectors in tissue.

On the other hand, Biswas et al., 2015 used US reflection
imaging to address reflection artifacts from the bone caused by
PA backscattering at the bone surface. The bone surface is
determined using a pulse-echo algorithm that considers one
pulse/receiver pair at a time, with the epidermis assumed to be
the US transmitter and the PA probe assumed to be the detector
array. This reconstruction method was verified to be especially
useful for reflectors, as it is effective at detecting joint spaces and
reducing reflection artifacts in images containing highly
scattering materials.

Recent development various artificial intelligence (AI) has
provided multiple tools to improve PA imaging. Recent works
have been geared towards improving PA image acquisition,
detection, resolution, and overall quality (Zhang et al., 2021;
Bell, 2022). Many deep learning-based PA reconstruction
methods have been proposed to overcome the limited detection
view and low image contrast problems for real-time (Kim et al.,
2020b), raw and beamformed images (LanY-Net et al., 2020), linear
arrays (Zhang et al., 2021), ring-shaped arrays (Zhang et al., 2020),
and many more (Hauptmann et al., 2018; Schwab et al., 2019).
Gröhl et al., 2021; Hsu et al., 2021; Yang et al., 2021 have provided
comprehensive reviews regarding PA image reconstruction.
Furthermore, quantitative photoacoustic imaging (qPAT), in
which the quantitative optical absorption coefficient map is

FIGURE 15
Advanced transducer designs (transparent, wearable). (A) (i) Schematic (ii) Photograph of a transparent transducer for PA/US dual-modal imaging.
PC: parylene coating layer; AL: acoustic lens; LNO: lithium niobite; AgNWs: silver nanowires; BL: backing layer; IH: inner housing; IE: insulation epoxy; OH:
outer housing; (B) Schematic drawing of integrated imaging system using a transparent US transducer (TUT). CL, collimation lens; OL: objective lens; DM:
dichroic beamsplitter; C, collimator; CorL, correction lens; CMOS: complementary metal oxide semiconductor; SMF: single-mode fiber. (C)
Schematic of the wearable PA/US dual-modal patch. The patch contains VCSELs as the light source and a piezoelectric transducer array for signal
detection. Reproduced with permission from (Park et al., 2021b; Gao et al., 2022).
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obtained by combining PAT with light transport models, are being
studied to improve PA reconstruction. Thus, qPAT can provide
highly accurate concentration estimates of chromophores with an
optical inversion before spectral unmixing, which corrects for the
effect of fluence. Various researchers are now working on this novel
method to study disease progression and molecular imaging (Cox
et al., 2012; Cook et al., 2013; Bench et al., 2020; Wang et al., 2023b).

US imaging has also seen exponential growth in the past
decade. AI tools have been used to improve and/or replace
conventional US beamforming (Khan et al., 2020; Luijten et al.,
2020). Furthermore, the use of AI has shown great promise in
speckle suppression (Hyun et al., 2019), segmentation
(Ronneberger et al., 2015), and overall improvement in image
quality (Litjens et al., 2017). Quantitative US features like acoustic
backscatter and attenuation are being studied to map heterogeneity
in tissue (Tai et al., 2020; Basavarajappa et al., 2021). Plane-wave
imaging and parallel beamforming-based ultrafast US are being
developed with potential in various applications (Tanter and Fink,
2014; Baranger et al., 2021). 2D transducer arrays are being
developed to facilitate 3D imaging in real time (Huang and
Zeng, 2017). Other than traditional B-mode US and Doppler,
elastography and microvascular ultrasound are catching up with
mainstream clinical use (Nenadic et al., 2019; Gu et al., 2022).

Additionally, researchers are investigating the integration of
other modalities with PA/US systems to enhance disease
monitoring and diagnosis. PA/US systems have been integrated
with modalities such as diffuse optical tomography (Bauer et al.,
2011), optical coherence tomography (Zhang et al., 2011; Park
et al., 2021b), magnetic resonance imaging (Park et al., 2017), near
infrared fluorescence (Kim et al., 2010), and confocal microscopy
(Liu et al., 2019). Various contrast agents are being developed with
applications for dual-modal detection (Lu et al., 2018; Xu et al.,
2021; Ye et al., 2021). PA/US dual-modal contrast agents like micro
or nanobubbles could be used to assess tumor boundaries during
surgery. With advancements in both technologies, each of which
provides distinct insights into human biology, the future shows a
compelling need to use dual-modal systems in the clinic. PA/US
imaging overall shows great potential for clinical translation in all
the applications discussed in this review. However, given the rapid
advances in the field, there is also a compelling need to standardize
PA/US features. In addition, appropriate verification, validation,
and safety measures need to be employed. The future shows great

promise as improved dual-modal systems will enable clinicians to
make more accurate diagnoses and custom treatment plans
for patients.
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