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We investigate the spontaneous emission noise resilience of the phase-locked
operation of two delay-coupled nanolasers. The system is modeled by semi-
classical Maxwell–Bloch rate equations with stochastic Langevin-type noise
sources. Our results reveal that a polarization dephasing time of two to three
times the cavity photon lifetime maximizes the system’s ability to remain phase-
locked in the presence of noise-induced perturbations. The Langevin noise term is
caused by spontaneous emission processes which change both the intensity
auto-correlation properties of the solitary lasers and the coupled system. In an
experimental setup, these quantities aremeasurable and can be directly compared
to our numerical data. The strong parameter dependence of the noise tolerance
that we find may show possible routes for the design of robust on-chip integrated
networks of nanolasers.
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1 Introduction

Over the recent years, coupled nanophotonic laser networks have found a variety of
applications, e.g., in photonic integrated circuits, on-chip optical computing, and optical
communication (Heil et al., 2001; Zapf et al., 2017; Ma and Oulton, 2019; Ning, 2019;
Lingnau et al., 2020; Robertson et al., 2020). A wide bandwidth of new and strongly varying
implementations has led to great advantages, such as a small footprint, high speed, and room
temperature compatibility (Zhang et al., 2014; Deka et al., 2020). However, new challenges to
the theoretical treatment of such systems have arisen from these developments. The small
size of nanolasers pushes their dynamical timescales into regimes for which a description via
conventional semiconductor laser models [class-B laser models (Arecchi et al., 1984; Erneux
and Glorieux, 2010)] is no longer sufficient (van Tartwijk and Agrawal, 1998; Lingnau et al.,
2019). Due to device miniaturization, the cavity photon lifetime becomes comparable to the
microscopic polarization lifetime. In particular, nanolasers made of metal nanocavities
(Ning, 2010), metal-coated semiconductor nanolasers (Koulas-Simos et al., 2022), or 2D
materials (Du et al., 2020) exhibit high photon losses and, therefore, have shortened cavity
photon lifetime (Neogi et al., 2002; Li and Ning, 2012; Zhang et al., 2014). As a consequence,
the dynamic degree of freedom of microscopic polarization is important for the theoretical
description in addition to the electric field and charge carrier dynamics (Lorke et al., 2013;
Aust et al., 2016).

We use a Maxwell–Bloch-type laser model to describe the three aforementioned
dynamical quantities in the coupled setup of two nanolasers [two delay-coupled class-C
laser models (Haken, 1975; Haken, 1985; van Tartwijk and Agrawal, 1998; Ohtsubo, 2008)].
The dynamical behavior of such lasers has been investigated previously in various setups,
e.g., in feedback and coupling settings (Lingnau et al., 2019; Roos et al., 2021; Wang et al.,
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2021), and in direct comparison with class-B lasers (Hohl et al., 1997;
Javaloyes et al., 2003; Erzgräber et al., 2006; Bonatto et al., 2012; Junges
and Gallas, 2015; Seifikar et al., 2018). Here, we focus on the effect of
spontaneous emission noise and derive insights about optimal
conditions for the noise-resilient phase-locked operation of the two
delay-coupled lasers. For our purpose, the exact noise distribution,
e.g., as can be obtained via a stochastic simulator approach (Puccioni
and Lippi, 2015; Wang et al., 2021), is less important. Hence, we use a
simplified Langevin stochastic noise source. To quantify whether the
lasers are phase-locked, we compute the phase correlation. By
performing multiple parameter studies, we aim to unravel how the
polarization timescale influences the noise resilience of synchronized
laser emission. On that account, we limit our investigation to
parameter settings that permit deterministic (i.e., without the
stochastic noise source) phase locking among the two lasers. We
quantify the tolerance to noise in parameter space by defining a critical
noise strength which we can directly translate into the experimentally
accessible intensity auto-correlation (g(2) function) of one laser.

2 Materials and methods

2.1 Coupled nanolaser model

The delay-coupled nanolasers are shown in Figure 1 and are
described by the following set of macroscopic Maxwell–Bloch
equations [class-C laser model, also used in (Roos et al., 2021)]:

_Ej � cPj − Ej

2
+ −1( )jiδωEj + KeiθEk t − τ( ) +

��
β

√
ξj, (1a)

_Pj � iΔω − 1( )Pj + EjNj

T2
+ −1( )jiδωPj, (1b)

_Nj � 1
T

p −Nj − 2cRe PjE
p
j( )[ ]. (1c)

Here, the indices j, k ∈ {1, 2} enumerate the two lasers. The equations
describe three dynamical quantities for each laser: The inversion N of a
two-level system, the complex electric field amplitude E, and the
microscopic polarization P. Each of these dynamical quantities is
subject to internal loss processes and thus connected to a
characteristic timescale on which the corresponding dynamics evolve:
T is the inversion lifetime, T2 is the polarization lifetime, and Tph is the
photon lifetime. The latter has been used for transforming Eq. 1 into a
non-dimensionless form, e.g., all times and frequencies are given in units
ofTph andT

−1
ph, respectively. A typical value for Tph is on the order of 1ps

for nanolasers (Ding andNing, 2013). p is the pump supplying the lasers

with energy, andΔω is the difference between the transition frequency of
the active laser medium and the cavity mode. In our equations, the
dynamical impact of Δω resembles the linewidth enhancement factor α
(Schunk and Petermann, 1986; Lingnau et al., 2013). For all parameter
choices, the first laser threshold is at p(1)

thr � 0.5 due to the scaling with
c � ((2Δω)/(T2 + 2))2 + 1. The detuning between the two lasers is
2δω, and it is implemented such that the rotating frame used for the
fields is located equidistantly between the two laser frequencies (Roos
et al., 2021). In addition to detuning, the lasers are modeled with
identical parameters. Tuning the other parameters typically affects the
laser intensity and, thereby, also the emission frequency via the non-zero
amplitude-phase coupling. Hence, parameter changes always produce a
frequency detuning, which then dominates all other effects. To the best
of our knowledge, this observation is similar to experimental
observations, where other parameters, e.g., the pump or the crystal
temperature, are employed to match the emission frequency of multiple
lasers in coupling setups. We, therefore, assume that the frequency
detuning is the most relevant parameter and omit the other parameters
for the sake of simplicity.

The coupling setup of the lasers is characterized by three
parameters: the coupling strength K [we use a value of K =
0.1 corresponding to an intensity reflectivity of ≈ 20% (Roos
et al., 2021), where effects due to back-reflected light are
negligible (Schelte et al., 2019)], the coupling phase θ describing
an additional phase shift between the interfering fields, and the time
delay τ of the two laser fields due to the finite propagation speed of
the signals [we consider a time delay of τ = 10 that refers to an on-
chip coupling distance of 800 μm and can experimentally be
realized; see e.g., (Deka et al., 2020)]. Spontaneous emission is
included via a stochastic Langevin term added to the field
equation, given in Eq. 1a, where ξj denotes a delta-correlated
Gaussian white noise source and β denotes the spontaneous
emission strength. It should be noted that the observed auto- and
cross-correlation properties of the laser intensities not only depend
on the value of β but also on all other parameters due to the coupled
dynamics. The parameters are given in Table 1.

2.2 Locked emission states

A solitary class-C laser operated below its second laser threshold
has a stable emission state and will show only damped relaxation
oscillations toward a steady-state solution after a perturbation.
Above the second threshold, periodic oscillations or deterministic
chaotic behavior occurs (Lingnau et al., 2019). We will operate our
laser below the onset of instabilities at four times the first threshold;
however, the coupling of two class-C lasers introduces additional

FIGURE 1
Sketch of the two coupled nanolasers described by the
Maxwell–Bloch class-C equations given in Eq. 1. The solitary
frequencies of the lasers are detuned by 2δω = ω2 − ω1.

TABLE 1 Parameters used for simulations.

Symbol Value Symbol Value

Δω 3 τ 10

T2 1 K 0.1

T 392 ϵ 0.05

p(1)
thr

0.5 p 2
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emission states with complex dynamics even below the second
threshold. Recently, the polarization lifetime T2 was found to
fundamentally influence the locking structure of two coupled
class-C lasers (Roos et al., 2021). A scan of the dynamics found
in the parameter plane of the coupling phase and the detuning is
shown in Figure 2A for a dephasing time of T2 = 1. The steady-state
solutions, commonly referred to as compound laser modes (CLMs)
(Erzgräber et al., 2006; Roos et al., 2021), can be followed in
parameter space and are plotted in yellow/pink colors, as shown
in Figure 2A. The color encodes the constant phase shift Δϕ between
the emission of the two lasers, Ej(t) � Ej(t)eiϕj(t), which is defined
as follows (j = 1, 2 enumerates the lasers):

Δϕ t( ) � ϕ1 t( ) − ϕ2 t( ) � const. (2)
The electric fields for laser emission on a CLM are given by a

constant intensity emission of each laser with an optical frequencyΩ
and a constant phase shift ϕcj:

Ej t( ) � E0
je

i Ωt+ϕcj( ). (3)

In order to quantify the range for which locking is observed, the
locking range δωlock has been introduced by Roos et al. (2021). It
denotes the maximum possible detuning for which a stable CLM
exists. In the deterministic case without noise (Figure 2A), the
locking range is given by the extent of the yellow/pink areas in
the y-direction. As can be seen in Figure 2A, the coupling phase is an
important parameter for the dynamics of the system, and not every
phase permits locking (there are phases where no CLM solutions
exist). For our analysis, we are interested in the maximum locking
range reached for the case of an optimally adjusted phase. We,
therefore, define δωθ

max, as in the study by Roos et al. (2021) via

δωθ
max � max

θ∈ 0,2π[ )
δωlock θ( ), (4)

which then allows us to study its dependence on system
timescales as, e.g., the polarization lifetime T2. The maximum
locking range is indicated in Figure 2B by the pink-dashed
horizontal line.

For the stochastic case, where the Langevin noise source is
applied, another measure needs to be defined to determine the
transition to unlocked emission. For that, we define several tools.
One quantity to identify whether the lasers remain on a CLM for a
given noise strength is to look for the phase correlation of the electric
fields and determine the noise strength where it overcomes a
threshold (see the pink line in Figure 2B). The phase correlation
χ is defined via the time average 〈·〉,

χ � |〈eiϕ1 t( )e−iϕ2 t( )〉| � |〈eiΔϕ t( )〉|. (5)
The phase correlation resembles the electric field correlation

〈E1E2*〉 � 〈E1(t)eiϕ1(t)E2(t)e−iϕ2(t)〉. Since we are interested in
phase synchronization among the lasers, the phase correlation is
deprived of the amplitudes of the fields. If the lasers are entirely
locked, the phase shift Δϕ stays at a constant value and the phase
correlation amounts to χ = 1. On the other hand, if the lasers emit
independently, the phase shift eiΔϕ(t) exhibits a random walk on the
complex unit circle. Therefore, the correlation averages to χ = 0. In
general, only phase-synchronized emission states exhibit a phase
correlation of χ = 1, while desynchronized lasing modes exhibit a
phase correlation of χ ≠ 1.

The intensity auto-correlation function g(2)
jj (0) of one laser

within the coupled setup is defined as

g 2( )
jj Δt( ) � 〈|Ej t + Δt( )|2|Ej t( )|2〉/〈|Ej t( )|4〉. (6)

It is also a good measure for describing the stochastic emission and will
be used later on. It provides a value of 2 for noise-dominated emission
and a value of 1 for coherent laser emission (Redlich et al., 2016).

To complete the picture and better understand the nature of the
unlocking transition, we additionally consider the ensemble variance
of the phase difference in order to define a diffusion coefficient D of
the random walk-like dynamics of the phase (Otto et al., 2012;
Redlich et al., 2017). D then also measures the state of
synchronization as it is 0 for locked operation (i.e., no random
walk) and larger than 0 otherwise.

Var Δϕ{ } t( ) � 〈Δϕ2 t( )〉ens − 〈Δϕ t( )〉2ens� 2D β( ) · t. (7)

The expectation value 〈·〉ens is with respect to an ensemble of time
series with different stochastic realizations.We find that the variance
evolves linearly with time for sufficiently large times. The last
equality implies that the time evolution of the variance can be
modeled as an uncorrelated random walk. This only holds true for
times t larger than the characteristic system timescales such that all
correlations have decayed.

3 Results

Figures 2B–D show the phase correlation, as defined in Eq. 5, plotted
color-coded in the two-dimensional (θ, δω) parameter space for three

FIGURE 2
Deterministic dynamics (A) and phase correlation χ (B–D) of the
two lasers in (θ, δω)-parameter space; (B–D) are obtained for noise
strengths β (β and the corresponding g(2)

sol are indicated in the figure).
The purple line in (B) shows the locking range δω. Parameters as
given in Table 1 dashed pink line indicates 0 detuning.

Frontiers in Photonics frontiersin.org03

Roos et al. 10.3389/fphot.2023.1169988

https://www.frontiersin.org/journals/photonics
https://www.frontiersin.org
https://doi.org/10.3389/fphot.2023.1169988


different noise strengths. For a noise strength of β = 10–4 [see (b)],
the dynamical locking structure of the deterministic system can
still be seen [compare to (a)]. Here, it can be confirmed that the
locked modes exhibit a phase correlation of χ = 1 (light blue
colors). However, if the applied noise strength β is further
increased [see (c) and (d)], the phase correlation strongly
decreases for each parameter set. In addition to this unlocking
transition that we quantify further in the following section, the
noise does not induce any new features in the investigated
parameter space.

To elaborate on the physical context of the unlocking process
induced by the noise, we plot the phase correlation χ as a function of the
noise strength β in Figure 3 (blue line) for zero detuning and zero phase
(δω = 0, θ = 0). As expected, the phase correlation transitions from 1 to
0 as β increases. The noise strengths for which the scans of Figures
2B–D are performed can be seen as vertical dashed lines. The transition
of the phase correlation gives rise to a practical possibility to quantify the
unlocking of the lasers.We define the critical noise strength βlock in Eq. 8
as themaximumnoise strength for which the phase correlation does not
exceed a certain threshold of 1 − ϵ (we set ϵ = 0.05).

βlock � max β|χ β( )> 1 − ϵ{ }. (8)
Figure 3 also shows the intensity auto-correlation g(2)

11 (0) of one of the
lasers (green line) calculated from Eq. 6 where the transition from 1 to
2 can be detected. As long as g(2)

jj (0)< 1.1, we are below the locking
threshold.

The critical noise strength βlock that we use to define the unlocking
of the lasers cannot be measured and also changes with the set of
equations that is used. In order to overcome this issue, we determine the
intensity auto-correlation of a single laser without coupling.

g 2( )
sol 0( ) � g 2( )

11 0( ) K � 0, β( ), (9)
which can directly be measured (Koulas-Simos et al., 2022) and is
thus better suited for quantifying the amount of noise in the system.

Thus, we always plot both quantities, β and g(2)
sol (0), when discussing

the results (see, e.g., upper x-axis in Figure 3).
The last quantity that we evaluate to characterize the transition to

unlocking is the diffusion coefficient D (black line in Figure 3). It
increases from a value of 0 for low noise strengths to amaximum ofD =
15 × 10−3 for β = 0.05. It should be noted that we excluded the region of
high noise strength due to convergence problems (hashed area in
Figure 3). As can be seen in Figure 3, the unlocking transition seen
in quantity D is closely related to the change observed in the phase
correlation χ with increasing noise strength. A diffusion coefficient of
zero is found when eiΔϕ is entirely locked to a certain point on the unit
circle, thus leading to χ = 1. Once the lasers unlock, the diffusion
coefficientD increases linearly with the noise strength. This resembles a
characteristic feature of a random walk.

To understand how the noise resilience of the synchronized state
changes with the coupling phase θ, we plot the phase correlation (Eq. 5) as
a function of θ and β in Figure 4 (blue color code). The critical noise
strength βlock is printed as a blue line. As defined previously, it is the
contour line that satisfies χ = 1 − ϵ and separates regions corresponding to
unlocked and locked emission states.We see that the critical noise strength
strongly depends on the coupling phase θ. Within the white areas, the
deterministic system does not have a stable CLM solution that can be
unlocked by noise (see Figure 2A). To exclude the details of the phase
effects and to be able to study themaximumpossible noise resilience of our
laser system, we introduce the maximum critical noise strength.

βθmax � max
θ∈ 0,2π[ )

βlock θ( ). (10)

This quantity is used to study the impact of the internal laser timescales
on noise resilience as it describes the maximum noise that can be
tolerated within one laser for the case where the phase is adjusted to its
optimal value. As mentioned previously, the value of the noise strength
is strongly model-dependent, and we rather determine the
experimentally accessible intensity auto-correlation of a solitary laser
at this maximum noise strength g(2)

sol (0)βθmax (see Figure 4).
One internal timescale that is specifically important for the

dynamics of the nanolasers described with our class-C laser
equations is the polarization lifetime T2. We aim to determine if
there is an optimal value Topt

2 that maximizes the noise tolerance of
the coupled system and its dependence on the frequency detuning δω
between the two lasers. In order to determine the value, we evaluate and
plot the correlation g(2)

sol (0)βθmax of the solitary laser at the maximum
critical noise strength in (T2, δω)-parameter space, as shown in Figure 5.
The largest relevant detuning is the deterministic maximum locking
range δωθ

max (black line) because above that line, even without noise,
there is no stable locking (no stable CLMexists).We see that g(2)

sol (0)βθmax
decreases with the detuning of the lasers (dark orange). The maximum
locking range δωθ

max (black line) is maximized by a polarization lifetime
of T2 ≈ 1 as an optimal condition between gain bandwidth and linear
system stability is reached (Roos et al., 2021). The best parameter for a
large noise tolerance (large g(2)

sol (0)βθmax ), however, seems to be found for
a T2 between 2 and 3 (see bright regions in Figure 5). For this value of
the dephasing time, a strong incoherence, i.e., noisiness, is needed to
evoke a desynchronization, while a much smaller noise is sufficient to
bring the laser out of synchronization at T2 ≈ 1. The optimal noise
resistance of the coupled laser system is thus predicted to be found for a
polarization lifetime of Topt

2 ≈ 2.5 as long as the detuning does not
exceed δω = 0.06.

FIGURE 3
Statistical measures of the laser emission as functions of the
noise strength β. The phase correlation χ is shown as a solid blue line
(blue shading indicates ϵ defining the critical noise strength βlock). The
green and black lines show the intensity auto-correlation (Eq. 6)
and the diffusion coefficient (Eq. 7). Dashed vertical lines reference
panels (B–D) of Figure 2. The top x-axis indicates the auto-correlation
of a solitary laser (Eq. 9). Parameters as in Table 1, δω = 0 and θ = 0.
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4 Conclusion

We investigated the impact of spontaneous emission noise on
delay-coupled prototypical micro/nanolasers, whichwe describe using
a Maxwell–Bloch type class-C laser model. This approach, despite its
simplifications regarding the gain medium, provides valuable
qualitative insights. In particular, it unravels the interplay among
the different dynamical quantities and thereby highlights relevant
trends. In order to quantify the noise-induced unlocking of the lasers,
we have discussed themaximum tolerated noise strength in parameter
space. The results for the noise strength are converted to the intensity
auto-correlation of a single laser on the verge of unlocking. This
enables easy comparison with experiments and other laser models.
Our results revealed that the noise resilience of coupled lasers is, for
small detunings, optimized by a polarization lifetime of two to three
times the photon lifetime. Comparing the results for spontaneous
emission noise with the behavior of the system under frequency
detunings reveals an interesting trend: the lasers show a
fundamentally different response to the two perturbations. The
detuning locking range is maximized by a polarization lifetime of
the order of the photon lifetime, which, however, leads to a drastic
decrease in the noise resilience of the lasers.
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