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Semiconductor lasers with optical feedback can produce plentiful non-linear
dynamics, including periodic and chaotic oscillations, which are usually applied
to microwave signals and physical random number generation, respectively.
Chaotic semiconductor lasers are especially successful in generating random
numbers compared with pseudorandom numbers generated by a computing
process. We report a self-chaotic microlaser based on the internal mode
interaction of nearly degenerate modes. A special resonator is designed and
demonstrated with the two modes’ frequency intervals on the order of GHz.
These modes with strong mode beating result in chaos, and physical random bits
are obtained from the laser output power at 10 Gb/s. Our proposals provide a
novel scheme to generate laser chaos for high-speed randomnumber generation.
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1 Introduction

Non-linear dynamics in semiconductor lasers have been widely investigated for basic
research and specific applications (Ohtsubo, 2008; Uchida et al., 2008; Reidler et al., 2009; Ke
et al., 2018; Wang et al., 2020; Li et al., 2020; Wang et al., 2021). In particular, random
number generation utilizing chaotic semiconductor lasers has realized a breakthrough in the
generation rate due to the high bandwidth of the lasers (Uchida et al., 2008; Reidler et al.,
2009; Wang et al., 2020). Many strategies have been proposed and demonstrated to generate
specific non-linear dynamics by external perturbations to prevent the lasers settle down to a
constant output (Mukai and Otsuka, 1985; Mork et al., 1990; Sciamanna and Shore, 2015;
Zhao et al., 2020). Under continuous perturbations of delayed optical feedback or external
optical injection (Wang et al., 2020), semiconductor lasers can exhibit strong non-linear
dynamics, such as periodic and chaotic oscillations. However, the implementations of
external perturbations are always accompanied by some deficiencies. For example, chaos
derived from delayed optical feedback has obvious correlation peaks relative to the external
feedback loop time (Rontani et al., 2007; Albert et al., 2011), which reduces the randomness
and security in random number generation and chaotic communications. Besides, the
dynamical behaviors are sensitive to the parameters of the perturbations and precise
adjustment is essential to realize specific non-linear dynamics of interest.

Whispering-gallery mode (WGM) resonators, such as microdisk (McCall et al.,
1992), microtoroid (Jiang et al., 2017), microring (Ma et al., 2014), and polygonal
resonators (Lin et al., 2011) have attracted a great deal of attention in the past decades for
potential device applications. Optical chaos is expected to occur in a suitable multimode
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laser. The longitudinal mode intervals are inversely proportional
to the resonator size, hence, small-dimension microresonators
are easy to realize single longitudinal mode operation. Single-
transverse mode operations were easy to realize for hexagonal
resonator microlasers (Lin et al., 2011). Compared with
longitudinal modes, the transverse modes wavelength intervals
are much smaller. By modifying the hexagon to a circular-side
hexagonal resonator (CSHR), theQ factors of different transverse
modes can be approximated, and then the multi-transverse
modes can be realized. Recently, we realized dual-mode lasing
with an adjusting interval in a square microcavity laser (Long
et al., 2015) and demonstrated the enhancements of mode
Q-factors and intervals in circular-side square microcavities
(Weng et al., 2017). Circular sides were also applied to a
hexagonal microcavity for enhancing mode Q factors and
adjusting mode intervals (Xiao et al., 2017; Yang et al., 2019).
In a multi-transverse mode microlaser, mode beating can lead to
oscillations of the photon density and carrier density caused by
stimulated emission (Ma et al., 2022).

Due to the laser diodes’ merits in intensity and bandwidth,
the laser chaos signal has been proven to be an excellent entropy
source for physical random bit generation (RBG). The early
chaotic semiconductor lasers with external cavities are
demonstrated with random bit rates of up to 1.7 Gbps in 2008
(Uchida et al., 2008). Polarized chaotic output was caused by
non-linear mode competition between two elliptically polarized
modes induced by the carrier spin-flip relaxation process for a
quantum-dot vertical-cavity surface-emitting laser (Sanmiguel
et al., 1995; Virte et al., 2013). Recently a microcavity was
designed for lasing of multiple transverse modes with distinct
field patterns occupying different regions of the microcavity
(Bittner et al., 2018), and a specially designed laser diode was
demonstrated for massively parallel ultrafast random bit
generation caused by Spatio-temporal interference of many
lasing modes with stochastic spontaneous noises(Kim et al.,
2021). A chaotic solitary laser is the most promising
configuration for random number generation due to its simple
scheme and robustness.

In this Letter, a detailed description of the manipulation design
of the fundamental mode and first-order transverse mode of the
laser resonant cavity is reported. Using a CSHR microlaser, we
demonstrate non-linear dynamical states including periodic and
chaotic oscillations and realize physical random number generation.
The chaotic microlaser has the potential application for chaos
communication using the principle of chaos synchronization.

2 Materials and methods

2.1 Resonator design

Based on the previous study on hexagonal microlasers with
the flat sides replaced by circular sides (Xiao et al., 2018), the
circular sides can influence lasing mode spectra and greatly
enhance the mode Q factors, since the circular sides can prove
the mechanism of the concave mirrors. For the simulation of the
resonator, a two−dimensional (2D) finite element method (FEM)
(COMSOL Multiphysics 5.0) is utilized to calculate the mode Q

factor, mode wavelength, and coupling efficiency to the output
waveguide. As shown in Figure 1, a deformation amplitude δ is

defined as δ � r −
���������
r2 − (a/2)2

√
, where r and a are the radius of the

circular arc, the hexagonal flat-side length, and θ and w are the
acute angle between the waveguide and the diagonal of the
hexagon and the width of the output waveguide, respectively.
The CSHR with an AlGaInAs/InP laser wafer has a fixed
refractive index of 3.2 and is laterally confined by
divinylsiloxane-bisbenzocyclobutene (BCB) with a refractive
index of 1.54, which is coated for the planarization of the
fabricated microlasers.

Four high-Q modes with mode frequency intervals in the
order of GHz, i.e., the fundamental and first-order transverse
modes and their degenerate modes, are calculated within the
same longitudinal mode order. To simplify the description, the
degenerate modes are ignored because they have nearly the same

FIGURE 1
Diagram of themodel used for the simulation of the circular-side
hexagonal resonator laser (CSHR) laser.

FIGURE 2
The mode Q factor for the fundamental transverse mode (H0)
and the first-order transverse mode (H1) and the interval frequency
between the two modes (Δf) versus deformation amplitude δ for a =
10 μm and w = 1.5 μm.
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Q factor and mode frequency compared with the corresponding
transverse modes. The mode Q factor for the fundamental
transverse mode (H0) and the first-order transverse mode (H1)
and the interval frequency between the two modes (Δf) versus
deformation amplitude δ for a = 10 μm and w = 1.5 μm are
plotted in Figure 2. The simulation results show that the mode Q
factors of the H0 mode and H1 mode decrease with the increase of
the deformation amplitude δ, except that the Q factor has a slight
enhancement near the δ = 1.015 μm. The resonator produces a
focusing effect at the deformation amplitude of 1.015 μm, which
reduces the mode loss and achieves a higher Q factor. With the
increase of the deformation amplitude δ from 1.0 μm to 1.03 μm,
the Q factor of H0 (H1) mode decreases from 7.8 × 105 (4.5 × 105)
to 8.8 × 104 (2.0 × 104). In addition, the Δf decreases from
36.7 GHz to −43.2 GHz, and Δf is almost linear with the
deformation amplitude δ. Considering that the H0 and H1

modes have similar mode frequencies at a deformation
amplitude of 1.015 µm and that the H0 mode has a high Q
factor, the δ = 1. Considering that the H0 and H1 modes have
similar mode frequencies at a deformation amplitude of 1.015 µm
and that the H0 mode has a high Q factor, the δ = 1.015 µm is
selected as an optimized value.

The mode Q factor of H0 is much higher than that of H1,
which means the power radiated from the fundamental mode is
lower than that radiated from the first-order transverse mode. To
make the output power of the two modes similar, and achieve
efficient interaction between different modes, it is required that
the proportion of the power radiated from H0 coupled into the
waveguide is higher than that of H1, that is, the fundamental
mode has a higher waveguide coupling output efficiency than that
of the first-order transverse mode. However, when the
deformation amplitude is 1.015 μm, the waveguide coupling
output efficiency (η) of H0 is 7.5%, which is much lower than
43% of H1, as shown in Figure 3A. By adjusting the output
waveguide connection angle (θ) of the output waveguide, the
waveguide coupling output efficiency of the CSHRmicrolaser can
be greatly improved. Here we simulated the effect of θ on η of H0

and H1 in the CSHR microlaser with δ = 1.015 μm, and the results
are shown in Figure 3A. The η of H1 remains about 40% when θ is

less than 45°, decreases to 14% when θ = 50°, and then increases
with the increase of θ. The η of H0 generally shows an increasing
trend with the increase of θ, the maximum value of 51% at θ = 55°

is obtained, and its value of H0 is greater than that of H1 for
θ > 45°.

The effect of the connection angle θ on the Q factor of the two
modes and the frequency interval Δf between H0 and H1 modes is
shown in Figure 3B. It can be seen from Figure 3B that, the Δf
changes slightly with θ, and almost remains at about −3 GHz when θ
is less than 55°. The Q factor of H0 remains above 105 with the
change of θ; The Q factor of H1 changes slightly in the range of θ <
35°, and decreases slowly with the increase of θ in the range of
35°<θ < 55°, decreases from 2.6 × 104 to 1.1 × 104, and decreases
sharply to 3.4 × 103 at θ = 60°. Considering the waveguide coupling
output efficiency, and Q factor of H0 and H1, the optimal value of θ
is 55°.

2.2 Ring current injection window design

To realize the tunability of the interval frequency between
the two transverse modes of the CSHR microlaser, we design a
ring current injection window. The schematic diagram of which
is shown in Figure 4A, where d is the width of the ring injection
window. The carrier concentration and temperature are higher
in the injection window area than that in the non-injection area
due to non-uniform injection current density. As the refractive
index changes with the carrier concentration and temperature,
the non-uniform injection current may also modulate the
refractive index distribution (Long et al., 2015). Assume the
refractive index is n of the non-injection window area, and the
refractive index of the injection window area is n+Δn. For a
CSHR with a = 10 μm, w = 1.5 μm, δ = 1.015 μm, θ = 55°, and d =
5 μm, the mode Q factors of H0 and H1, and the frequency
intervals of the two modes (Δf) vary with the refractive index
difference Δn, as shown in Figure 4B. When Δn. Increases
from −8 × 10−3 to 8 × 10−3, the Δf increases from −10.3 GHz
to 15.6 GHz, and the mode Q factors of H1 remain unchanged,
while the mode Q factor of H0 first increases and then decreases

FIGURE 3
(A) The waveguide coupling output efficiency (η) of H0 and H1 in the CSHR microlaser with δ = 1.015 μm versus the output waveguide connection
angle θ, and (B) ThemodeQ factor and the interval frequency between the twomodes (Δf) versus the output waveguide connection angle θ for a= 10 μm
and w = 1.5 μm and δ = 1.015 μm.
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and remains above 1.3 × 105. To reduce the computational effort,
the results in Figure 4B are based on the simulation of the two-
dimensional structure, which only includes the loss of the mode
in the horizontal direction. According to the previous simulation
structure, the Q factor corresponding to the vertical loss of the
transverse electromagnetic mode is around 1.0 × 104. The Q
factor of the fundamental mode is mainly determined by the Q
factor in the vertical direction. The simulation results show that
the non-uniform refractive index distribution caused by non-
uniform injection can adjust Δf without affecting the lasing
characteristics of the two modes.

3 Results and discussion

3.1 The characteristics of the lasing
spectrum

The CSHR microlasers are fabricated by a planar lithography
process using an AlGaInAs/InP epitaxial wafer (Xiao et al., 2017),
then the wafer is cleaved along the direction perpendicular to the
output waveguide and bonded on an AlN submount and mounted
on a thermoelectric cooler (TEC) to control the substrate
temperature. The threshold current of the CSHR microlaser is

FIGURE 4
(A) Schematic diagram of ring current injection window, and (B) ThemodeQ factors of H0 and H1, and the frequency intervals of the twomodes (Δf)
vary with the refractive index difference Δn, for a CSHR with a = 10 μm, w = 1.5 μm, δ = 1.015 μm, θ = 55°, and d = 5 μm.

FIGURE 5
Lasing spectra at the injection current of (A) 23 mA, (B) 32 mA, and output RF spectra of a CSHR microlaser (C), (D), at the corresponding injection
current.
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4 mA, and the laser spectra are characterized using an optical
spectrum analyzer (OSA) with a resolution of 0.02 nm. And the
bandwidth of the RF spectrum analyzer is set 100 kHz.

Non-linear states similar to the chaos in semiconductor lasers
with optical feedback were observed at different injection currents
(Zou et al., 2015), including chaotic, periodic states. A
comprehensive rate equation for the CSHR microlaser was
introduced to describe the periodic and chaotic states generated
from the two-mode beating (Ma et al., 2022). The CSHR microlaser
output light coupled into lensed single-mode fiber and the optical
spectra at the injection current of 23 and 32 mA are plotted in
Figures 5A, B and the corresponding RF spectra are present in
Figures 5C, D, respectively. At the injection current of the CSHR
microlaser at 23 mA, the optical spectrum is shown in Figure 5A.
The optical spectrum is broadened, and the lasing peak is hard to be
distinguished in the whole observed spectrum range. And the
corresponding RF spectrum in Figure 5C shows a large
bandwidth without any significant narrow peak. The gray line
denotes the background noise. When the injection current of the

FIGURE 6
(A) The interval frequency and intensity ratio between the twomodes versus injection current, and (B) output RF spectra of the CSHRmicrolaser at an
injection current of 31, 35, 39, and 41 mA.

FIGURE 7
(A) Experimental time series, (B) probability density distribution of the generated chaotic waveform, and (C) estimation of largest Lyapunov exponent
for the time series in (A).

FIGURE 8
(A) Autocorrelation function of the generated broadband chaotic
waveform, (B) zoom-in view of Autocorrelation function.
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CSHR microlaser is 32 mA, its optical spectrum is shown in
Figure 5B, the wavelengths of the two lasing modes are
1566.55 and 1566.72 nm, respectively, and two weaker intensity
modes exist at the wavelengths of 1566.38 and 1566.89 on both sides
of the two lasing peaks, with the two adjacent peak wavelengths
separated by 0.17 nm. The CSHR microlaser is in a periodic state,
and the corresponding RF spectrum has a peak at 20.86 GHz with a
magnitude about 35 dB higher than the background as shown in
Figure 5D.

The frequency interval of the two modes is tunable by varying the
laser injection current, and Figure 6A gives the frequency interval and
the variation of the intensity ratio of the two modes near 1568 nm with
the injection current. When the injection current of the CSHR
microlaser is varied in the range of 30 mA–40 mA, the laser is in a
periodic oscillations state, the frequency interval of the two main peaks
is varied in a range from 14.6 to 21.5 GHz, and the intensity ratio of the
excitation peaks ismaintained 2 dB. The output RF spectra of the CSHR
microlaser at the injection current of 31, 35, 39, and 41 mA are given in
Figure 6B, and the frequency-tunable RF signals were successfully
obtained by varying the laser injection current.

3.2 Random bit generation

Based on the previous experimental results, the CSHR
microlaser evolves into a chaotic state at the injection current of
23 mA, and the laser temperature is stabilized at 288 K. The CSHR
microlaser output is coupled into a single-mode fiber then amplified
by an erbium-doped fiber amplifier (EDFA), and converted to an
electronic signal by a broadband photodiode (PD), and the electrical
signal enters a broadband digital oscilloscope (R&S RTO1024,
10 GSa/s sampling rate, 2-GHz analog bandwidth) to acquire the
electrical signal. The electrical signal is also monitored by an optical

spectrum analyzer and an RF spectrum analyzer. The output power
of the CSHR microlaser is −16 dBm, and the output power of about
8 dBm is obtained by EDFA amplification into the PD for optical-to-
electrical conversion. The converted electrically chaotic waveform is
quantized by an 8-bit ADC in the oscilloscope, generating random
bits by retaining the 2 least significant bits (LSBs) of each sample.
The sampling rate of the oscilloscope is set to 5 GSa/s.

The experimental time series of the chaotic signal is shown in
Figure 7A, which shows the intensity oscillations similar to noise on
sub-nanosecond time scales. The probability density distribution of
the time series is given in Figure 7B (blue solid line). The red dashed
line represents the Gaussian fitting curve. Compared experimental
results with the Gaussian fitting curve, the probability density
distribution of the time series has a slight difference from the
Gaussian distribution. Using Wolf’s algorithm (Wolf et al., 1985),
we find a positive maximum Lyapunov exponent (λmax) from the
experimental time series as shown in Figure 7C.

The autocorrelation trace is shown in Figure 8. Unlike the
presence of a time-delay signature of chaos generated by external
optical feedback or optical injection laser, there is no significant peak
in the time delay range of 6 μs. Due to the presence of relaxation
oscillations in the semiconductor laser, a series of sidelobes with a
full-width half-maximum of 1 ns appear around the main peak in
the zoom-in autocorrelation curve, as shown in Figure 8B. These
peaks, caused by the inherent characteristics of the laser, induce
weak periodicity and are not conducive to the generation of high-
quality random numbers. Post-data processing, such as exclusive or
operation, can be used to eliminate them.

The 120 sequence signals obtained by the digital oscilloscope at a
sampling rate of 5 GSa/s were converted to 8-bit binary codes, each
sequence having a size of 1 Mbit, and the 2 least significant bit
groups (LSBs) were selected. The results of the randomness test on
the random bit sequences using the National Institutes of Standards

FIGURE 9
Result of the NIST special publication 800–22 statistical tests.
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and Technology Special Publication 800–22 statistical test suite are
shown in Figure 9. The random bits generated at a bit rate of
10 Gbit/s (5 GSa/s × 2 bits) passed the test.

4 Conclusion

Compared with the conventional optical feedback and optical
injection to generate laser chaos, the self-chaotic microcavity laser
does not require external perturbation. Using the fundamental
transverse mode and the first-order transverse mode in the
resonant cavity to generate intense interactions between photons
and carriers when the mode interval is close to the relaxation
oscillation frequency of the lasers, the non-linear dynamics such
as laser periodic oscillations and chaotic states by adjusting the
injection current through mode interactions in the resonant cavity
can be achieved. The optimized hexagonal resonator design and the
introduction of ring electrodes enable to obtain dual-mode with high
Q factor, meanwhile, its mode frequency interval is tunable in the
order of GHz. The mode interval tuning is achieved utilizing
adjusting the injection current, and experimentally plentiful non-
linear dynamic states, including chaotic and periodic states in the
solitary microlaser, are observed. Physical random numbers of
10 Gb/s and frequency-tunable RF signals were achieved using
the output of the microlaser. The solitary self-chaotic microlasers
provide a more simple and robust chaotic laser source compared
with chaotic lasers caused by external optical feedback or optical
injection.
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