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For a long time, steady-state reflectance spectroscopy measurements have

been performed so that diffusion theory could be used to extract tissue optical

properties from the reflectance. The development of subdiffuse techniques,

such as Single Fiber Reflectance Spectroscopy and subdiffuse SFDI, provides

new opportunities for clinical applications since they have the key advantage

that they are much more sensitive to the details of the tissue scattering phase

function in comparison to diffuse techniques. Since the scattering phase

function is related to the subcellular structure of tissue, subdiffuse

measurements have the potential to provide a powerful contrast between

healthy and diseased tissue. In the subdiffuse regime, the interrogated tissue

volumes are much smaller than in the diffuse regime. Whether a measurement

falls within the diffuse or subdiffuse regime depends on tissue optical properties

and the distance between the source and detector fiber for fiber-optic

techniques or the projected spatial frequency for hyperspectral imaging and

SFDI. Thus, the distance between source and detector fibers or the projected

spatial frequency has important implications for clinical applications of

reflectance spectroscopy and should be carefully selected, since it

influences which tissue optical properties the technique is sensitive to and

the size of the tissue volume that is interrogated. In this paper, wewill review the

opportunities and pitfalls in steady-state reflectance spectroscopy in the

subdiffuse and the diffuse regime. The discussed opportunities can guide

the choice of either the diffuse or subdiffuse regime for a clinical

application, and the discussed pitfalls can ensure these are avoided to

enable the development of robust diagnostic algorithms. We will first discuss

the relevant basics of light-tissue interaction. Next, we will review all the tissue

scattering phase functions that have been measured and investigate which

scattering phase functionmodels are representative of tissue. Subsequently, we

will discuss the sensitivity of diffuse and subdiffuse techniques to tissue optical

properties and we will explore the difference in the interrogation depth probed

by diffuse and subdiffuse techniques.
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Introduction

When tissue changes from healthy to diseased, anatomical

and physiological changes can occur which in turn can influence

the absorption and scattering of light by the tissue. Reflectance

spectroscopy techniques are sensitive to these changes and,

therefore, have been investigated for many clinical

applications (O’Sullivan et al., 2012; Lu and Fei, 2014; Akter

et al., 2018; Gioux, Mazhar and Cuccia, 2019). For example,

reflectance spectroscopy has been used to image resection

margins during cancer surgery and to examine internal organs

through endoscopes and biopsy needles (Fawzy et al., 2006;

Stegehuis et al., 2017; Lin et al., 2018; McClatchy et al., 2018;

Kho et al., 2019a; Jansen-Winkeln et al., 2019; Post et al., 2021).

In steady-state reflectance spectroscopy, a broadband light source

is used to illuminate tissue and after light interacts with tissue the

remitted light is detected. Reflectance spectroscopy

measurements can be performed either with fiber-optic or

wide-field techniques. In fiber-optic techniques light is emitted

and collected through fibers; in wide-field techniques, tissue is

illuminated with either a uniform intensity (hyperspectral

imaging, HSI) or a line pattern (spatial frequency domain

imaging, SFDI (Cuccia et al., 2005)) and the reflected light is

collected by a camera. In essence, HSI is equivalent to SFDI with a

spatial frequency of zero.

For a long time, reflectance spectroscopy measurements have

been performed with large distances between the source and

detector fibers or low spatial frequencies, so diffusion theory

could be used to extract tissue optical properties from these

measurements. For diffusion theory to apply the distance

between where photons are emitted and collected should be

much larger than one transport mean free path 1/μtr′, where
μtr′ � μa + μs′, µs′ is the reduced scattering coefficient and µa the
absorption coefficient). More recently, instrumentation and data

analysis methods have been developed to perform measurements

with shorter fiber distances (e.g. Single Fiber Reflectance

Spectroscopy, SFR spectroscopy (Gamm et al., 2012)) and

higher spatial frequencies (e.g. subdiffuse SFDI (Kanick et al.,

2014)). When fiber distances are too short or spatial frequencies

are too high for diffusion theory to apply, these measurements

are in the so-called subdiffuse regime.

Scattering and absorption of light by tissue can be

summarized in three optical properties: the scattering

coefficient μs, the scattering phase function p(θ), and the

absorption coefficient μa. The scattering coefficient describes

the probability of a photon being scattered when it travels a

certain distance through the tissue; the scattering phase function

describes the probability of the direction in which a scattering

event occurs; and the absorption coefficient describes the

probability of a photon being absorbed when it travels a

certain distance through tissue. The development of subdiffuse

techniques provides new opportunities for clinical applications

since they have the key advantage that they are much more

sensitive to the details of the tissue scattering phase function in

comparison to diffuse techniques. Only a small number of studies

have been performed where the clinical relevance of the tissue

scattering phase function was investigated (either directly or with

subdiffuse techniques), and the first results seem promising (Roy

et al., 2009; Radosevich et al., 2013; Momi et al., 2015; Bugter and

Hardillo, 2018; Bugter and Spaander, 2018; Bugter et al., 2019;

Post et al., 2021). Since the scattering phase function is related to

the subcellular structure of tissue, it has the potential to provide a

powerful contrast between healthy and diseased tissue (Mourant

et al., 1998; Drezek, Dunn and Richards-Kortum, 1999; Mourant

et al., 2000). Another key difference between diffuse and

subdiffuse techniques is that the interrogation volume of

subdiffuse techniques is much smaller (Kanick et al., 2009;

Hayakawa et al., 2018). Thus, the distance between source and

detector fibers or the projected spatial frequency has important

implications for clinical applications of reflectance spectroscopy,

since they influence which tissue optical properties the technique

is sensitive to and the size of the tissue volume that is interrogated

(Figure 1).

In this manuscript, we will review the opportunities and

pitfalls in steady-state reflectance spectroscopy in the subdiffuse

and the diffuse regime.We will not discuss the technical details of

the many different device geometries used in steady-state

reflectance spectroscopy, for which we refer to the papers of

(Utzinger and Richards-Kortum, 2003) for fiber-optic reflectance

spectroscopy, (Lu and Fei, 2014) for hyperspectral imaging,

(Gioux, Mazhar and Cuccia, 2019) for SFDI; and (O’Sullivan

et al., 2012) for Diffuse Optical Imaging. The opportunities and

pitfalls described in this paper generally apply to any type of

reflectance spectroscopy technique. Additional opportunities

and pitfalls unique to individual techniques are beyond the

scope of this article.

We will first discuss the basics of light-tissue interaction

relevant to understanding the difference between diffuse and

subdiffuse measurements. Next, we will provide a review of all the

tissue scattering phase functions that have been measured since

the tissue scattering phase function is fundamental for both

modeling and interpretation of subdiffuse measurements.

Subsequently, we will discuss the sensitivity of diffuse and

subdiffuse techniques to tissue optical properties and we will

explore the difference in the interrogation depth probed by

diffuse and subdiffuse techniques. Based on our review of the

scattering phase function, sensitivity to optical properties, and

the interrogation depth, we will discuss the opportunities and

pitfalls in (sub)diffuse reflectance spectroscopy.

Monte Carlo simulations

We have performed Monte Carlo (MC) simulations to

illustrate the basics of light-tissue interaction and how the

sensitivity to optical properties and the interrogation depth
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differs between subdiffuse and diffuse measurements. The

reflectance measured with fiber-optic as well as wide-field

techniques can be calculated from the reflectance as a

function of radial distance R(ρ) for illumination using a

pencil beam. For fiber-optic measurements this entails a

convolution of the pencil beam with the surface of the source

fiber and integration over the surface of the detector fiber; for

wide-field techniques, the Hankel Transform can be used to

convert R(ρ) to the reflectance as a function of spatial frequency

R(k) (Cuccia et al., 2009), where k � 0 for hyperspectral

imaging. For diffusion theory to apply, photons should have

scattered a large number of times before they are detected, which

is generally translated into the requirement that the distance

between where photons are emitted and collected should be

much larger than one transport mean free path 1/μtr′ (Bevilacqua
and Depeursinge, 1999). There is thus no clear dichotomy

between diffuse and subdiffuse measurements. Therefore, we

will not perform separate analyses for diffuse and subdiffuse

measurements, but we will illustrate how the sensitivity to optical

properties and the interrogation depth depends on the radial

distance between emission and collection of light.

For our MC simulations, we used a modified version (Post

et al., 2017) of the software package MCML (Prahl, 1989; Wang,

Jacques and Zheng, 1995) which enables simulating any

scattering phase function using the method of (Zijp and ten

Bosch, 1994). For the phase functions, we generated inverse

lookup tables of 10.000 tabulated values. For each simulation

we obtained histograms for the number of detected photons, the

number of scattering events, the path length, the maximum depth

detected photons had reached and all scattering angles of

detected photons. For the reflectance, a 1D histogram was

created where the weight of each detected photon was stored

FIGURE 1
Diffuse and subdiffuse implementations of steady-state reflectance spectroscopy. In fiber-optic techniques (top row) light is emitted
(downward arrows) and collected (upward arrows) by fibers. In wide-field imaging techniques (bottom row), tissue is illuminated with sinusoidal
intensity patterns of different spatial frequencies and collected by a camera. A spatial frequency k � 0 corresponds to hyperspectral imaging. The
decreasing width of the blue lines illustrates an increase in spatial frequency.With decreasing fiber distance and increasing spatial frequency, the
distance photons travel between emission and collection decreases. When fiber distances are too short or spatial frequencies are too high for
diffusion theory to apply, these measurements are in the so-called subdiffuse regime, where measurements are more sensitive to the scattering
phase function, and the interrogated volume of the tissue is smaller.
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versus radial distance, with a 0.1 mm bin size. The reflectance was

then normalized by dividing over the area of the annulus

corresponding to that radial bin (2π · ρ · Δρ). For the

scattering angles, a 1D histogram was created where upon

detection of a photon its weight was added to all the angular

bins corresponding to the scattering angles it underwent. Here,

500 angular bins were used. For the number of scattering events,

a 2D histogram was created where the weight,w(N(i), ρ), of each
detected photon was stored versus radial distance ρ with a

0.1 mm bin size and the total number of scattering events N

with a bin size of 1. The average number of scattering events

versus radial distance,Nave(ρ), was then calculated as a weighted

average over the number of scattering events, N(i), within each

radial bin:

Nave(ρ) � 1∑i�100
i�1 w(N(i), ρ) ∑i�100

i�1 w(N(i), ρ) ·N(i) (1)

For the path length and the interrogation depth, 2D

histograms were created where the weight of each detected

photon was stored versus radial distance with a 0.1 mm bin

size and interrogation depth z (200 bins) or path length ℓ

(1,000 bins) with a 0.1 mm bin size. The average interrogation

depths zave(ρ) and average path lengths ℓave(ρ) versus radial

distance were calculated as a weighted average over the

interrogation depths and path lengths within each radial bin:

zave(ρ) � 1∑i�200
i�1 w(z(i), ρ) ∑i�200

i�1 w(z(i), ρ) · z(i) (2)

and

ℓave(ρ) � 1∑i�1000
i�1 w(ℓ(i), ρ) ∑i�1000

i�1 w(ℓ(i), ρ) · ℓ(i) (3)

For each analysis, we will provide the optical properties of

the tissue used in the MC simulations in the figure captions.

Unless specified otherwise, we assumed refractive index

matching between tissue and the surrounding medium (no

refraction or reflection), and photons were detected irrespective

of their angle of arrival (i.e. a detection numerical aperture of

1.0). Throughout the manuscript, five different scattering phase

functions have been used in MC simulations, which are

specified in Table 1.

Basics of light-tissue-interaction in
the diffuse and subdiffuse regime

Scattering and absorption of light by tissue can be

summarized in three optical properties: the scattering

coefficient μs; the scattering phase function p(θ) and the

absorption coefficient μa. The scattering coefficient describes

the probability of a photon being scattered when it travels a

certain distance through the tissue; the scattering phase function

describes the probability of the direction in which a scattering

event occurs; and the absorption coefficient describes the

probability of a photon being absorbed when it travels a

certain distance through tissue. The scattering coefficient and

phase function are influenced by the microscopic tissue structure,

while the absorption coefficient is influenced by the tissue

biochemical composition (e.g. the presence of water). These

three optical properties are properties of the tissue itself and

vary with wavelength.

Diffusion theory is appropriate when detected photons have

scattered many times. Figure 2 illustrates that close to the source

diffusion theory underestimates the reflectance (Figure 2A),

where photons undergo only a few scattering events and have

short path lengths (Figure 2B). We compared the simulated

reflectance to the model for R(ρ) as proposed by (Farrell,

Patterson and Wilson, 1992), which is based on diffusion

theory with the Extended Boundary Condition:

R(ρ, μs′, μa) � a′
4π

[z0(μeff + 1
r1
) e−μeff ·r1

r21

+ (z0 + 2zb)(μeff + 1
r2
) e−μeff ·r2

r22
] (4)

where a’ = µs’/(µs’+µa); z0 = 1/(µs’); µeff = √(3µaµs’); r1 =

√(z0
2+ρ2) and r2 = √((z0+2zb)

2+ρ2); zb = 2A/(3µs’); and A is

a parameter that depends on the refractive index mismatch

between the tissue and the medium above it (Martelli et al.,

2009). There is no clearly defined boundary between diffuse and

subdiffuse measurements, but one criterion that has been

postulated for diffusion theory to apply is that photons should

scatter more than approximately 4/(1 − g1) times (Faber et al.,

2019), another one is that the distance between where photons

are emitted and collected is more than approximately one

transport mean free path 1/μtr′ (Bevilacqua and Depeursinge,

1999). Also, the reduced scattering coefficient should be much

larger than the absorption coefficient to ensure detected photons

TABLE 1 Phase functions used in Monte Carlo simulations. All six
phase functions are Two-Term Henyey-Greenstein phase
functions: p(θ) � α · pHG(gf , θ) + (1 − α) · pHG(gb , θ).

g1 psb gf gb α

1 0.80 4 · 10−5 0.892 -0.050 0.902

2 0.80 10 · 10−5 0.930 -0.273 0.892

3 0.80 20 · 10−5 0.957 -0.393 0.883

4 0.70 4 · 10−5 0.795 -0.170 0.900

5 0.80 4 · 10−5 0.892 -0.050 0.902

6 0.90 4 · 10−5 0.950 -0.030 0.948

For each phase function the resulting scattering anisotropy g1 and the phase function

parameter psb (Post AL. et al., 2020) are given, where psb � pb(1°)
1−pf(23°) �

∫180

179
p(θ)dθ

1−∫23

0
p(θ)dθ

. Phase

functions one and five are the same, but given here separately to clearly define the two

sets: one with the same g1 value, but different psb values and a second set with a single psb

value and varying g1 values
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have scattered many times. For the optical properties used in the

simulations for Figure 2, that would translate to photons

traveling a radial distance of at least 0.99 mm or scattering at

least 20 times (which occurs at a radial distance of 0.78 mm),

which is within the region where diffusion theory deviates from

the simulated reflectance.

Scattering phase function

A key difference between reflectance in the diffuse and

subdiffuse regime is the influence of the scattering phase

function (Mourant et al., 1996; Bevilacqua and

Depeursinge, 1999; Calabro and Bigio, 2014). In the

subdiffuse regime, photons have scattered only a few times

before they are detected and, therefore, the scattering phase

function greatly influences the measured reflectance. In the

diffuse regime, photons have scattered many times before they

are detected and, therefore, the effect of the scattering phase

function is much less. In 2014, Calabro and Bigio published a

review on the influence of the tissue scattering phase function

in reflectance spectroscopy, demonstrating the importance of

properly incorporating the influence of the scattering phase

function for short source-detector separations and stating that

the importance of the scattering phase function was

chronically overlooked (Calabro and Bigio, 2014). Since

then, more research has been done on incorporating the

influence of the scattering phase function into forward

models, which we will discuss here. Even so, often enough

the influence of the scattering phase function is still not

properly taken into account when analyzing subdiffuse

reflectance spectroscopy measurements.

No analytical model exists that describes the reflectance for

the entire range from subdiffuse to diffuse measurements. For the

diffuse regime, analytical models exist to derive optical properties

from the measured reflectance, but these do not exist in the

subdiffuse regime. Some analytical models exist to describe light-

tissue interaction in the subdiffuse regime, but their application

has been limited (Vitkin et al., 2011; Xu, 2016; Piao and Patel,

2017). In the subdiffuse regime, semi-empirical models exist for

some specific device geometries (such as the model for SFR

Spectroscopy (Post A. L. et al., 2020)) which are based on MC

simulations. For device geometries where no models exist, optical

properties are extracted based on look-up-tables or machine-

learning algorithms—both also based on MC simulations

(Hennessy et al., 2013; Vervandier and Gioux, 2013; Chen

et al., 2016; Ivančič et al., 2018; Stier et al., 2021; Erickson,

Durkin and Tunnell, 2022). It is thus imperative to understand

which phase function models accurately represent tissue

scattering phase functions since any optical property

extraction in the subdiffuse regime is thus directly or

indirectly based on MC simulations. Therefore, we have

performed a literature review of measured tissue scattering

phase functions and identified which scattering phase function

models are representative of tissue.

In general, Mie theory can be used to calculate the scattering

phase function for a single spherical particle with a given radius

and refractive index. One approach to model the tissue scattering

phase function is usingMie theory for a fractal size distribution of

scattering particles (Wang, 2000). The phase function for the size

distribution is then calculated as:

pMie(θ) � ∑n
i�1 σs(θ; ri)n(ri)∑n
i�1 σs(ri)n(ri)

� ∑n
i�1 p(θ; ri)σs(ri)n(ri)∑n

i�1 σs(ri)n(ri)
(5)

FIGURE 2
The basics of light-tissue interaction in the subdiffuse and diffuse regime illustrated with Monte Carlo simulations for a pencil beam illumination
and a tissue with μs’ = 1 mm−1, μa = 0.01 mm−1 and g = 0.8. There is no clearly defined boundary between diffuse and subdiffuse measurements, two
criteria that have been proposed are indicated by the dashed lines in the left figure. (A) Diffusion theory (Eq. 4) severely underestimates the
reflectance close to the source, in the so-called subdiffuse regime. (B) In the subdiffuse regime detected photons underwent few scattering
events (left axis) and traveled short path lengths (right axis).
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TABLE 2 Overview of phase function models that provided the best fit (last column) to measured phase functions.

Paper Tissue type Angles PF in publication PF best fit

Mourant et al. (1998) Cells 2–171 HG Mie

Xu, Wu and Qu, (2008) Cells 1.1–165 Mie size distribution MHG

Hammer, Yaroslavsky and Schweitzer, (2001) Blood 2.5–175 RMC MPC

Yaroslavsky et al. (1996) Blood 0–160 RMC MPC

van der Zee, Essenpreis and Delpy, (1993) Gray Matter 0–170 - TTHG

van der Zee, Essenpreis and Delpy, (1993) White Matter 0–170 - TTHG

Saccomandi et al. (2015) Muscle 0–141 TTHG TTHG

Zijp and ten Bosch, (1998) Muscle (Bovine) 0–179a TTHG TTHG

Firbank et al. (1993) Skull 2–160 - RMC

Ghosh et al. (2001) Malignant Breast 10–165 TTHG and HG TTHG

Ghosh et al. (2001) Healthy Breast 10–165 TTHG and HG TTHG

Marchesini et al. (1989) Liver 5–150 TTHG TTHG

Saccomandi et al. (2015) Liver 0–141 TTHG TTHG

Saccomandi et al. (2015) Pancreas 0–141 TTHG TTHG

Marchesini et al. (1989) Lung 5–150 TTHG TTHG

Marchesini et al. (1989) Uterus 5–150 TTHG MHG

Forster et al. (2006) Dentin (parallel) 0–172 - RMC

Forster et al. (2006) Dentin (perpendicular) 0–172 MHG

Arnfield, Tulip and Mcphee, (1988) Rat Tumor 0–165 TTHG

Taddeucci et al. (1996) White Matter (Bovine) 0–3 Mie Theory -

Taddeucci et al. (1996) Gray Matter (Bovine) 0–3 Mie Theory -

Gareau, (2006) Skin (Murine) 1–12 HG -

Yaroslavskaya et al. (1994) Epidermis 3–25 HG -

Okamoto Ugnell and Öberg, (1997) Bone (Guinea Pig) -50-50 HG -

Jacques et al. (1987) Dermis (20 µm thick) -50-50 HG -

Jacques et al. (1987) Dermis (280 µm thick) -50-50 MHG -

Bruls and Van Der Leun, (1984) Epidermis -60-60 - -

Bruls and Van Der Leun, (1984) Stratum Corneum -60-60 - -

Wietlicka-piszcz, Mazur and Grzegorzewski, (1994) Skull bones -90-90 - -

A literature review of measured tissue scattering phase functions resulted in 29 measurements. For measurements that included backward scattering (>90°), we extracted the measured

phase function data and performed fits with six phase function models (Mie, HG, MHG, TTHG, RMC, MPC) to identify the model with the lowest 〈rRSE〉. For each measured phase

function the angular range over which the measurement was performed is given; which model was used in the corresponding manuscript to describe the measured phase function; and

which model resulted in the lowest 〈rRSE〉. Mie = Mie theory for a fractal size distribution, HG = Henyey-Greenstein; MHG =Modified Henyey-Greenstein; TTHG = Two-TermHenyey-

Greenstein; RMC = Reynolds McCormick; MPC = Modified Power of Cosines.
aFor Zijp et al. the angles from 74 to 132 were excluded from the fit, since the authors indicated their measurements underestimated the phase function at those angles due to shading by the

sample holder.

Frontiers in Photonics frontiersin.org06

Witteveen et al. 10.3389/fphot.2022.964719

https://www.frontiersin.org/journals/photonics
https://www.frontiersin.org
https://doi.org/10.3389/fphot.2022.964719


where σs is the differential cross section and n(ri) is the number

of particles with radius ri, and the size distribution of particles is

described by:

n(ri) � (di)−α � (2ri)−α (6)

where α is the fractal dimension and di the particle diameter.

Other scattering phase function models use simple

analytic expressions. One of the first such models that was

proposed for tissue was the Henyey-Greenstein (HG) phase

function:

pHG(μ, gHG) � 1
4π

1 − g2
HG(1 + g2

HG − 2gHGμ)3/2 (7)

where μ � cos(θ) and θ is the scattering angle. For the HG phase

function, the scattering anisotropy g1 is equal to gHG. The HG

was proposed to approximate Mie theory. The HG phase

function provides accurate results in simulations of diffuse

measurements. However, the HG phase function

underestimates backscattering. Subdiffuse measurements are

particularly sensitive to small angle backscattering events

(Canpolat and Mourant, 2000; Post AL. et al., 2020) and,

therefore, the HG phase function is not appropriate to model

subdiffuse measurements. To account for backscattering, the

modified Henyey-Greenstein (MHG) was proposed (Jacques

et al., 1987), which adds an isotropic term to the HG, as well

as the two-term Henyey Greenstein (Pfeiffer and Chapman,

FIGURE 3
Six phase function models have been proposed for tissue: Mie for a fractal size distribution (Mie), Henyey-Greenstein (HG); Modified Henyey-
Greenstein (MHG), Two-TermHenyey-Greenstein (TTHG), Reynolds McCormick (RMC), andModified Power of Cosines (MPC). A literature review of
measured tissue scattering phase functions resulted in 29measurements, for whichwe performed fits with eachmodel and identified themodel with
the lowest average relative root-square-error 〈rRSE〉. Ten phase functions were excluded from the analysis since they onlymeasured the phase
function in the forward direction (A) Example of a phase function measured by (Ghosh et al., 2001) of healthy breast tissue and the fit results, where
the TTHG provides the best description of the data. (B) Average rRSE versus scattering angle for all 19 phase functions for which we performed a fit.
On average, the TTHG has the lowest 〈rRSE〉 over the full angular range, followed by the MHG. The HG and RMC cannot accurately capture
backward scattering angles, and Mie for a fractal size distribution and the MPC cannot accurately capture forward scattering angles. (C) For the
majority of measurements (11) the TTHG was the best fit, followed by the MHG (3), RMC (2), MPC (2) and Mie for a fractal size distribution (1). The HG
was never the best model and performed poorly overall.
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2008) (TTHG, also known as double HG) which is the sum of two

HG phase functions, one with forward directed scattering and

one with backward directed scattering:

pMHG(μ, α, gHg) � αpHG(μ) + (1 − α) 3
4π

μ2 (8)
pTTHG(μ, α, gf, gb) � αpHG(μ, gf) + (1 − α)pHG(μ, gb) (9)

For both the MHG and the TTHG α lies between 0 and 1.

For the TTHG, gf parametrizes scattering in the forward

direction and lies between 0 and 1, while gb parameterizes

scattering in the backward direction and lies between -1 and 0.

Two other scattering phase functions that have been proposed

for tissue are the Reynolds McCormick (RMC, also known as

Gegenbauer kernel) (Reynolds and McCormick, 1980) and the

modified power of cosines (Bevilacqua and Depeursinge,

1999) (MPC):

pRMC(μ, α, gRMC) � K(1 + g2
RMC − 2gRMCμ)−(α+1) (10)

where

K � π−1αgRMC(1 − g2
RMC)2α[(1 + gRMC)2α − (1 − gRMC)2α]−1

(11)
and

pMPC(μ, α, N) � αpPC + (1 − α)( 3
4π

)μ2 (12)

where

pPC � 1
4π

N + 1
2N

(1 + μ)N (13)

From our literature search, we identified 19 papers in

which 29 scattering phase functions had been measured

(Table 2). In some papers no fit was performed with a

scattering phase function model, in other papers a fit with

only one type of scattering phase function seemed to have

been performed. To investigate which scattering phase

function models best represent the tissue scattering phase

function, we extracted the measured phase functions from the

papers and performed fits with all six phase function models

(Mie, HG, MHG, TTHG, RMC, and MPC). The goal was not

to identify a single phase function model that would be

representative for any tissue type, but to identify which

phase function models best represent measured tissue

scattering phase functions.

Since the main difference between the phase function models

is in the backward scattering direction, ten measured phase

functions were excluded from the analysis since they only

measured in the forward direction (<90°, last rows of

Table 2). For the remaining 19 phase functions, the phase

function model that resulted in the best fit based on the

average relative error between the fit and the data is given in

the last column of Table 2. The Mie phase function for a fractal

size distribution was the best fit for one measured scattering

phase function, the HG was never the best model, the TTHG in

11 measurements, MHG in 3, RMC in 2, and MPC in 2.

An example of a fit is shown in Figure 3A for the phase

function of healthy breast tissue as measured by (Ghosh et al.,

2001). The TTHG is the best fit to the measured data; the MPC

and HG are the worst. The RMC underestimates the

backscattering and the MHG and Mie for a fractal size

distribution underestimate forward scattering. In Figure 3B

the average relative root squared error 〈rRSE 〉 is shown

versus scattering angle for all phase functions, per phase

function model, where:

rRSE(θ) �
���������������(pfit(θ) − p(θ))2√

p(θ) (14)

and the average of the rRSE, 〈rRSE〉, is calculated for each angle

over all the measured phase functions. In general, the MHG and

the TTHG result in the lowest errors over the full angular range,

followed by Mie theory for a fractal size distribution. The RMC

and the HG are inaccurate in the backward scattering direction.

Mie for a fractal size distribution and the MPC underestimate

scattering in the forward direction. In Figure 3C the rRSE

averaged over all angles and all measured scattering phase

functions, 〈rRSEθ〉 of the fit results for all the scattering

phase functions in Table 2 are given.

The scattering phase function can be represented by a series

of i Legendre polynomials, weighted by their moments gi. The

first moment, g1 is known as the scattering anisotropy. In the

diffuse regime, the influence of the scattering phase function can

be captured by the parameter g1, the scattering anisotropy, which

is equal to the average value of the cosine of the scattering angle:

g1 � < cos θ > . For high values of g1, scattering events will be

mostly forward directed, for lower values of g1 scattering will be

more isotropic. In diffusion theory models, the scattering

coefficient μs and the scattering anisotropy g1 are combined

in a single parameter, the reduced scattering coefficient µs′. For
different combinations of μs and g1, but the same value of µs′,
the measured reflectance will be the same. In the subdiffuse

regime, g1 is not sufficient to capture the influence of the

scattering phase function (Bevilacqua and Depeursinge,

1999; Bodenschatz et al., 2016; Naglič et al., 2017; Post AL.

et al., 2020). Several parameters have been proposed to capture

the scattering phase function influence in the subdiffuse regime:

γ (Bevilacqua and Depeursinge, 1999), δ (Tian, Liu and Wang,

2006; Naglič et al., 2016), σ (Bodenschatz et al., 2016), RpNA

(Post et al., 2017) and psb (Post AL. et al., 2020). The parameters

γ, δ and σ all incorporate the Legendre moments gn of

the tissue scattering phase function. γ � (1 − g2)/(1 − g1 );
δ � (1 − g3)/(1 − g1 ); and σ � ∑∞

i�2(−0.5)i−2(1 − gi)/(1 − g1).
The parameters RpNA and psb are based on the assumption that

detected photons undergo an arbitrary number of forward events
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in combination with a single backscattering event. In that case, the

probability of detection of a photon would be equal to:

Rp � pb

1 − pf
�

2π∫π

π−θbp(θ)sinθdθ
1 − 2π∫θf

0
p(θ)sinθdθ

(15)

where pb is the probability of backward scattering and pf the

probability of forward scattering. RpNA is based on the

assumption that only photons that scatter at angles smaller

than or equal to the acceptance angle of the fiber are detected.

In that case the probabilities of forward and backward scattering,

pb and pf, are equal to the integrals of the scattering phase

function over the acceptance angle in the backward and forward

direction, respectively. The acceptance angle is related to the

numerical aperture (NA) of a system, which explains the name of

RpNA. The same group later developed the parameter psb, which

uses an integration angle of 1° in the backward direction and 23°

in the forward direction (Post AL. et al., 2020). The details of the

derivation of RpNA and psb can be found in (Post et al., 2017) and

(Post AL. et al., 2020), respectively. For all 5 phase function

parameters, the exact relation between their values and the tissue

composition is not known.

Figure 4A shows results from an MC simulation for a pencil

beam illumination and detection within the first 100 µm from the

source with a numerical aperture of 0.22. The black line is the

tissue scattering phase function that was used in the simulation,

the red line is the histogram of scattering angles of detected

photons (the effective phase function (Post AL. et al., 2020)).

Figure 4A illustrates that detected photons mostly undergo

scattering evens at small angles in the forward and backward

directions. The sensitivity of subdiffuse measurements to small-

angle backscattering events has also been shown by (Canpolat

and Mourant, 2000). For SFR spectroscopy, the subdiffuse limit

for fiber-optic measurements (since the source and detector fiber

overlap), it has been shown that psb is most appropriate to model

the reflectance (Post AL. et al., 2020). The parameter psb is equal

to (Figure 4B):

psb � pb(1°)
1 − pf(23°) �

∫180

179
p(θ)dθ

1 − ∫23

0
p(θ)dθ

(16)

where pb is the probability of backward scattering within 1°,

which is equal to the integral of the scattering phase function over

179–180°, and pf is the probability of forward scattering within

23°, which is equal to the integral of the scattering phase function

over 0–23°.

The parameter psb was specifically developed for SFR

Spectroscopy, where the source and detector fiber

overlap. Here, we show that the parameter psb can also be

used to accurately describe the reflectance at larger radial

distances from the source. In Figure 5 the influence of the

scattering phase function on the measured reflectance is

illustrated for two sets of TTHG phase functions. One set

where g1 was the same for all three phase functions but psb
varied (phase functions 1–3, Table 1); one set where psb was

the same for all three phase functions, but g1 varied (phase

functions 4–6, Table 1). These phase functions were selected

by calculating g1 and psb values for a large number of TTHG

phase functions with a wide range of parameters. It should be

noted that multiple TTHG phase functions could have the

same g1 and psb values, therefore, we give the specific

parameters in Table 1.

Figure 5A shows that g1 does not capture the scattering phase

function influence properly close to the source, since different

phase functions with the same g1 value (and different psb values)

result in a different reflectance close to the source. Further away

FIGURE 4
(A) In the subdiffuse regime detected photons mainly undergo scattering events at small angles in the forward and backward direction. Results
from a Monte Carlo simulation with a pencil beam illumination and detection over a radial distance from 0 to 0.1 mm from the source with a
numerical aperture of 0.22, for a tissue with µs’ = 1 mm−1, µa = 0.01 mm−1; g = 0.8; psb = 4·10−5 and a refractive index of 1.35. (B) The phase function
parameter psb incorporates the probability of scattering at small angles, where psb is equal to the probability of backward scattering within 1° (pb,
yellow area) divided by one minus the probability of forward scattering within 23° (pf, blue area). The probability of scattering within a certain angle is
equal to the integral of the phase function over the angular range (shaded areas).
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from the source (Figure 5B), the difference in reflectance

values between the three phase functions is much smaller.

Figure 5C illustrates that psb does capture the scattering

phase function influence properly close to the source;

phase functions with the same psb values, but different g1

values result in the same reflectance. Figure 5D shows that

psb also captures the scattering phase function influence

further away from the source, suggesting that psb is not

only suitable for SFR spectroscopy, but for the entire

subdiffuse to diffuse regime.

Sensitivity to optical properties

Diffuse and subdiffuse measurements have different

sensitivities to optical properties, which is illustrated in

Figure 6. In the diffuse regime, measurements are more

sensitive to the absorption coefficient, while in the

subdiffuse regime measurements are more sensitive to both

the reduced scattering coefficient and psb. In Figure 6 for each

subplot one optical property is varied, and the relative

differences in reflectance values are calculated with respect

to the lowest optical property (ΔR). For example, for the first

set, we varied the absorption coefficient μa �
[0.1 0.3 0.5]mm−1, while keeping the other optical

properties constant, and we determined the relative

difference between the reflectance for μa � 0.3mm−1 and for

μa � 0.5mm−1 compared to the simulations with

μa � 0.1mm−1. Thus for μa � 0.3mm−1 ΔR is equal to:

ΔR �
∣∣∣∣∣∣∣∣∣Rμa�0.3 − Rμa�0.1

Rμa�0.1

∣∣∣∣∣∣∣∣∣ · 100% (17)

FIGURE 5
Influence of the phase function on the reflectance as a function of radial distance from the source for the subdiffuse regime (left, up to 1/µtr’) and
the diffuse regime (right, from 1/µtr’). Results from Monte Carlo simulations with a pencil beam illumination for a tissue with μs’ = 1.0 mm−1, μa =
0.01 mm−1. (A) Reflectance for three different phase functions, with the same g1 value, but different psb values. Close to the source the reflectance
values do not overlap, indicating that g1 does not accurately capture the influence of the phase function. (C) Reflectance for three different
phase functions with the same psb value, but different g1 values. Close to the source, the reflectance values overlap, indicating that psb does capture
the influence of the phase function in the subdiffuse regime. (B,D) In the diffuse regime, the details of the tissue scattering phase function do not
influence the measured reflectance anymore and is only a function of µs’ and µa. Since psb also captures the phase function influence further away
from the source, this suggests that psb is not only suitable for SFR spectroscopy, but for the entire subdiffuse to diffuse regime.
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These sensitivities can be related to Figure 2, where we

showed that photons that are detected close to where they

were emitted underwent only a few scattering events and

traveled short path lengths. The absorption attenuates the

reflectance by a factor of e−μaℓ , where ℓ is the path length in

the absence of absorption. Thus, further away from the source

where photons have traveled longer paths the influence of the

absorption is muchmore. Since photons that are detected close to

the source have only scattered a few times, the direction is not

randomized and the details of the scattering phase function

strongly influence the measured reflectance. Therefore, close

to the source measurements are more sensitive to the

scattering phase function and thus to psb.

Interrogation depth

The depth detected photons have reached in the tissue

depends on both the tissue optical properties and the distance

between the source and detector. This relation is illustrated in

Figure 7, where the interrogation depth is shown for a range of

optical properties and distances between emission and detection

FIGURE 6
Sensitivity to tissue optical properties versus radial distance. In each subfigure, the relative change in the reflectance is shown as a function of
radial distances for changes in an optical property. Note that the sensitivity is related to the absolute value of ΔR. In the subdiffuse regime,
measurements aremore sensitive to both the reduced scattering coefficient and psb, while in the diffuse regimemeasurements aremore sensitive to
the absorption coefficient. (A) Change in the reflectance for two values of the absorption coefficient (0.3 and 0.5 mm−1) relative to the
reflectance for an absorption coefficient of 0.1 mm−1. (B) Change in the reflectance for two values of the reduced scattering coefficient (3 and
5 mm−1) relative to the reflectance for a reduced scattering coefficient of 1 mm−1. (C)Change in the reflectance for two values of psb (10 · 10−5 and 20 ·
10−5) relative to the reflectance for a psb of 4 · 10−4

.

FIGURE 7
Interrogation depth versus radial distance from a pencil beam source obtained from Monte Carlo simulations while varying the absorption
coefficient, scattering coefficient and psb. The interrogation depth mainly depends on the radial distance from the source and the absorption
coefficient of the tissue. (A) Variation of absorption coefficient while µs’ = 1.0 mm−1 and psb = 4·10−5. (B) Variation of scattering coefficient while µa =
0.1 mm−1 and psb = 4·10−5. (C) Variation of psb while µs’ = 1.0 mm−1 and µa = 0.1 mm−1

.
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of photons. The interrogation depth is defined here as the average

depth detected photons have traveled. We varied the absorption

coefficient, reduced scattering coefficient, and psb, to show their

effects on the interrogation depth.

The interrogation depth is mainly influenced by the source-

detector-separation and the absorption coefficient of the tissue. The

reduced scattering coefficient and psb have a smaller influence. The

influence of the scattering anisotropy is not shown here but has been

found to also have a minor influence on the interrogation depth

(Kanick et al., 2009; Hennessy et al., 2014). Methods and models to

determine the interrogation depth for a specific measurement

geometry can be found for SFDI in (Bodenschatz et al., 2015)

and (Hayakawa et al., 2018), and for fiber-optic spectroscopy in

(Kanick et al., 2009) and (Hennessy et al., 2014).

Discussion

Whether measurements are in the diffuse or subdiffuse

regime is influenced by the tissue optical properties and the

distance between source and detector fibers or the projected

spatial frequency. There is no clear dichotomy between the

diffuse and subdiffuse regime, but measurements are in the

diffuse regime when the distance between source and detector

fibers is large or the projected spatial frequency is low

compared to the transport mean free path of the tissue.

When measurements cannot be described by diffusion

theory they are in the so-called subdiffuse regime. In the

diffuse regime, the reflectance can be described as a

function of the absorption and reduced scattering

coefficient. For smaller distances, details in the scattering

phase function have to be taken into account as well. Since

the scattering phase function is related to the subcellular

structure of tissue, subdiffuse measurements have the

potential to provide a powerful contrast between healthy

and diseased tissue.

Since the fiber distance or spatial frequency influences

which tissue optical properties the reflectance method is

sensitive to and the size of the tissue volume that is

interrogated, the choice for a certain distance or frequency

has important implications for clinical applications of

reflectance spectroscopy. Often enough, the fiber distance

or spatial frequency used in a clinical study is based on

practical considerations such as the availability of a probe

with fixed fiber distances. Based on our review, we want to

encourage researchers to carefully select the fiber distance or

spatial frequency for a clinical application, since it has

important consequences for its ability to answer a clinical

question. Also, we would implore researchers to always supply

the reasoning behind the fiber distance or spatial frequency in

the methods section of a manuscript. When the interrogation

depth is essential to the clinical application, this should drive

the choice for a fiber distance or spatial frequency. For

example, for margin assessment in breast cancer, the

surgeon wants to know whether there is tumor tissue

within the first 2 mm from the tissue surface. When the

interrogation depth is not essential for a clinical

application, the sensitivity to optical properties should

drive the choice for a fiber distance or spatial frequency.

Sensitivity to optical properties

Subdiffuse measurements have the key advantage that they

are much more sensitive to the tissue scattering phase function

compared to diffuse techniques, more specifically to scattering at

small angles in the forward and backward direction (Canpolat

andMourant, 2000; Post AL. et al., 2020; Stewart et al., 2020). The

phase function is related to the subcellular structure of tissue. The

exact relationship between the subcellular structure of tissue and

different scattering phase function models and parameters used

in these scattering phase function models is not well-known. The

volume fraction of organelles influences the total amount of

scattered light as well as the angular distribution of scattered light

(Drezek, Dunn and Richards-Kortum, 1999). (Mourant et al.,

1998) and (Drezek, Dunn and Richards-Kortum, 1999) showed

that mitochondria and other organelles with similar sizes (in the

order of a micron) result in scattering at small angles in the

forward direction, while nuclei are related to small angle

scattering in the forward direction. Another study suggests

that scattering at angles greater than approximately 110° is

correlated with the DNA content of cells (Mourant et al.,

2000). The full clinical potential of the characterization of the

scattering phase function has not yet been explored, but a small

number of studies with subdiffuse techniques have shown

promising results (McClatchy et al., 2016; Bugter and

Hardillo, 2018; Bugter and Spaander, 2018; Bugter et al., 2019;

Post et al., 2021; Streeter et al., 2021). For example, Post et al. have

shown that SFR spectroscopy could discriminate between non-

dysplastic Barrett’s mucosa and neoplasia with an area under the

curve of 0.94 based on scattering properties of tissue alone (the

scattering amplitude, scattering slope, and psb at 500 nm) (Post

et al., 2021). Even more interesting, sensitivity to the tissue

scattering phase function might enable detecting changes in

tissue that are not (yet) visible by eye since the tissue

scattering phase function is related to the subcellular structure

of tissue. For example, before the development of a tumor, cell

lineages can acquire pro-tumorigenic genetic mutations, which

can grow in large areas of cells that are predisposed to progress to

a malignant lesion—an effect known as field cancerization. These

areas of cells can have acquired some, but not all phenotypic

changes related to malignancy (Curtius, Wright and Graham,

2017). A small number of studies with subdiffuse reflectance

spectroscopy have shown promise for the detection of field

cancerization, e.g. with SFR spectroscopy for esophageal

cancer (Bugter and Spaander, 2018; Post et al., 2021). Other
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subdiffuse techniques such as enhanced backscatter spectroscopy

have also shown promise for the detection of field cancerization

in colon cancer (Roy et al., 2009).

Diffuse reflectance measurements are more sensitive to the

absorption coefficient. However, this does not necessarily mean

diffuse measurements are the best choice when absorption

properties are related to the disease state of tissue. If the

tissue has a high absorption coefficient, the measured

reflectance values might become so low that there is almost

no signal regardless of the concentration of the absorber (e.g.

blood) and subdiffuse techniques should be used instead.

Whenever the interrogation depth is less important, we

would recommend performing a pilot study to identify the

optimal fiber distance or spatial frequency that provides

maximum contrast between tissue types. For any fiber-optic

probe, one could always include an SFR measurement by also

illuminating and collecting through one fiber. Furthermore,

probes could be used with multiple fiber distances (Lin et al.,

1997). Since it is very easy to perform measurements with

multiple spatial frequencies for wide-field imaging techniques,

we would recommend always investigating which spatial

frequencies provide the best clinical results.

Interrogation depth

For clinical applications where the interrogation depth is

critical, an important opportunity in reflectance spectroscopy is

the ability to choose the fiber distance or spatial frequency to

obtain the required interrogation depth. However, since the

absorption coefficient has a major influence on the

interrogation depth and the absorption coefficient can vary by

a few orders of magnitude within a spectrum, the interrogation

depth will vary significantly with wavelength for a constant fiber

distance or spatial frequency. The issue of variable penetration

depth should be considered when designing experiments and

developing diagnostic algorithms. A study by Kho et al.

illustrates this pitfall for hyperspectral imaging (Kho et al.,

2019b). They performed measurements with a pushbroom

hyperspectral imaging setup on slices of resected breast

tissue, where the tissue was placed on black rubber

(Figure 8A). The thickness of the tissue slices varied from

2.5 to 5.5 mm. Figure 8B shows the estimated interrogation

depth for adipose tissue (90% fat, 10% water) and Figure 8C

shows the estimated diffuse reflectance for adipose tissue (black

solid line), and the average measured spectrum for a tissue slice

of 5.5 mm thick (blue solid line) and for a tissue slice of 2.5 mm

thick (blue dashed line). The difference between the spectra for

different slice thicknesses underlines the importance of knowing

the interrogation depth for the device geometry used and the

tissue that is interrogated. Because the tissue slices are thinner

than the interrogation depth at some wavelengths, the thickness

itself will influence the measured reflectance. Photons that

normally would have gone deeper into the tissue and would

have been detected are now absorbed by the black rubber

underneath the tissue slices. If a diffusion theory model

would be used to fit the measured spectra this would result

in inaccurate retrieved optical properties. If the spectra would be

used to train a machine-learning algorithm (as is often done),

either tissue slices with a single thickness would be needed

(which is practically impossible in clinical practice), or much

more data would be needed to train the algorithm to account for

FIGURE 8
A pitfall in the design of experiments and the development of diagnostic algorithms is the variable interrogation depth within a measured
spectrum, as illustrated by (Kho et al., 2019b). (A) Hyperspectral images were obtained with a push broom system of breast tissue slices which were
placed on black rubber. The thickness of tissue slices varied from 2.5 to 5.5 mm. Image copied from (Kho et al., 2019a) (B) Expected approximate
interrogation depth based on the optical properties of breast tissue. For a large part of the spectrum, the interrogation depth is larger than the
slice thicknesses of 2.5–5.5 mm. Image modified from (Kho et al., 2019b) (C) Measured diffuse reflectance spectra for slices thicknesses of 2.5 and
5.5 mm. In regions where the interrogation depth is larger than the slice thickness themeasured diffuse reflectance is lower than what was estimated
based on diffusion theory and optical properties of breast tissue. The lower reflectance spectra for the two tissue slices can be explained by the fact
that photons that normally would have gone deeper into the tissue andwould have been detected are now absorbed by the black rubber underneath
the tissue slices. Figure modified from (Kho et al., 2019b).
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the additional influence of the slice thickness. Even in that case,

the trained algorithm would not be translatable to in vivo

applications, where the tissue in essence will be semi-infinite

and thus the measured reflectance spectra would be different.

The fact that the interrogation depth varies with fiber

distance or spatial frequency also offers the opportunity to

extract depth information on tissue optical properties. For

example, fiber-optic probes with multiple fibers distances and

SFDI with multiple frequencies have been used to extract optical

properties of different tissue layers, as well as the thickness of the

layers (Sharma et al., 2014; Tabassum et al., 2018; Geldof et al.,

2022; Sung et al., 2022). Also, in the very first paper where SFDI

FIGURE 9
A pitfall in the development of diagnostic algorithms is not realizing that results from one fiber distance or spatial frequency cannot simply be
translated to another fiber distance or spatial frequency. For example, when a diffusion theory model is used for fiber-optic measurements, the
extracted optical properties will depend on the distance between the source and detector fiber. Results from Monte Carlo simulations for
illumination through a fiber with a diameter of 200 µm and an NA of 0.22 of a sample with optical properties representative of breast tissue
(Jacques, 2013), where µs’ = 3·(λ/500 nm)−2.7, a blood volume fraction of 1%, a fat volume fraction of 15% and a water volume fraction of 70%. The
refractive index of themediumwas 1.35 and above themedium 1.0. Detection was also through a fiber with a diameter of 200 µm and an NA of 0.22,
placed at several distances from the source fiber in increments of 100 µm. Black lines indicate the Monte Carlo simulations and red lines and circles
the fit results for the diffusion theory model of (Farrell, Patterson and Wilson, 1992) (A) Example of a fit with diffusion theory to the simulated
reflectance for a fiber distance of 10 mm. (B) Fit results and simulated value of the scattering amplitude (C) scattering slope (D) blood volume fraction
(E) fat volume fraction; and (F) water volume fraction. The inaccuracies in all extracted optical properties over all fiber distances imply that diffusion
theory does not hold for these simulatedmeasurements, which can be explained by the fact that the ratio between the reduced scattering coefficient
and the absorption coefficient is too low. The extracted optical properties change with fiber distance.
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was presented (Cuccia et al., 2005), Cuccia et al. already suggested

obtaining tomographic images of optical properties from images

obtained with multiple spatial frequencies, and more recently

methods have been developed to enable this (Konecky et al.,

2009, 2012).

Diagnostic algorithms

Diagnostic algorithms are generally either based on tissue

optical properties extracted from the measured spectra or on the

entire spectra themselves. For diffuse measurements, analytical

models exist to extract tissue optical properties from reflectance

spectra (Flock et al., 1989; Farrell, Patterson and Wilson, 1992;

Cuccia et al., 2009). For fiber-optic subdiffuse measurements, a

semi-empirical model exists for SFR spectroscopy (Post A. L.

et al., 2020), which applies when the source and detector fiber

overlap. However, for measurements where the source and

detector fiber do not overlap but are too close together for

diffusion theory to apply, no model exists. For wide-field

subdiffuse measurements, Kanick et al. developed a model,

but this does not incorporate the influence of absorption on

the measured spectra (Kanick et al., 2014). Both the SFR and

SFDI models have been derived semi-empirically from MC

simulations. Other approaches to extract tissue optical

properties are based on look-up tables derived from MC

simulations or measurements on phantoms (Hennessy et al.,

2013; Vervandier and Gioux, 2013; Ivančič et al., 2018; Erickson,

Durkin and Tunnell, 2022) or machine learning based on MC

simulations (Chen et al., 2016; Ivančič et al., 2018; Stier et al.,

2021). Since subdiffuse measurements are very sensitive to the

tissue scattering phase function, simulations from which models

or look-up tables are derived should be performed with a wide

range of tissue scattering phase functions. Based on our review of

tissue scattering phase functions, it should at least include TTHG

and MHG phase functions, since these scattering phase function

models are representative of measured phase functions in soft

tissue. To ensure accurate results from subdiffuse measurements

for any tissue type we would suggest also including phase

functions based on Mie theory with a fractal size distribution,

MPC phase functions (representative of blood) and RMC phase

functions (representative of cells and dentin). The HG phase

function should not be included, since it never represented the

measured scattering phase functions well and it underestimates

backward scattering. Previously MC simulation software was

limited to HG phase functions only, but more recently MC

software has become available where any scattering phase

function can be implemented (e.g. MCX (Yu et al., 2018)).

The importance of using a range of scattering phase functions

for the development of a subdiffuse model was illustrated by

(Post A. L. et al., 2020). They developed a model based on MC

simulations with TTHG, MHG, RMC, and MPC phase functions

and compared their accuracy for this range of phase functions to

the model previously developed by (Kanick et al., 2011), which

was based only onMHG phase functions. Post et al. increased the

accuracy of the model by a factor of 3. Thus, approaches to

extract optical properties from subdiffuse measurements based

on MC simulations with MHG phase functions alone are prone

to errors.

Although counterintuitive, another approach to extract optical

properties from subdiffuse measurements is to use diffusion

theory—as has been done for fiber-optic measurements with short

source-detector separations (Müller et al., 2003; de Boer et al., 2016).

The extracted optical properties will not be accurate—even when

diffusion theory only slightly underestimates the reflectance, this can

lead to large errors in the extracted optical properties (Naglič et al.,

2019). For clinical applications inaccuracies in the extracted optical

properties are not necessarily a problem as long as the extracted

optical properties are reproducible.

Figure 9 shows what can happen when a diffuse model is

used for fiber-optic reflectance measurements of breast tissue.

For this specific example, diffusion theory is not appropriate

regardless of the fiber distance, because the absorption

coefficient is much higher than the reduced scattering

coefficient for part of the spectrum due to the presence of

fat and water. For short fiber distances, the volume fractions of

blood, fat, and water are underestimated. This

underestimation can be explained by the fact that the

reflectance close to the source is higher than expected

based on diffusion theory (Figure 2A) which can be

accounted for by a lower absorption. The scatter amplitude

is fairly constant but inaccurate regardless of the fiber

distance. The scatter slope does become increasingly

accurate with fiber distance. Interestingly, further away

from the source the extracted concentrations of absorbers

are still inaccurate, but there they are overestimated. The

inaccuracies in the scattering amplitude and the volume

fraction of absorbers can be explained by the fact that the

reduced scattering coefficient should be much larger than the

absorption coefficient for diffusion theory to apply. For this

simulated breast tissue, this is not the case at higher

wavelengths.

Figure 9 thus illustrates an important pitfall in diagnostic

algorithm development: not realizing that results from one fiber

distance or spatial frequency cannot be translated to another one.

When a fit with diffusion theory is performed in the subdiffuse

regime, the fiber distance or spatial frequency will influence the

values of the extracted optical properties that are used in a

diagnostic algorithm. When machine learning is used, the

features that were used by the diagnostic algorithm for one

fiber distance or spatial frequency will not necessarily perform

equally well for other fiber distances. Also, when tissue is not

homogenous but layered, diagnostic algorithms from different

fiber distances or spatial frequencies are definitely not

interchangeable, since they will have interrogated different

volumes and thus different layers of different tissue types.
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Tissue scattering phase function

Knowledge of tissue scattering phase functions is important for

both modeling and interpretation of subdiffuse measurements.

However, currently, we cannot be sure that the MHG, TTHG,

Mie for a fractal size distribution, RMC, and MPC are sufficient to

fully describe all phase functions that are present in tissue. First of all,

only a small number of tissue scattering phase functions have been

measured (29) for only a small number of tissue types (13). Secondly,

most scattering phase functions were only measured up to 150° and

we thus do not know if the currently used phase function models

accurately describe small angle backscattering events—which have a

major impact on subdiffuse measurements. To better understand

the tissue scattering phase function to improve our understanding of

subdiffuse techniques, we thus need new approaches that can cover

the full range of scattering angles, and we need more measurements

of scattering phase functions of different tissue types.

We also need a better understanding of how the tissue

scattering phase function relates to the disease state of tissue.

Some work has been done that relates the scattering phase

function to the subcellular structure of tissue, but we do not

yet know how the tissue scattering phase function changes from

healthy to diseased tissue. Only (Ghosh et al., 2001) measured the

scattering phase function of both normal and malignant (breast)

tissue. Furthermore, we do not know how subdiffuse parameters

such as psb relate to changes in the tissue structure. To obtain a

better understanding of psb, subdiffuse measurements of psb
could be related to histology slides of the investigated tissue.

Conclusion

For steady-state reflectance spectroscopy, the tissue

optical properties and the distance between source and

detector fibers or the projected spatial frequency determine

whether measurements are in the diffuse or subdiffuse regime.

When fiber distances are too short or spatial frequencies too

high for diffusion theory to apply, these measurements are in

the so-called subdiffuse regime. The fiber distance or spatial

frequency has important implications for clinical applications

of reflectance spectroscopy since they influence which tissue

optical properties the technique is sensitive to and the size of

the tissue volume that is interrogated. An opportunity in

reflectance spectroscopy is that the interrogation depth can

be tailored to a clinical application by appropriate selection of

a fiber distance or spatial frequency. Another opportunity in

reflectance spectroscopy is the sensitivity of subdiffuse

measurements to the tissue scattering phase

function—which has the potential to be a powerful contrast

mechanism between healthy and diseased tissue. A pitfall in

reflectance spectroscopy is not properly considering the effect

of the interrogation depth on a clinical measurement and not

realizing the variable interrogation depth within a spectrum.

Another pitfall is assuming diagnostic algorithms developed

from measurements with a certain fiber distance or spatial

frequency can be used for measurements with another fiber

distance or spatial frequency. Lastly, an important pitfall is

developing models to extract optical properties from

subdiffuse measurements based on MC simulations that do

not cover the full range of phase functions present in tissue (at

least modified Henyey-Greenstein and two-term Henyey-

Greenstein should be included).
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