AUTHOR=Eisler Carissa N. , Parsons Lindsey E. , Nett Zachary , Love Claire , Schwartzberg Adam M. , Alivisatos A. Paul TITLE=Photonic Luminescent Solar Concentrator Design for High Efficiency, Low Cost Multijunction Photovoltaics JOURNAL=Frontiers in Photonics VOLUME=3 YEAR=2022 URL=https://www.frontiersin.org/journals/photonics/articles/10.3389/fphot.2022.932913 DOI=10.3389/fphot.2022.932913 ISSN=2673-6853 ABSTRACT=

Despite the extraordinary advances in solar cell efficiency in laboratory settings, the deployment of solar cells continues to be limited to low efficiency (<25%) silicon cells because of cost. In this work, we take advantage of the extraordinary optical properties afforded by nanophotonic structures to create a photonic luminescent solar concentrator for an InGaP-Si multijunction concentrator cell. Finite difference time domain (FDTD) simulations demonstrated a concentrator that could effectively capture, downconvert, and guide concentrated light to an InGaP subcell while still transmitting longer wavelengths to a Si subcell. We fabricated the photonic luminescent solar concentrator, which was comprised of CdSe/CdS quantum dots embedded within alternating layers of Si3N4 and SiO2, and experimentally verified the optical performance, showing a 40% increase in light guiding and a significant reduction in reabsorption losses in the plane of the luminescent concentrator as compared to traditional designs. Finally, we utilized modified detailed balance calculations that accounted for cell and optical losses and showed >30% efficiencies are possible with this design, demonstrating the potential to meet the demands for high efficiency, inexpensive solar modules.