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Our team recently developed “Diffuse in vivo Flow Cytometry” (DiFC) for detection and
enumeration rare circulating tumor cells (CTCs) in mice with highly-scattered fluorescent
light. We have used DiFC to study dissemination of CTCs in a number of mouse models of
metastasis with fluorescent protein expressing cells. Because DiFC uses diffuse light and
interrogates large blood vessels in relatively deep tissue, in principle it could be translated
to larger limbs, species, and even humans clinically. In this perspective, we discuss the
technical challenges of human translation of DiFC in the context of the current state of the
technology, as well as potential strategies for labeling of CTCs with targeted fluorescent
molecular probes. We also discuss potential advantages and disadvantages of DiFC as a
clinical tool. In principle, DiFC could represent a powerful complementary technique (to
liquid biopsy blood draws) for accurate and sensitive measurement of changes in CTC
numbers over time.
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INTRODUCTION: CIRCULATING TUMOR CELLS AND DIFFUSE IN
VIVO FLOW CYTOMETRY

Although major efforts in biophotonics in oncology have historically focused on imaging of
primary tumors, metastasis to distant organs and tissues is responsible for the majority of
cancer-related deaths (Chaffer and Weinberg, 2011). One of the main pathways is hematogenous
metastasis, wherein circulating tumor cells (CTCs) and multicellular CTC clusters (CTCCs)
migrate from the primary tumor into the peripheral blood (PB) and form secondary sites (Steeg
and Theodorescu, 2008; Hanahan andWeinberg, 2011). Because of this, CTCs have been a major
focus of clinical and pre-clinical research outside of the biophotonics field (Joosse et al., 2015;
Pantel and Speicher, 2016). In 2021 alone there were over 1900 journal publications on CTCs
cataloged on Pubmed.gov.

There is a well-documented association between the number of CTCs in PB and the development
of metastases, overall survival, and response to treatment for many cancers including breast, prostate
and colorectal (Moreno et al., 2005; Cohen et al., 2008; Boutrus et al., 2013). CTCs are extremely rare.
Fewer than one CTC per mL of PB is associated with reduced overall survival (Cristofanilli et al.,
2004; Moreno et al., 2005). Clinical and pre-clinical interest in CTCs has driven major efforts in the
field of “liquid biopsy”, wherein blood samples are drawn from a patient (or mouse) and analyzed
(Hong and Zu, 2013). Typically, CTC isolation is a multi-step process involving red blood cell
depletion followed by CTC selection based on epithelial cell surface markers or size (Alix-Panabières
and Pantel, 2013). The only FDA cleared clinical test for CTCs is currently CellSearch (Raimondi
et al., 2014), although there are many other platforms in development or in pre-clinical use.
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In the context of pre-clinical research, there have been
significant efforts in the last decade to develop and use
specialized optical microscopy and photoacoustic methods for
enumerating CTCs directly in vivo in mouse tumor models (Suo
et al., 2020; Zharov et al., 2006; Hartmann et al., 2017). ‘Diffuse in
vivo Flow Cytometry’ (DiFC) (Patil et al., 2019; Tan et al., 2019;
Fitzgerald et al., 2020) is an emerging technique for enumeration
of rare CTCs directly in the bloodstream of small animals. The
concept is shown in Figure 1. DiFC uses diffuse light to sample
hundreds of μL per minute of PB flowing in large arteries in a
mouse hindleg or tail of a mouse. DiFC permitted highly sensitive
detection of rare CTCs, particularly at early stages of disease
progression (Patil et al., 2019; Fitzgerald et al., 2020).

We have built red (Tan et al., 2019), and blue-green (Patil
et al., 2019) (Figure 1A) fluorescence versions of DiFC for use
with common fluorophores and fluorescent proteins, including
Cy5.5, Vybrant DiD, FiTC and GFP. DiFC uses a specially-
designed fiber optic probes (Pera et al., 2017) in epi-
reflectance geometry placed over a vessel in the limb (Figures
1B,C). As fluorescently-labeled CTCs pass through the DiFC
field-of-view, transient “peaks” are detected on each probe.
Diffusely emitted fluorescent light from moving cells is
inherently very weak, and laser illumination of bulk biological
tissue generates substantial non-specific tissue autofluorescence.
As such we previously evaluated multiple illumination and
detection designs for DiFC (Zettergren et al., 2012a; Zettergren
et al., 2012b; Pestana et al., 2013) to maximize the detection
signal-to-noise ratio (SNR) from a single cell. Most recently we
developed specialized integrated fiber optic probes (Figure 1D)
which were described in detail previously (Pera et al., 2017; Tan
et al., 2019). Briefly, these use micromachined bandpass laser
“cleanup” and long-pass fluorescence collection filters directly on
the probe tip to minimize autofluorescence in the fiber assembly.
The integrated collection lens also maximized geometric
collection of fluorescent light from the region below the probe
tip. We found that a short, 0.3 mm center-to-center source and
detector fiber separation yielded the best SNR for cells moving in
blood vessels less than 1 mm in depth.

Interrogation of large blood vessels allow DiFC to sample the
entire circulating peripheral blood (PB) volume of a mouse in
about 15 min. We showed that DiFC allowed detection of early
CTC dissemination in multiple myeloma bearing mice
(Figure 1E) with calibrated CTC numbers on the order of one
cell per mL of PB (Figure 1F) (Patil et al., 2019). Use of two
probes also allowed us to algorithmically (Figure 1G) identify cell
direction, speed, and better reject motion artifacts and operate
DiFC with very low false alarm rates (Tan et al., 2019). DiFC also
allowed detection of CTC multicellular clusters by analysis of the
amplitude and temporal width of detected peaks. This is very
significant because CTCCs are known to have 50–100 times
higher likelihood of forming metastasis than individual CTCs
(Duda et al., 2010; Hong et al., 2016). In addition, because DiFC is
non-invasive, it can be performed for extended periods, and
repeatedly over time.

COULD DIFFUSE IN VIVO FLOW
CYTOMETRY BE TRANSLATED TO
HUMANS?
Although our prior research efforts have been concentrated on
studying mouse models of metastasis, an evident question is
whether DiFC could ever be used in humans. In this section, we
discuss the technical challenges of doing so in the context of the
present state of the technology. The parallel (and equally
important) issue of the potential value of DiFC as a clinical
tool is discussed in detail in section 3 below. We also note that
there are other optical approaches to in vivo detection of
circulating cells under development. We do not discuss these
in detail here for brevity, but these include, 1) photoacoustic
methods which permit detection of highly pigmented CTCs such
as melanoma cells (Hai et al., 2017; Galanzha et al., 2019).
Photoacoustic methods are generally advantageous because
they do not require exogenous contrast agents and can operate
in deep tissue, 2) fluorescence confocal microscopy in vivo flow
cytometry (Georgakoudi et al., 2004; Suo et al., 2020) methods,

FIGURE 1 | (A) Photograph of the blue-green DiFC instrument that was described in detail previously (Patil et al., 2019; Tan et al., 2019). DiFC allows detection of
(B) cells traveling in large arteries and veins in bulk tissue large limbs of mice, typically either the (C) tail or leg. (D) We developed a specialized fiber probe design with
integrated filters and lenses which allows detection of weak signals from single fluorescently labeled CTCs. DiFC can be used to monitor CTCs in circulation during tumor
growth. For example, we used DiFC to non-invasively monitor rare CTC dissemination in a (E)multiple myeloma disseminated xenograft mouse model (Patil et al.,
2019). (F) As CTCs appear in circulation, these are detected with DiFC as transient fluorescent peaks. (G) Using amplitude and temporal data from the two fiber probes,
we are able to determine the number and direction of CTCs flowing in the blood vessel. These may be displaed as (G) raster plots, where each line vertical represents (in
this case) the detection of a forward matched (arterial) CTC. Figure adapted with permission from (Patil et al., 2019).
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which are generally intended for use in small animal studies
because they interrogate small, superficial blood vessels in the
mouse ear, or 3) intrinsic contrast microscopy of circulating
blood cells in the capillary bed (Li et al., 2010; Golan et al., 2012;
McKay et al., 2021), which are advantageous because they permit
detection of abundant blood cells without the use of contrast
agents.

Tissue Optics
DiFC is inherently scalable to larger limbs and species because
it uses highly scattered light, and because the probe is placed
on the limb surface with the source and detector on the same
side of the tissue, i.e., there is no requirement for trans-
illumination of a limb. The abundant prior work in the
diffuse optical tomography (DOT) and functional near
infrared spectroscopy (fNIRS) fields indicate that optical
interrogation of tissue depths on the order of centimeters
are feasible (Jacques, 2013). Therefore, this is (in principle)
an advantage of DiFC compared to fluorescence confocal
microscopy methods, which are limited to relatively
superficial depths (Hartmann et al., 2017). Moreover, DiFC
uses laser powers of approximately 10–20 mW at the skin
surface which is distributed over the 3 mm diameter probe
tip. This exposure is below that at which skin heating is
observed and would be in accordance with International
Electrotechnical Commission (IEC) laser safety standards,
which permits maximum exposures of approximately
300 mW per cm2 in the near infrared (NIR) range.

In our previous work in pre-clinical mouse models, we
showed that DiFC detects cells traveling in blood vessels
approximately 0.75–1 mm in depth (Patil et al., 2019; Tan
et al., 2019). However, because of the inherently lower optical
attenuation in biological tissues (Goldstein and Gupta, 2003),
use of red or NIR fluorophores (as opposed to GFP) are better
suited to interrogation of deeper-seated blood vessels as would
be required in humans. There are several major candidate
blood vessels in the human anatomy that are 2–4 mm deep that
carry large blood volumes that could be accessible with DiFC
such as the radial artery in the wrist (Goldstein and Gupta,
2003; Masengu et al., 2016). We recently performed an in-
depth analysis of the optimal source-and-detector separation
for potential use of DiFC in humans (Ivich et al., 2022). In
brief, we showed that use of NIR fluorophores and a 3 mm
source and detector separation should permit detection of
labeled CTCs with SNR of at least 14 dB at depths of
2–4 mm. DiFC instrument development is an ongoing area
of research in our group.

Contrast Agents
In contrast to mouse studies where cultured cancer cells can be
readily transfected to express GFP prior to inoculation of
tumors, any use of DiFC in humans would require the use
of specific and bright fluorescent molecular contrast agents to
label CTCs. Therefore, this is a significant technical and
regulatory challenge for any potential use in humans.
However, specific labeling of circulating cells with receptor-
targeted probes has been achieved previously in small animals

(Novak et al., 2004; Wei et al., 2005; He et al., 2007; Pitsillides
et al., 2011; Patil et al., 2020) illustrating the general feasibility
of the molecularly-targeted CTC labeling approach. As we
have shown previously (Hartmann et al., 2017), because DiFC
relies on detection of CTCs with diffuse light on a non-specific
tissue background, the labeling requirements—in terms of
fluorophore brightness and number of fluorophores per
cell—are expected to be higher than confocal microscopy
methods.

With respect to regulatory acceptance (i.e., FDA approval in
the United States), the use of targeted fluorescent contrast
agents in humans is rapidly gaining clinical traction, primarily
for intraoperative fluorescence guided surgery (FGS) (Lee
et al., 2019; Barth and Gibbs, 2020). If available FGS
contrast agents have sufficient sensitivity, specificity, and
brightness for CTCs, this suggests that human translation of
DiFC could be expedited by “piggy backing” on this clinical
progress.

For example, folate receptor (FR)-α is a frequently-used
therapeutic and diagnostic target for cancer. FRα is over-
expressed in many epithelial cancers (Parker et al., 2005;
Leamon, 2008; Vlahov and Leamon, 2012) including ovarian
(Vergote et al., 2015), breast (O’Shannessy et al., 2012), and non-
small cell lung carcinoma (Shi et al., 2015). FRα also has very low
expression in normal tissues and blood cells and therefore
presents a relatively low background signal. One of the
seminal papers in FGS by van Dam et. al. (van Dam et al.,
2011) used a visible (FITC-based) FRα-targeted probe called
EC17. Moreover, Low et. al. showed that EC17 had high
affinity for ovarian and prostate cancer CTCs from patient
blood samples and cultured cell lines, with better labeling
efficiency than larger molecular weight antibody-based designs
(He et al., 2008). In the context of CTC labeling in blood, non-
specific uptake (e.g., by macrophages) is a serious concern, but the
small-molecule design exhibited little uptake by white blood cells,
with specificity for FR + CTCs by factor of at least 20 (He et al.,
2008). More recently, our team (Patil et al., 2020) also confirmed
this specificity using FR + CTCs in mouse blood with EC17 and
found similar specificity (Figures 2A–F; see figure caption for
details). Moreover, in the same study we showed that L1210A
cells labeled with EC17 either prior to injection, or while in
circulation (i.e., EC17 and L1210A cells were injected separately)
were detectable with our existing blue-green DiFC system
(Figures 2G–I).

A near-infrared (NIR) analog of EC17 called OTL38 was
recently approved for clinical use in ovarian and lung cancer.
OTL-38 is also in phase-II trials for endometrial, brain, and
kidney cancers. Because OTL38 is a longer wavelength contrast
agent (780 nm excitation, 800 nm emission) than EC-17, as above
it is in principle better suited significantly for deeper-tissue light
penetration as would be necessary for use of DiFC in humans.

In addition to folate-targeted fluorescent probes, there are
dozens of FGS molecular probes in various stages of clinical
development. These efforts have been reviewed in detail
elsewhere (Lee et al., 2019; Barth and Gibbs, 2020). Briefly,
these include cancer associated molecular targets such as
EGFR, Her2, αvβ3, integrin, Cathepsins, heat shock proteins

Frontiers in Photonics | www.frontiersin.org May 2022 | Volume 3 | Article 9100353

Niedre Perspective on Human DiFC

https://www.frontiersin.org/journals/photonics
www.frontiersin.org
https://www.frontiersin.org/journals/photonics#articles


(HSPs), and others. Multiple targeting strategies are being
evaluated including small molecule, anti-body targeted,
peptide, “activatable” (fluorogenic), and other nano-particle
delivery systems. Many of these also have red and NIR
spectral properties and therefore may be amenable to use with
DiFC. Hence there are many potential CTC contrast agents that
could be evaluated for DiFC in the future. In principle it could be
possible to use a cocktail of contrast agents with different
fluorophores to permit multiplexed profiling of CTCs, for
example, to distinguish and enumerate epithelial and
mesenchymal CTCs directly in vivo (Chaffer and Weinberg,
2011).

RATIONALE FOR DIFFUSE IN VIVO FLOW
CYTOMETRY TRANSLATION TO HUMANS

Aside from technical and regulatory feasibility, it is important
to consider how DiFC could be of potential value as a clinical
tool. In particular: what potential advantages would DiFC offer
given that there are already FDA-cleared microfluidic devices
available that can isolate and enumerate CTCs from drawn
patient blood samples? In this section we discuss some of the
theoretical advantages and limitations of human translation
of DiFC.

Analysis of Large Blood Volumes and More
Accurate Enumeration of Circulating Tumor
Cells
Although CTCs are crucial in metastasis formation, and there
is clear established link between CTC numbers and metastasis
in population studies, the true clinical value of CTC liquid
biopsy in guiding individual patient management remains
unclear (Raimondi et al., 2014). For example, in the well-
known SWOGS0500 trial, CTC enumeration failed to
demonstrate predictive value in guiding frontline

chemotherapy for breast cancer (Smerage et al., 2014). One
widely-held explanation for this is CTC heterogeneity (Polzer
et al., 2014): because most CTCs do not form metastases, it is
believed that specific CTC phenotypes may have higher
likelihood of doing so (“metastatic potential”). This
hypothesis has contributed to major efforts in development
of next-generation liquid biopsy technologies that allow
detailed genotypic and phenotypic characterization of
individual CTCs (Bardia and Haber, 2014).

A complementary hypothesis is simply that enumerating
CTCs from small blood samples (as in liquid biopsy) is
inaccurate. Most CTC enumeration methods rely on
analysis of 2—10 ml of PB, which fractionally represents
0.04—0.2% of the 5 L human PB volume. For CellSearch,
CTC-positive patients are defined as having at least 5
[breast (Cristofanilli et al., 2004), prostate (Moreno et al.,
2005)], or three CTCs [colorectal (Cohen et al., 2008)] per
7.5 ml sample (Miller et al., 2010), i.e. fewer than one CTC per
mL blood. Even if the numbers of CTCs in a random blood
draw follows a Poisson distribution (and, as we discuss below
this is not necessarily true), it has been shown that fractionally
small blood samples yield inaccurate quantitative estimates of
CTCs (Allan and Keeney, 2010; Mishra et al., 2020).

We recently showed that this by analysis of DiFC data in
mice (Williams et al., 2020). Specifically, we analyzed
hundreds of hours of DiFC data from xenograft models.
This allowed us to study the effect of blood sample size on
CTC detection accuracy and sensitivity. For example, in
Figure 3A each vertical line represents detection of a CTC
in multiple myeloma (MM) bearing mouse in a 35 min scan as
reported in Patil et al. (Patil et al., 2019). Our analysis showed
that in general, because CTCs are rare and discreet (not
continuous) detection events, a random small blood sample
is likely to give a very inaccurate estimate of CTC burden: 1%
of the PBV (Figures 3B,D) yielded large, short-term
fluctuations in CTC count rate, and produced a correct
estimate of CTC numbers (within 50%) only about 25% of

FIGURE 2 | (A–F) Flow cytometry analysis of CTC labeling in whole blood with a FR-targeted molecular probe. Cells were pre-labeled with cell trace far red (CTFR;
red y-axes) stain and added to whole blood, and EC-17 (blue; x-axes) added separately. (A)whole blood only, (B)whole blood with EC-17 added, showing minimal non-
specific uptake of blood cells, blood with FR+ (C) KB, and (D) L1210 cells added, showing the population (square area) of EC-17 labeled CTCs. Likewis (E) FR- MM cells
were not labeled by EC-17, and (F) addition of free-folate blocked binding in FR + L1210A cells. We also showed that these cells were detectable with DiFC in (G)
C57BL/6 mice. (H) Un-injected control mice, and (I) mice with circulating EC-17 labeled L1210 cells. Peaks indicate example CTC detections. Figure adapted with
permission from (Patil et al., 2020)
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the time on average. Sampling larger PBVs (e.g., 20%, Figures
3C,E) was more stable and allowed correct estimates of CTC
burden > 90% of the time. Likewise, small blood samples
frequently missed detection of rare CTCs entirely (Fitzgerald
et al., 2020), whereas larger samples yielded more frequent
detections (Figures 3F,G). In summary, larger blood volumes
resulted in more sensitive and accurate enumeration of CTCs.

In terms of candidate anatomical sites for DiFC the radial
artery in the wrist or cephalic vein in the forearm carry more
than 100 ml of blood per min (Goldstein and Gupta, 2003;
Masengu et al., 2016). Optical sampling of these vessels would
therefore sample 1 L of blood (~20% of PBV) in minutes.
Hence, in principle DiFC could yield more quantitatively

accurate enumeration of CTCs which may better support
their clinical utility.

Circulating Tumor Cells Numbers May be
Dynamic Over the Timescale of Minutes,
Hours, and Weeks
Furthermore, the assumption that CTC numbers in a blood
sample should follow a Poisson distribution implicitly rests on
the assumption that the number of CTCs in circulation do not
change significantly in the minutes or hours surrounding a
blood draw. Available pre-clinical and clinical evidence
suggests that CTC numbers are more dynamic than is

FIGURE 3 | In general, analysis of larger blood samples gives more accurate and sensitive quantification of CTCs than smaller samples. (A) example raster plot
showing CTC detections in a DiFC scan. The CTC count rate may vary dramatically in the timescale of a 35-minute scan. (B) Considering a moving average equivalent
to 1% peripheral blood volume gives wide estimates of CTC numbers whereas, (C) moving averages equivalent to 20% peripheral blood volumes yield less noise.
This leads to (D,E) more accurate quantification of CTC numbers, and (F,G) higher probability of detecting rare cells. Figure adapted with permission from
(Williams et al., 2020).

FIGURE 4 | When DiFC was performed over 24-hour cycles in MM-bearing mice (two examples are shown in (A,B), large diurnal fluctuations in CTCs numbers
were observed which would lead to (C) large differences in the mean number of CTCs that would be expected in a blood sample. This variability also far exceeded that
expected from Poisson statistics or from operator variability. Figure adapted with permission from (Williams et al., 2020).
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generally appreciated and may fluctuate over relatively short
timescales (Juratli et al., 2014). CTC numbers and have been
shown to follow circadian (diurnal) cycles in both mouse
models (Zhu et al., 2021) and in humans (Paiva et al.,
2013). Because they rely on drawing of a blood sample at a
single time point, liquid biopsy methods are generally
insensitive to these natural fluctuations that may occur.

Analysis of previously acquired DiFC data also indicates
that this is true. Even considering 30–60 min scans (Figures
3A–C), the mean number of CTCs detected by DiFC
frequently fluctuated with variability beyond that predicted
by Poisson statistics or operator variability (Williams et al.,
2020). Measurements taken over 24-hour cycles (Figures
4A–C), often showed more than an order-of-magnitude
change in the mean MM CTC numbers (Williams et al.,
2020). Similar fluctuations were observed day-to-day even
without any obvious perturbations. In general, tumor
volume does not necessarily correlate with tumor volume
(Figure 5).

The overarching physical interpretation of these data is that
CTCs undergo natural and fluctuations over time and are far
from being in “steady state”. Practically, this means that the
estimated number of CTCs from a blood sample will depend
strongly on the timing of the blood draw. This should not be
surprising: it is known that tumors shed CTCs at the rate of
~106 C/g/day (Butler and Gullino, 1975), and that CTC half-
life in circulation is only on the order of minutes (Georgakoudi
et al., 2004; Stott et al., 2010). The issue is amplified for CTC
clusters or subtypes, which are even more rare (Paiva et al.,
2013).

In summary, human translation of DiFC could present a
more accurate method of CTC enumeration, that is, less
sensitive to temporal fluctuations in their numbers. Because
little is known about whether and to what degree these

fluctuations occur in humans, DiFC could represent a new
research method to study these.

Limitations of Using Diffuse in Vivo Flow
Cytometry in Humans
Finally, we briefly discuss limitations of any potential use of
DiFC to humans. First, as above, DiFC would require
administration of contrast agents. Although existing FGS
contrast agents are purportedly well tolerated with only
mild immune reactions reported in some cases (Lee et al.,
2019), this presents a potential risk and regulatory barrier.

Second, DiFC would provide a real-time count of CTC and
CTCC numbers. This would not directly allow—as is possible
with liquid biopsy methods—isolation and detailed imaging,
single-cell genomic, or phenotypic profiling of cells.
Therefore, it is important to underscore that we do not
view DiFC as a replacement for liquid biopsy
methods—rather we view it as a potential complementary
tool in the metastasis research toolbox. For example, use of
DiFC could provide insight into early formation of
metastasis, routine monitoring for recurrence of cancer, or
possible mobilization of CTCs into circulation after anti-
cancer therapies such as radiation therapy or surgery (Martin
et al., 2017). Monitoring of CTC numbers could also be used
to inform the timing of blood draws for subsequent analysis
with liquid biopsy methods.

SUMMARY

DiFC is an emerging method for non-invasive fluorescence
enumeration of rare circulating cells directly in the
bloodstream in vivo. Beyond small animal studies,

FIGURE 5 | Consistent with the available literature, analysis of DiFC data shows that CTC numbers do not always vary directly with primary tumor size, and may
flucuate substantially over the timescale of days. For example, in a (A)metastatic LLC tumor model (Fitzgerald et al., 2020). (B) CTC numbers generally increased as (C)
tumors grew. However there was frequently significant heterogeneity (D,E) in this pattern. Figure adapted with permission from (Fitzgerald et al., 2020).
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translation of DiFC to humans could provide meaningful
diagnostic information of cancer progression, recurrence,
and response to therapy. The physics of near-infrared light
propagation in biological tissue support the possibility of
interrogating large blood vessels in human-scale geometries.
A major outstanding challenging is identification of a clinically
approved contrast agent for sensitive, specific, and bright
labeling of CTCs. However, this may be achievable through
major technical advances and investment in the field of
fluorescence guided surgery.
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