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In digital holography, the coherent noise affects the measurement accuracy and reliability
greatly due to the high spatial and temporal coherence of the laser. Especially, compared
with the speckle noise of intensity in digital holography, the coherent noise of phase
contains more medium- and low-frequency characteristics, which hinders the
effectiveness of noise suppression algorithms. Here, we propose a single-shot
untrained self-supervised network (SUSNet) for the coherent noise suppression of
phase, requiring only one noisy phase map to complete the optimization and learning.
The SUSNet can smoothen and suppress the background fluctuations, parasitic fringes,
and diffraction loops in a noisy phase and shows good generalization performance for
samples with different shapes, sizes, and phase ranges. Compared with the traditional
algorithms and the ground truth-supervised neural network (DnCNN), the SUSNet has the
best noise suppression performance and background smoothing effect. As a result, the
SUSNet can suppress the fluctuation range to ~20% of the original range.

Keywords: digital holography, coherent noise suppression, single-shot untrained self-supervised network, neural
network, background smoothing

INTRODUCTION

Coherent noise is a vexing problem and has attracted many researchers in solving it. However, there
is still no perfect solution for the coherent noise problem nowadays due to the high spatial and
temporal coherence of the laser. In digital holography, coherent noise will lead to haphazardly
distributed granular noise in the reproduced intensity, named as speckle noise, and the background
fluctuations, parasitic fringes, and diffraction loops in the reconstructed phase, which we simply refer
to as the coherent noise of phase. If the random fluctuation in intensity or phase is generated due to
the object itself, it does not change over time. At this point, the fluctuation actually contains detailed
object information. However, if the fluctuation is generated due to other factors within the system, it
needs to be suppressed as much as possible to reduce the effect on observation andmeasurement. For
speckle noise suppression, there are somemethods, such as the averaging ideas with multiwavelength
(Nomura et al., 2008), multi-polarization (Xiao et al., 2011), multi-angle illumination (Kang et al.,
2007; Feng et al., 2009), slight displacements (Pan et al., 2011), and numerical multi-look (Bianco
et al., 2013), and the decoherence idea with the replaced laser source (Kemper et al., 2008;
Remmersmann et al., 2009; Langehanenberg et al., 2010). Nevertheless, the averaging method
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always requires capturing a large number of holograms for
suppression, while the decoherence method requires replacing
the light emitting diode (LED) as the laser source which will limit
the interference range of measurement, although those methods
may be useful in suppressing the coherent noise of phase
relatively.

In addition to optical methods, digital image processing
approaches are also helpful in solving the coherent noise
problem. The image processing methods mainly adopt the
filtering idea, according to the theory of information optics,
considering the differences between the distribution and
characteristics of object and noise in the signal domain. At
present, they are divided into the space-domain filtering-based
(Darakis and Soraghan, 2006; Shortt et al., 2006; Uzan et al.,
2013), transform-domain filtering-based (Maycock et al., 2007;
Sharma et al., 2008; Choi et al., 2010), and deep learning–based
methods (Zhang et al., 2017; Jeon et al., 2018; Wang et al., 2019;
Montresor et al., 2020; Yin et al., 2020). Especially, the deep
learning–based methods have achieved excellent performance
over the traditional algorithms as soon as they appeared (Di
et al., 2021). For example, Wang et al. discussed the suppression
and resistance of deep neural networks to additional Gaussian
and salt-and-pepper noises in phase unwrapping (Wang et al.,
2019); Montresor et al. applied a residual network (DnCNN)
(Zhang et al., 2017) to compare the generalization capability
among three models, which were trained by the natural images
with Gaussian noise, the noise-free fringe patterns with added
Gaussian noise, and the phase data with realistic speckle noise,
(Montresor et al., 2020); Yin et al. used the Noise2Noise strategy
(Lehtinen et al., 2018) to reduce the speckle noises in computer-
generated holography and digital holography without noise-free
data as the ground truth (Yin et al., 2020).

Nevertheless, the low-level speckle noise has some
statistical similarity with the regular additional noises, such
as Gaussian noise, uniform noise, and salt-and-pepper noise,
which have many high-frequency and low-correlation
characteristics. Compared with these noises, the additional
coherent phase noise may contain more medium- and low-
frequency characteristics and some non-stationary features,
such as background fluctuations, parasitic fringes, and
diffraction loops. Facing these problems, it is difficult to
play a good generalization with the network model only
trained under high-frequency noise. Moreover, most of the
existing deep learning methods are ground truth–supervised
training with a large amount of data, but it is difficult and time-
consuming to get the noise-free data or other noisy data
additionally in practice.

Is it possible to train the network with one single image? We
have tried to train a network to predict the diffraction distance
from a pair of images for autofocusing (Tang et al., 2022),
inspired by the deep image prior (Ulyanov et al., 2017). Facing
the noise suppression requirements of the single-shot phase of
digital holography, here, we propose a single-shot untrained
self-supervised network (SUSNet). The SUSNet only needs a
noisy phase for learning and optimization and can generalize
to various samples with different noise disturbances. We
describe the physical generation of coherent noise and our

denoising model in Section 2. Subsequently, we measure some
objects through a common-path off-axis digital holographic
microscope system and compare and analyze the denoising
results of various samples, including different shapes, sizes,
and phase ranges, by traditional algorithms, DnCNN and
SUSNet in Section 3.

PRINCIPLE AND METHOD

Physical Generation of Coherent Noise
In the recording stage of a digital hologram, the object wavefront
O(x, y) and the reference wavefront R(x, y) interfere on the target
plane of the camera, and the intensity distribution I(x, y) of the
obtained hologram can be expressed as

I(x, y) � ∣∣∣∣O(x, y)∣∣∣∣2 + ∣∣∣∣R(x, y)∣∣∣∣2 + O(x, y)Rp(x, y)
+ Op(x, y)R(x, y), (1)

where (x, y) is the coordinates of the recording plane and the
symbol * describes the complex conjugation. In the
reconstruction stage, the reconstructed object wavefront Ud (ξ,
η) can be expressed as follows:

Ud(ξ, η) � exp(jkd)
jλd

exp[j k
2d

(ξ2 + η2)]
· FT{R(x, y)I(x, y) exp[j k

2d
(x2 + y2)]}, (2)

where (ξ, η) is the coordinates of the object plane, d is the distance
from the recording plane to the object plane, k = 2π/λ is the wave
number, λ is the wavelength, and FT {·} is the Fourier transform
operation. Ideally, the reconstructed wavefront Ud (ξ, η) is
equivalent to the initial object wavefront Uo(ξ, η). However, a
series of sub-waves occur when the laser beam passes through (or
reflects from) some uneven or non-smooth objects and will be
scattered by dust particles in the air. These sub-waves have subtle
optical path differences, and coherent superposition occurs
between sub-waves due to the high coherence of the laser,
which is eventually recorded in the hologram. The additional
components result in random fluctuations in reconstructed
intensity and phase, called the coherent noise. In fact, the
reconstructed wavefront Ud(ξ, η) is the product of the ideal
object wavefront Uo(ξ, η) and the random complex amplitude
Un(ξ, η) of noise

Ud(ξ, η) � Uo(ξ, η) · Un(ξ, η) � Ao exp(jφo) · An exp(jφn)
� AoAn exp[j(φo + φn)], (3)

where Ao and φo are the amplitude and phase of the object
wavefront, while An and φn are those of the noisy complex
amplitude, respectively. The phase distribution of the
reconstructed wavefront is obtained as

φ(ξ, η) � arctan{Im[Ud(ξ, η)]
Re[Ud(ξ, η)]}[mod(2π)]

� φo(ξ, η) + φn(ξ, η), (4)
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where Im (·) and Re (·) take the real and imaginary parts of the
complex amplitude, respectively, and mod (·) is the remainder
function. It is obvious that the measured noisy phase φ(ξ, η)
obtained by digital holography is the sum of the true object phase
φo (ξ, η) and coherent noise term φn (ξ, η). The presence of a
coherent noise term will introduce additional phenomena, such
as random fluctuations in the phase background, parasitic
interference fringes, and dust diffraction loops, and decrease
the signal-to-noise ratio of the whole phase map. In particular,
the confidence of measurement is reduced for those objects with a
small spatial scale or phase changes due to the noise drowning.

Single-Shot Untrained Self-Supervised
Network
The traditional deep neural network is almost trained under the
supervision of ground truth, based on a large amount of standard
data. The learning process of the network can be formulized as

θp � argmin
θ

E[fθ(φ); �φ], φ′
o � fθp(φ), (5)

where φ and �θ are the input and ground truth of the network,
respectively; θ is the learnable parameter for optimization; θ* is
the suitable parameter after learning; E[·] is the denoising task
term; and φ′o is the final noise-free phase by the network fθ*(·).
In general, the ground truth can be the true object phase φo or
another measured noisy phase φ′ which consists of the same true
phase φo and another noise term φ′n, named as the Noise2Noise
strategy (Lehtinen et al., 2018; Yin et al., 2020). However, either

the true phase or another noisy phase is extremely difficult to
obtain consistently with the large demand of datasets. Moreover,
the diversity of the datasets limits the generalization capability of
the trained network model. Although the neural network can
greatly outperform the traditional algorithms on specific
problems, its application is still resistant in practice.

Here, we focus on the problems of dataset requirement,
ground truth, and generalization capability and propose the
single-shot untrained self-supervised network (SUSNet). The
learning process is changed as

θ* � argmin
θ

E[fθ(z);φ], φ′
o � fθ*(z), (6)

where the noisy phase φ is set as the ground truth to supervise the
optimization and z is a constant matrix with the same size as the
ground truth, which is set as a random uniform noise during each
training. The implementation procedure for learning and
optimization is shown in Figure 1A, and the details of the
U-shaped SUSNet structure are clearly shown in Figure 1B. The
constant noise z and the noisy phase φ are regarded as the input and
ground truth, respectively. During each step of learning, low-level
random Gaussian noise is added in the input and ground truth to
make the optimizationmore robust. It is regarded as a self-supervised
way because no additional data acquisition is required except one
noisy phase. Moreover, unlike the traditional network which needs to
be trained first for a long time before implementing, SUSNet can
directly optimize and achieve the denoising task using only one
single-shot noisy phase with a little time. Moreover, it can generalize
to arbitrary objects with targeting and adaptation for better results.

FIGURE 1 | Schematic diagram of the single-shot untrained self-supervised network (SUSNet). (A) Implementation procedure for learning and optimization. (B)
Details for the U-shaped network structure. (C) Different outputs by the SUSNet with the same learning parameters except loss function.
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The denoising task term E[·] can be quantitatively represented
by the sum of loss functions as

E[fθ(z);φ] � MSE[fθ(z),φ] + β1 · Grad[fθ(z)] + β2

· Var[fθ(z)], (7)

MSE[fθ(z),φ] �
fθ(z) − φ

22
M ·N , (8)

Grad[fθ(z)] � ∑M
1 ∑N

1

�������
G2

ξ + G2
η

√
M ·N ,{Gξ � gξpfθ(z)

Gη � gηpfθ(z) , (9)

Var[fθ(z)] � ∑M
1 ∑N

1 [fθ(z) − μ]2
M ·N , μ � ∑M

1 ∑N
1 fθ(z)

M ·N . (10)

Where MSE (·), Grad (·), and Var (·) are the mean squared error
function, tenengrad gradient function, and variance function,
respectively; μ is the mean value; M and N are the numbers of
pixels; and β1 and β2 are the hyperparameters to balance the
influence of different loss functions. In Eq. 9, Gξ and Gη are the
gradients in the horizontal and vertical directions, respectively,
which are obtained by the convolution * with Sobel operators gξ
and gη. The effect of SUSNet with different loss functions is
shown in Figure 1C. It is clear that SUSNet with MSE or MSE +
Var just generates the noisy phase without noise suppression,
while SUSNet with MSE + Grad + Var suppresses and smoothens
the background fluctuations, parasitic fringes, and other coherent
noise phenomena effectively. In brief, the MSE term allows
SUSNet to learn quickly from the noise z to the object phase
information, and the edge gradient of the output is computed and
minimized to abandon overfitting the coherent noise by the Grad
term. The Var term plays a role in balancing the smoothing effect

caused by the Grad term in the late training period. The initial
learning rate is 0.002 and subsequently reduces by one-tenth
every 100 steps with the Adam optimizer. β1 = 0.02 and β2 = -0.15
are used with possible fine-tuning. The optimization process
takes ~35 s for 400 steps with the Intel Core i7-10700K CPU
and NVIDIA GeForce RTX 1080Ti GPU.

Experimental Setup
Here, we implement the common-path off-axis digital
holographic microscope system for the hologram capture and
noisy phase acquisition, as shown in Figure 2B. A green light
beam from a diode-pumped solid-state laser (Cobolt Samba ™
50 532 nm, Linewidth <1 MHz) is collimated by a lens and is
incident to the sample. Then, the laser is magnified and
collimated again with the microscope objective (Mitutoyo M
Plan Apo ×50) and the tube lens, and a non-polarized beam
splitter (NPBS) is used to form the common-path structure. The
wave is refracted and reflected by the NPBS placed at an angle of
45° and finally divided into two parts. The camera (Basler acA
2040-90 μm) is placed on a suitable plane to capture the in-focus
image of the sample. This common-path setup benefits the
object-free region of the other half spot as the reference
wavefront, so the propagation path of the object and reference
wavefronts is the same. The common-path design can improve
the stability of the system simply and greatly but requires the
sample to be sparse and sacrifices half of the field of view (FOV)
(Zhang et al., 2021). After hologram acquisition, the double-
exposure method is implemented to compensate the system
aberration, and the measured noisy phases of different samples
are obtained by numerical reconstruction according to Eqs 1–4.

FIGURE 2 | Common-path off-axis digital holographic microscope system for hologram capture and noisy phase acquisition. NPBS: non-polarized beam splitter.
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EXPERIMENTAL RESULTS

Noise Suppression With Various Samples
Here, we measure four samples, including microlens, cell, cake
structure, and star structure, to obtain the noisy phases of various
samples. The microlens array has a maximum height of 5 μm and
a refractive index of 1.458, while the cake and star structures are
both on the benchmark quantitative phase target with the

refractive index of 1.52. The HT22 cells after overnight
culturing have a uniform refractive index of 1.375, while the
cell culture has a refractive index of 1.3377 (Lue et al., 2012). To
observe the actual denoising effect of SUSNet, we take several
traditional noise suppression algorithms for comparison,
including BM3D (Dabov et al., 2007), non-local means
filtering (NLM) (Uzan et al., 2013), median filtering (MF)
(Darakis and Soraghan, 2006), and DnCNN (Zhang et al., 2017).

FIGURE 3 |Comparison of different noise suppression algorithms on experimental holographic phases with 532-nm green laser illumination. (A)Noisy phasemaps
of microlens, cell, cake, and star samples and their denoise results with BM3D, NLM, MF, DnCNN, and SUSNet. (B) Comparison of the height distribution along the
truncated lines in (A).
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From Figure 3A, it is obvious that all noisy phases have
background fluctuations, parasitic fringes, and even some
damage defects. Intuitively, the BM3D, MF, and DnCNN can
relatively suppress the fluctuations and fringes and improve the
overall signal-to-noise ratio, but their actual effect is limited with
insufficient smoothing and fringe residue. In comparison, the
NLM is the most effective one among these noise suppression
algorithms, but there are still some gaps compared with the
SUSNet. We set several truncated lines on these phases and
converted them to the height distribution along the lines in
Figure 3B. From the truncated lines of microlens, the coherent
noise is not drastic because the phase change of microlens is much

larger than the fluctuation caused by the noise. However, these
fluctuations on the truncated lines of cell, cake, and star structures
are more pronounced and intense. In contrast, the red curves of
the SUSNet ensure a flatter curve than other algorithms with the
same fundamental shape. We select the truncated lines of the cell
to calculate the ranges (R � Max(·) −Min(·)) as the reference
values of background fluctuation. The noisy phase of the cell has
0.980 rad fluctuation, and the denoising results of BM3D, NLM,
MF, and DnCNN have 0.292, 0.342, 0.588, and 0.265 rad
fluctuations, respectively, while the noise-free phase of the
SUSNet has 0.235 rad fluctuation, which is only 23.9% of the
original range.

FIGURE 4 |Comparison of different noise suppression algorithms on experimental holographic phases with 640-nm red laser illumination. (A)Noisy phase maps of
cell, cake, and star samples, and their denoise results with BM3D, NLM, MF, DnCNN, and SUSNet. (B)Comparison of height distribution along the truncated lines in (A).
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It is clear that SUSNet can effectively generalize and suppress
noise for various samples of different shapes, sizes, and phase
variations, which has reached the generalization capability of
traditional algorithms, such as BM3D, MF, and NLM, and the
neural network model, such as DnCNN, trained by a large
amount of data. Another advantage of SUSNet is that it does
not require a prior evaluation of the noise level, while the
traditional algorithms need this prior as one hyperparameter
for adjustment. For example, the results in Figure 3A are
calculated using the standard deviation of 10 as a prior. The
DnCNN is more necessary to load the corresponding model
trained by the dataset with a similar noise level because the
traditional neural networks limited by the dataset have difficulty
generalizing to other noise levels and types beyond the training
set. In contrast, the SUSNet prioritizes the extraction of object
information while ignoring the noises during learning, even if the
noises are not all high frequencies. As for the calculation cost, the
SUSNet needs ~35 s for 400 steps of optimization, while BM3D,
NLM, MF, and DnCNN spend 0.3, 30, 0.02, 8.35 s in calculating
by CPU, respectively.

Noise Suppression at Another Level of
Noise
Here, we change a red diode laser with a wavelength of 640 nm
(Changchun New Industries, MRL-III-640-100mW, Linewidth
<4.4 GHz) as the source of the common-path off-axis digital
holographic microscope system and re-measure the previous
samples as shown in Section 3.1. The actual coherence length
of the green laser is thousands of times longer than that of the red
laser in the experiment, so the noisy phase obtained under the red
laser will have different noise levels and distributions. The noisy
phases and their denoising results of all algorithms, including
SUSNet, are shown in Figure 4A. Compared with those under
the green laser, the noises under the red laser have less parasitic
fringes and damage defects, and the background fluctuations have
lower amplitudes and higher frequencies. Intuitively, the
performance of the SUSNet is still comparable to, or even better
than that of these traditional algorithms. From Figure 4B, the effect
of background fluctuations is evident in truncated lines, even
affecting the fundamental shape. However, the red curves of the
SUSNet are the flattest and smoothest compared with other color
curves, especially in the blue truncated lines of the cell. We also
calculate the range of curves in the blue truncated lines of the cell as
the reference values of background fluctuations. The noisy phase
has 0.878 rad fluctuation, and the denoising results of BM3D,
NLM, MF, and DnCNN have 0.228, 0.300, 0.376, and 0.242 rad
fluctuations, respectively, while the noise-free phase of the SUSNet
has 0.125 rad fluctuation, which is only 14.2% of the original range.
It is obvious that the SUSNet has a very powerful smoothing ability

for fluctuations by ensuring accurate object information. However,
SUSNet still has some shortcomings to be researched and
overcome. It may not apply to the detailed structures (e.g.,
scratch and damage) as objects, and its smooth effect will bring
some impact for some small-sized objects. In general, in the case of
a single-shot noisy phase, it is surprising enough that an untrained
network can learn a noise-free phase directly from a noisy image
with the self-supervised method, not to mention that its noise
suppression performance is relatively excellent.

CONCLUSION

In summary, we propose an untrained self-supervised network
SUSNet for the coherent noise suppression of the phase map in
digital holography. The proposed SUSNet can smooth and
suppress background fluctuations, parasitic fringes, and
diffraction loops and has good generalization performance for
the samples with different shapes, sizes, and phase ranges.
Compared with the conventional algorithms, such as BM3D,
NLM, and MF, and the ground truth–supervised neural network
DnCNN, the SUSNet has the best noise suppression performance
and background smoothing effect. As a result, the SUSNet can
reduce the fluctuation range to ~20% of the original range. The
most important point is that SUSNet requires only one noisy
phase to complete the optimization and learning without the
ground truth and a large amount of data, which is the main
challenge of traditional neural networks in applications.
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