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Spectral unmixing techniques for photoacoustic images are often used to isolate signal
origins (e.g., blood, contrast agents, lipids). However, these techniques often require many
(e.g., 12–59) wavelength transmissions for optimal performance to exploit the optical
properties of different biological chromophores. Analysis of the acoustic frequency
response of photoacoustic signals has the potential to provide additional discrimination
of photoacoustic signals from different materials, with the added benefit of potentially
requiring only a few optical wavelength emissions. This study presents our initial results
testing this hypothesis in a phantom experiment, given the task of differentiating
photoacoustic signals from deoxygenated hemoglobin (Hb) and methylene blue (MB).
Coherence-based beamforming, principal component analysis, and nearest neighbor
classification were employed to determine ground-truth labels, perform feature
extraction, and classify image contents, respectively. The mean ± one standard
deviation of classification accuracy was increased from 0.65 ± 0.16 to 0.88 ± 0.17
when increasing the number of wavelength emissions from one to two, respectively. When
using an optimal laser wavelength pair of 710–870 nm, the sensitivity and specificity of
detecting MB over Hb were 1.00 and 1.00, respectively. Results are highly promising for
the differentiation of photoacoustic-sensitive materials with comparable performance to
that achieved with more conventional multispectral laser wavelength approaches.

Keywords: photoacoustic imaging, spectral unmixing, principal component analyses (PCA), frequency analyis,
nearest neighbor classification (NNC)

1 INTRODUCTION

In photoacoustic imaging, spectral unmixing techniques (Glatz et al., 2011) are often used to isolate
signal origins in the fields of oxymetry (Tzoumas and Ntziachristos, 2017; Gröhl et al., 2019; Gröhl
et al., 2021), reporter genes (Weissleder and Ntziachristos, 2003; Brunker et al., 2017), and molecular
details (Weber et al., 2016). Clinical applications include detection of tumors (Dahlstrand et al., 2020)
and discriminating among critical chromophores (e.g., blood, contrast agents, lipids) during surgical
interventions (Arabul et al., 2019).

Existing spectral unmixing techniques generally consist of generating an overdetermined system
of equations (i.e., more equations than variables) from the signal response of each chromophore at
different laser wavelengths, which can then be solved with an optimization technique based on the
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known optical absorption coefficient for each chromophore at
each wavelength. For example, Xia et al. (2016) used a pseudo
inverse approach to differentiate photoacoustic responses
originating from water, blood, and lipids. Ding et al. (2017)
investigated the effect of alternative versions with non-
negativity constraints to determine the concentration levels of
contrast agent injected in in vivo mice. More recently, Grasso
et al. (2020) proposed an iterative approach to discriminate blood
oxygenation levels by solving the system of equations with a non-
negative matrix factorization, which compensates for the ill-
conditioned invertibility of the absorption coefficient matrix.

Despite their effectiveness, these spectral unmixing techniques
are typically not feasible for most real-time applications because
of the lengthy acquisition times associated with transmitting
multiple laser wavelengths to achieve a single estimate.
Traditional spectral unmixing techniques also do not typically
consider differences in acoustic spectra, which has the potential to
provide additional information for differentiation between
biomarkers or different soft tissues.

An alternative to optimization techniques is to consider an
analysis of the acoustic spectra using spectral parameters.
Initially, spectral parameters obtained from photoacoustic
signals were used for characterization of tissues. For example,
Kumon et al. (2011) conducted an in vivo study to detect prostate
adenocarcinomas using the intercept, slope, and mid-band fit of
the frequency response of photoacoustic RF signals, where the use
of mid-band fit resulted in statistically significant differentiation
between pathological and healthy tissue (p < 0.01). Similarly,
Strohm et al. (2013) used both the slope of a linear fit and the
spectral peak to discriminate between concentrations of red blood
cells. Later, Wang et al. (2015) used the slope parameter to
accurately differentiate (p < 0.01) the photoacoustic signals
from particles of different diameters in phantom experiments.
However, by reducing the dimensionality of the feature space,
spectral parameter methods provide a limited snapshot of
frequency characteristics. In addition, these methods use a
calibration stage from a reference spectra whose source varies
among studies (e.g., hair fibers (Kumon et al., 2011), stainless steel
blocks (Cao et al., 2017), gold-films (Strohm et al., 2013), and
black-dyed polymer micro-spheres (Wang et al., 2015)), which
limits the repeatability of classification performance for in vivo
applications.

In contrast to spectral unmixing methods, two distinct
approaches (i.e., F-mode imaging (Moore et al., 2019) and a
method proposed by Cao et al. (Cao et al., 2017)) utilize the
complete acoustic spectra for differentiation of photoacoustic
targets. F-mode imaging (Moore et al., 2019) consists of dividing
the spectra with filter banks and displaying a series of images of a
specific frequency content, which are later combined with a label-
free photoacoustic microscopy (PAM) map to selectively enhance
the visualization of organelles. The method proposed by Cao et al.
(2017) uses the acoustic spectra filtered with the frequency
response of the ultrasound transducer to perform k-means
clustering of photoacoustic signals originating from two
different photoacoustic-sensitive materials. These two
approaches share two limitations. First, in contrast to spectral
unmixing techniques, labelled regions for each desired

chromophore are required. Second, these labelled regions rely
on a priori information about the location of materials to be
differentiated. These limitations are not ideal for image guidance
during surgical interventions and reduce overall classification
performance.

To overcome these challenges with traditional spectral
unmixing (Xia et al., 2016; Grasso et al., 2020), F-mode
(Moore et al., 2019) and k-means clustering (Cao et al., 2017),
we propose a novel, more general acoustic frequency-based
analysis method to discriminate photoacoustic responses from
different materials. The proposed method does not depend on a
reference spectrum (as opposed to k-means clustering (Cao et al.,
2017)). In addition, the proposed method applies a classification
framework using training and testing sets containing known
photoacoustic-sensitive materials (i.e., no a priori signal
location information is required, unlike F-mode (Moore et al.,
2019) and traditional spectral unmixing techniques (Xia et al.,
2016; Grasso et al., 2020)). We hypothesize that our proposed
method, which relies on an analysis of the acoustic frequency
response from a single- or dual-wavelength emission, is sufficient
to differentiate biomarkers and has the potential to increase
possible frame rates for real-time implementation in the
operating room.

To test our hypothesis, a frequency analysis was applied to the
received photoacoustic signals from two chromophores—blood
and methylene blue. The necessity to differentiate these two
chromophores is motivated by recently proposed
photoacoustic-guided hysterectomy techniques that require
differentiation of uterine arteries from ureters containing
methylene blue (Wiacek et al., 2020). Although the focus of
this paper is the distinction of these two chromophores, the
proposed photoacoustic differentiation is applicable to other
chromophores of interest during a surgical procedure.

The remainder of this paper is organized as follows. Section 2
details acquisition, segmentation, and classification methods to
identify photoacoustic signals originating from either methylene
blue or blood, followed by summaries of existing methods used to
benchmark the performance of our approach on the same
datasets. Section 3 presents the quantitative and qualitative
comparison of the classification performance between the
proposed and the existing methods. Section 4 discusses
insights from these results and Section 5 summarizes our
conclusions.

2 METHOD

2.1 Experimental Setup
We designed a phantom that mimics the clinical setup of
photoacoustic catheter-based interventions, where an optical
fiber is attached to a cardiac catheter as it is being inserted
through a major vein (Graham et al., 2020a). Another
possibility is that a contrast agent may be injected into this
vein through the same catheter. Based on these details,
Figure 1 shows the experimental setup used to differentiate
the two photoacoustic-sensitive materials of hemoglobin and
methylene blue discussed throughout this manuscript. A
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29 cm × 18 cm × 10 cm (length × width × height) polyvinyl
chloride-plastisol (PVCP) phantom was fabricated to contain ten
cylindrical, hollow chambers. Each chamber had a diameter of
15 mm and a depth of 55 mm. Two of the chambers were filled
with either a 100 μM aqueous solution of methylene blue (MB,
ID: S25431A, Fisher Scientific, Waltham, MA) or human blood
(Hb), and a 1-mm-diameter optical fiber was inserted in each of
the filled chambers. These fibers originated from a bifurcated fiber
bundle that was connected to a Phocus Mobile laser (Opotek Inc.,
Carlsbad, CA, United States), transmitting laser light with
wavelengths ranging from 690 to 950 nm in 10 nm increments.

The tip of each optical fiber was positioned approximately 15mm
below the top surface of the chambers, and light was emitted from
each fiber tip. By transmitting light locally into each chamber and
not globally illuminating multiple chambers simultaneously, we
minimized (or systematically controlled) fluence differences and
the related amplitude of responses to the optical excitation. The
generated photoacoustic signals were received by an Alpinion L3-8
linear array ultrasound probe (center frequency of 5.5MHz and
pitch of 0.3 mm) that was positioned on the lateral wall of the
phantom, approximately 40mm away from the hollow chamber
cross section, as shown in Figure 1.

To evaluate the reproducibility of our proposed method, three
datasets were acquired (i.e., Datasets 1, 2, and 3). Dataset 1 was
acquired first followed by Dataset 2 (acquired 10 h later), followed
by Dataset 3 (acquired 13 h after Dataset 2). The Hb samples were
stored with interim refrigeration at a temperature of 4°C. The
fluence emitted from each fiber tip measured 1.0 mJ.

To characterize the effects of unequal fluence emitted from
each fiber tip, three additional datasets were acquired with fluence

pairs in the MB and Hb chambers recorded as 0.4 and 1.8 mJ, 1.0
and 1.8 mJ, and 0.4 and 1.0 mJ, respectively. These three datasets
were labeled as “Fluence Pair 1”, “Fluence Pair 2,” and “Fluence
Pair 3,” respectively. Each fluence pair dataset comprised three
subsets, acquired with the same time intervals described in the
preceding paragraph for Datasets 1–3.

To evaluate the performance of our proposed method in more
challenging environments, particularly in the presence of an
aberrating media composed of mostly fatty tissue, three
additional datasets were acquired with 2-, 5-, and 7 mm-thick
layers of turkey bacon placed between the phantom and the
ultrasound probe. This dataset was acquired immediately prior to
Dataset 2, thus it is expected to contain similar Hb degradation
to that of Dataset 2. The added tissue layers can be considered to
represent the fat that is commonly located within skin and within
the subcutaneous region of healthy human tissue (Hinkelman
et al., 1998). The fluence emitted from each fiber tip measured
1.0 mJ.

2.2 Ground-Truth Labelling
Figure 2 presents an overview of the proposed framework for
differentiating photoacoustic signals sources. For each laser
wavelength emission, 10 acquisitions of raw radiofrequency
data were acquired. Photoacoustic images were then generated
using conventional delay-and-sum (DAS) beamforming. Two
regions of interest (ROIs) were automatically defined to
separate photoacoustic signals generated from MB and Hb,
located on the right and the left sides of the photoacoustic
images, respectively. These ground-truth labels were
automatically segmented using binary-thresholding of locally
weighted short-lag spatial coherence (LW-SLSC) images
(Gonzalez and Bell, 2018), with a regularization factor of α �
1 and an axial correlation kernel of 0.56 mm. Binary
segmentation was performed using a −10 dB threshold mask
applied to the LW-SLSC images. A single binary mask was
computed per laser wavelength emission, which was the result
of the logical inclusive “OR” operation of the 10 masks obtained
from the 10 frames. This segmentation resulted in two distinct
signals on the left and right sides of the mask, which were
assigned the ground-truth labels of MB and Hb, respectively.
For each image, only those pixels included in the coherence masks
were used for feature extraction, training, and classification.

2.3 Atlas of Photoacoustic-Sensitive
Materials
A frequency analysis of the photoacoustic pressure waves was
performed. For each material (i.e., MB and Hb), the normalized
power spectra were calculated from a sliding window of axial
kernels of in-phase and quadrature (IQ) data. Principal
component analysis (PCA) was applied to the power spectra
of photoacoustic signals acquired at each laser wavelength in
order to reduce the complexity of the feature space. When using
a training set, the principal components were stored in an
“atlas” describing each material. Finally, when evaluating the
spectra of a test signal, nearest neighbor (k-NN) classification
was applied with the L2-norm as the measure of distance

FIGURE 1 | Acquisition setup to test the differentiation of methylene blue
(MB) from blood (Hb). These photoacoustic-sensitive materials fill the hollow
chambers of a custom polyvinyl chloride plastisol phantom.
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between the PCA of the test spectra and the PCA of the spectra
within the atlas.

Datasets 1–3 (described in Section 2.1) were utilized to
compare the performance of the proposed atlas-based method
with the performance of the existing classification methods
described in Section 2.4. Because these atlas methods require
a training set in addition to a test set, Dataset 1 was used for
training the atlas methods when testing with Datasets 2 and 3. In
addition, to include performance when testing with Dataset 1,
Dataset 2 was arbitrarily chosen for training in this scenario.

Figure 3 shows two proposed spectral analyses using either
one or two wavelengths. In the dual-wavelength analysis, the
magnitude of the IQ spectra of the photoacoustic response from a
region of interest using two different wavelengths were
concatenated, resulting in a region of interest producing a
spectrum of size [1 × N] from one wavelength, where N is the
number of samples of the spectrum, producing a concatenated
spectra P of size [1 × 2N]. This concatenated spectrum was then
normalized to its maximum value. No concatenation was
required for the single-wavelength analysis.

The initial parameters of the single- and dual-wavelength atlas
method used in our previous publication (Gonzalez and Bell,
2020) were modified to maximize the sensitivity, specificity, and
accuracy of our approach (see Section 2.6 for metric definitions).
In particular, the parameters for in-phase quadrature
demodulation, PCA, and k-NN were optimized through an
iterative search using laser wavelengths ranging from 650 to
950 nm (see Section 1 of the Supplementary Material for
more details). The optimized parameters were utilized for the
proposed spectral analyses throughout the manuscript.

2.4 Comparison With Previous Methods
2.4.1 Spectral Unmixing Techniques
Spectral unmixing techniques solve the source component
reconstruction C of a scanned region by using the
multispectral measurement matrix M and an a priori
absorption coefficient matrix S of the number of
chromophores present in the image. A conventional spectral
unmixing solution is the least square method presented below
(Glatz et al., 2011; Taruttis et al., 2014; Xia et al., 2016):

FIGURE 2 |Overview of proposed method to differentiate photoacoustic signal sources using acoustic frequency information. The blue and red coherence masks
show regions of interest for methylene blue (MB) and blood (Hb), respectively. These regions are known for the training set and need to be correctly classified through
atlas comparisons during testing. Spectra are asymmetric with respect to frequency because baseband signals were analyzed after IQ demodulation.

FIGURE 3 | Two proposed spectral analyses for characterization based on single (top) and dual (bottom) wavelength emissions.
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C � MS+, C ∈ Rn×k, M ∈ Rn×m, S+ ∈ Rm×k, (1)

where C segments k number of chromophores over a grid of n
pixels,m is the number of laser wavelength acquisitions, and S+ is
the Moore-Penrose pseudoinverse of the absorption coefficient
matrix S (i.e., S+ � ST (SST)−1). A more robust approach proposed
by Grasso et al. (2020) used an iterative non-negative matrix
factorization (NNMF) to adjust the initial S and further reduce
residual errors:

[C, Ŝ] � min
C,S

1
2
‖M − CS‖22, S ∈ Rk×m, Cij ≥ 0, Sij ≥ 0 (2)

S(p + 1) � S(p) ⊗ WTM( )
CTCS( ) , C(p + 1) � C(p) ⊗ MST( )

CSST( )
where ⊗ denotes multiplication. The multiplication and division
steps are considered element-wise operations and the stopping
criteria is defined by an improvement tolerance η. Equations 1, 2
are considered overdetermined systems (i.e., m > k). Both
methods were applied to DAS images of the testing data
described in Section 2.2 and Figure 3 for two chromophores
(i.e., k � 2). However, because there is no report of absorption
coefficients for methylene blue at optical wavelengths greater than
800 nm, only 12 of the 27 wavelength acquisitions were used for
the construction of the matrix M (i.e., m � 12). In addition, each
equation was regularized by modifying the initial S to:

S′ � S + cA, (3)

where A is a matrix of ones, and c is an additive coefficient that
was varied from 10−1 to 103 cm−1 in multiplicative increments of
100.188 (i.e., c[n] � 10−1 × 100.188n).

2.4.2 F-Mode Imaging
Using the testing data, non-normalized DAS images were
generated without log-compression and segmented with the
coherence mask described in Section 2.2. Log-compressed
power spectra were calculated from a sliding window of axial
kernels of radiofrequency signals, each 3.85 mm in length. For
each spectrum, the integrated frequency content was estimated
from four sectors of the frequency domain of 0.2 MHz width and
center frequencies of 1, 2, 3, and 4 MHz. Then, for each
segmented DAS image, k-means clustering was applied to
separate MB and Hb axial kernels. This process was repeated
for each single-wavelength acquisition and each frame. Given that
the labelling provided by k-mean clustering is arbitrary for each
instance of classification, the f value (see Eq. 7) was computed for
both original labels (i.e., “1” � Hb and “2” � MB) and inverted
labels (i.e., “1” �MB and “2” � Hb) for each testing frame. Then,
the labelling convention that provided the highest f value was
chosen as the final clustering result.

2.4.3 Acoustic-Based Clustering With Calibrated
Spectra
To perform the acoustic-based clustering method reported by
Cao et al. (Cao et al., 2017), the spectra of each radio-frequency
axial kernel were first calibrated to a reference spectrum that
models the characteristic frequency response of the ultrasound

system. The experiment for determining the optimal reference
spectra is detailed in Section 2 of the Supplementary Material.
The generation of the log spectra was similar to that of F-mode
imaging. However, each spectrum was then calibrated over the
reference spectrum and then further normalized at 0 dB, as
specified in (Cao et al., 2017). Finally, k-means clustering was
conducted using the same labelling criteria as described in
Section 2.4.2, and the process was repeated for each single-
wavelength acquisition and each frame. For the remainder of
this manuscript, we refer to this acoustic-based clustering
method as the k-means clustering method.

2.5 Evaluation of Laser Wavelength and
Hyperparameters
Table 1 summarizes the range of light-emission wavelengths used
for each method as well as the corresponding hyperparameter to
further improve the robustness of the classification performance.
The additive coefficient c represents a trade off between
classification performance and reproducibility for the spectral
unmixing methods, as the condition number of matrix S′
increases when c increases, and the system becomes more ill-
posed. The variation of the reference spectra evaluates the
consistency of the classification results for the k-means
clustering method when considering different materials and
acquisition setups.

2.6 Classification Performance Metrics
MB and Hb were considered to be the positive and negative
samples, respectively, when calculating sensitivity, specificity, and
accuracy metrics of classification performance. Sensitivity or true
positive rate (TPR) measures the fraction of pixels that were
correctly classified as methylene blue:

Sensitivity � TPR � TMB

TMB + FHb
, (4)

where TMB and FHb are the number of true MB and false Hb
pixels, respectively. Similarly, specificity or true negative rate
(TNR) measures the fraction of pixels that are correctly
classified as deoxygenated blood:

Specificity � TNR � THb

THb + FMB
, (5)

where THb and FMB are the number of true Hb and false MB
pixels, respectively. The combination of sensitivity and specificity
is described by the accuracy metric, defined as:

TABLE 1 | Wavelengths and hyperparameters evaluated.

Method Wavelengths evaluated Hyperparameter

Spectral unmixing 690–800 nm c

Spectral unmixing + NNMF 690–800 nm c

F-mode imaging 690–950 nm -
k-means clustering 690–950 nm reference spectra
Single-wavelength atlas 690–950 nm -
Dual-wavelength atlas 690–950 nm -
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Accuracy � ACC � TMB + THb

TMB + THb + FMB + FHb
(6)

To determine the optimal parameter for each method, the
three quantitative metrics were considered simultaneously, using
the optimization expression:

λ̂ � max
λ

f(λ), f(λ) � 1
2

TPR(λ) + TNR(λ)
2

+ ACC(λ)( ), (7)

where λ is either: (1) a single wavelength for the single-wavelength
atlas method, k-means clustering or F-mode imaging method; (2) a
pair of wavelengths for the dual-wavelength atlas method; or (3)
equivalent to the additive coefficient c for the spectral unmixing
methods, while λ̂ is the optimal λ. Given that a large number of λ
values would result in non-optimal or poor classification
performance for each method, a subset of five best cases for each
classification method was defined for a fair comparison, with the
term “case” referring to either a wavelength, wavelength pair, or c.
For the experiment of assessing reproducibility, we first averaged the
f values among the 10 frames for each wavelength, wavelength pair,
or c. Then, the first 5 cases with the highest average f were selected,
and the distributionwas obtained from the accuracy values of each of
these cases × 10 frames per case. For the experiment of
characterizing the effects of unequal fluence emitted from each
fiber tip, we first averaged the f values among the 10 frames and
among the datasets for each wavelength, wavelength pair, or c. Then,

the first 5 cases with the highest average f were selected, and the
distribution was obtained from the accuracy values of each of these
cases × 10 frames × 3 datasets per case.

Finally, a pair-wise t-test was used to evaluate the statistical
significance (p < 0.001) of the difference between MB and Hb
spectra obtained from either the single-wavelength atlas or dual-
wavelength atlas method. This statistical analysis used 56,800
spectral samples of MB and 43,060 spectral samples of Hb for the
wavelength pair of 710–870 nm (i.e., one of the wavelength pairs
that yielded a classification accuracy of 1.00).

3 RESULTS

3.1 Image and Segmentation Examples
The left column of Figure 4 shows example LW-SLSC
photoacoustic images co-registered to a DAS ultrasound image
obtained with the laser wavelength indicated on each image. The
right column of Figure 4 shows the corresponding segmentation
mask, where the blue and red regions represent the ground truth
labeled pixels for MB and Hb, respectively. Figure 4D shows
example compound masks generated by the “OR” logical
operation of a range of masks obtained from 690 to 800 nm
wavelengths. Figure 4H shows example compound masks
generated by the “OR” logical operation from a mask pair
obtained with 690 and 920 nm wavelengths. Note that the

FIGURE 4 | Locally-weighted short-lag spatial coherence (LW-SLSC) photoacoustic images overlaid on DAS ultrasound images of MB and Hb, obtained with a
laser wavelength emission of (A) 710 nm (C), 800 nm (E) 890 nm, and (G) 920 nm. Segmented masks for MB and Hb after a -10 dB threshold was applied to the LW-
SLSC photoacoustic images with single-wavelength masks shown for wavelengths of (B) 710 nm and (F) 890 nm, (D) the compound mask from “OR” logical operation
on masks generated from 690 to 800 nm, and (H) the resulting mask from the “OR” logical operation of the 690 and 920 nm masks.

Frontiers in Photonics | www.frontiersin.org October 2021 | Volume 2 | Article 7166566

Gonzalez et al. Acoustic Frequency-Based Approach for Identification

https://www.frontiersin.org/journals/photonics
www.frontiersin.org
https://www.frontiersin.org/journals/photonics#articles


varying areas of the LW-SLSC signals and corresponding mask
sizes for the MB and Hb regions obtained with different laser
wavelength emissions are responsible for different proportions
of MB-to-Hb kernel sizes when calculating the quantitative
metrics.

Figure 5 shows segmentation examples of the best results
among the three datasets for each of the classification
approaches after estimating the corresponding optimal
parameter, using the optimization expression f defined by
Eq. 7. The blue and red regions represent correctly classified
pixels of MB and Hb, respectively, while the yellow regions
represent misclassified pixels. As observed previously in
Figure 4, the changes in region size among the approaches
are caused by the different LW-SLSC coherence masks that were
computed for either single, pairs, or groups of wavelengths,
depending on the requirements of each classification method.
When qualitatively comparing the classified regions, the dual-
wavelength atlas method showed the best classification
performance, as the majority of each MB and Hb region
were labelled correctly (i.e., no yellow regions are shown).
Similar performance was observed for the spectral unmixing
and spectral unmixing + NNMF, which were generated with an
additive coefficient c of 19.31 cm−1 and 9.10 cm−1,
respectively. Conversely, F-mode and k-means clustering
could not properly detect signals from MB and Hb,
respectively, showing a sensitivity and specificity of 0.76 and
0.79, respectively. A summary of the sensitivity, specificity, and
accuracy obtained with the optimal parameter for each method
is shown in Table 2.

3.2 Comparison of Sensitivity, Specificity,
and Accuracy
Figure 6 shows the combined results of sensitivity, specificity, and
accuracy obtained from Datasets 1–3, using single-wavelength
atlas, dual-wavelength atlas, spectral unmixing, F-mode, and
k-means clustering methods. Spectral unmixing and spectral
unmixing + NNMF were computed with c � 6.23 cm−1 and
c � 5.18 cm−1, respectively. Defining an accuracy ≥0.80 as good
classification, spectral unmixing and spectral unmixing +
NNMF showed a good mean accuracy of 0.85 and 0.87,
respectively, among the three datasets. Similarly, the dual-
wavelength atlas method showed mean accuracy values
greater than 0.85 for wavelength pairs of 690 and 810 nm
through 840 and 870 nm, as shown in the green-colored
middle region of the triangles showed in Figure 6. In
contrast, the maximum values of mean accuracy for the single-
wavelength atlas method, F-mode imaging, and k-means clustering
among the three datasets were 0.77, 0.74, and 0.72 for wavelengths
of 890 nm, 750 nm, and 880 nm, respectively. Thesemean accuracy
values were lower than the minimum accuracy required for good
classification performance, suggesting that only the dual-
wavelength atlas method and the spectral unmixing methods
showed overall consistent classification performance.

As it is equally important to identify both MB and Hb regions,
a high sensitivity and a low specificity pair, or vice-versa,
corresponds in practice to a poor classification performance.
Therefore, the totality of graphs shown in Figure 6 must be
analyzed from this perspective. For some accuracy regions that
are shown in blue (i.e., adequate classification), the same regions
are colored in red (i.e., poor classification) for either the
corresponding specificity or sensitivity or colored in green
(i.e., good classification). For example, the single-wavelength
atlas method showed a mean ± one standard deviation
accuracy of 0.70 ± 0.06 over the wavelength range of
710–740 nm, while showing a sensitivity and specificity of
0.78 ± 0.08 and 0.40 ± 0.14, respectively, over the same
wavelength range. Similarly, the k-means clustering method
showed a mean ± one standard deviation sensitivity of 0.89 ±
0.11 over the wavelength range of 860–950 nm, while showing

FIGURE 5 | Example of segmented regions of MB and Hb using different classification approaches. The blue and red regions represent correctly classified pixels of
MB and Hb, respectively, while the yellow regions represent misclassified pixels. Each image shows the frame of the dataset generated with the wavelength emission that
achieved the highest accuracy.

TABLE 2 | Best classification result achieved with each method. Bold font
indicates the maximum value in each column.

Method Sensitivity Specificity Accuracy

Spectral unmixing 0.98 0.98 0.98
Spectral unmixing + NNMF 0.95 0.99 0.97
F-mode imaging 0.76 0.99 0.84
k-means clustering 0.92 0.79 0.85
Single-wavelength atlas 0.93 0.82 0.91
Dual-wavelength atlas 1.00 1.00 1.00
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a specificity and accuracy of 0.63 ± 0.05 and 0.67 ± 0.04, respectively,
over the same wavelength range. These results further support the
importance of evaluating sensitivity, specificity, and accuracy
simultaneously, as described by Eq. 7, to determine the overall

classification performance of each method. The mean ± one
standard deviation for this combination of accuracy, sensitivity,
and specificity (i.e., f in Eq. 7), over the same wavelength ranges
described above for the single-wavelength atlas and the k-means
clustering methods were 0.65 ± 0.06 and 0.72 ± 0.04, respectively.

Table 3 andTable 4 present summaries of quantitative metrics
from the average among wavelengths and the average among the
best 5 cases for each classification method, respectively. The
quantitative results follow the same trend as those described
for the qualitative results, where the dual-wavelength atlas
method achieved the highest sensitivity, specificity, and
accuracy among the other methods. Similarly, the method
with the second highest average in the best-5-cases evaluation
was the spectral unmixing + NNMF.

3.3 Spectra Examples and Multiple Possible
Dual-Wavelength Combinations
Figure 7A shows a representative example of spectra from the
dual-wavelength atlas method and the equivalent stacked spectra
from the single-wavelength atlas method. This display method
was chosen to demonstrate the improvement in classification
performance when using the dual-wavelength atlas method. For
these examples, the testing spectra of 710 and 870 nm
wavelengths were used, as this wavelength pair was one of
eighty nine to achieve a specificity and sensitivity of 1.00 when
using the dual-wavelength atlas method. The mean and standard
deviation of the spectra were calculated from the spectra of all
segmented pixels of MB and Hb data acquired with 710 nm or
870 nm wavelength for each atlas method. Error bars show one

FIGURE 6 | Overall classification results with dual-wavelength atlas, single-wavelength atlas, spectral unmixing methods, F-mode, and k-means clustering using
Dataset 1, 2, and 3. Top, middle and bottom rows show the sensitivity, specificity and accuracy of classification, respectively. The left and right columns show the mean
and standard deviation over 10 frames, respectively. For each image, the first 2 vertical stripes counting from the left represents the results for spectral unmixing and spectral
unmixing + NNMF, respectively, which have a single value from 690 to 800 nm wavelengths. The next three stripes represent the results for single-wavelength atlas,
F-mode, and k-means clustering, respectively, as a function of wavelength emission. Finally, the triangle represents the results of the dual-wavelength atlas for each pair of
wavelength combination.

TABLE 3 | Mean ± standard deviation of the sensitivity, specificity, and accuracy
measured across the wavelengths investigated for each method. Bold font
indicates the maximum value in each column.

Method Sensitivity Specificity Accuracy

Spectral unmixinga 0.89 ± 0.12 0.81 ± 0.16 0.86 ± 0.13
Spectral unmixing + NNMFa 0.83 ± 0.19 0.86 ± 0.16 0.85 ± 0.09
F-mode imaging 0.63 ± 0.17 0.67 ± 0.21 0.62 ± 0.09
k-means clustering 0.70 ± 0.21 0.67 ± 0.15 0.64 ± 0.08
Single-wavelength atlas 0.64 ± 0.31 0.57 ± 0.28 0.65 ± 0.16
Dual-wavelength atlas 0.88 ± 0.23 0.87 ± 0.21 0.88 ± 0.17

aMeans and standard deviations were measured across the range of γ values reported in
Section 2.4.1.

TABLE 4 | Average among best five cases for each methoda. Bold font indicates
the maximum value in each column.

Method Sensitivity Specificity Accuracy

Spectral unmixing 0.91 ± 0.05 0.91 ± 0.03 0.91 ± 0.03
Spectral unmixing + NNMF 0.94 ± 0.02 0.88 ± 0.09 0.91 ± 0.05
F-mode imaging 0.63 ± 0.07 0.94 ± 0.11 0.70 ± 0.08
k-means clustering 0.85 ± 0.14 0.66 ± 0.06 0.69 ± 0.05
Single-wavelength atlas 0.64 ± 0.29 0.65 ± 0.23 0.71 ± 0.12
Dual-wavelength atlas 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

aonly one best case per wavelength, wavelength pair, or γ.
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standard deviation of the combined results from all kernels within
selected ROIs, from 10 image acquisition frames, and from the
three datasets. The overlapping spectra with the single-
wavelength atlas method applied to either 710 nm or 870 nm
wavelength acquisitions (top of Figure 7A) resulted in no
statistically significant differences between the amplitude of
the spectra for MB and Hb (p > 0.001), while Hb and MB
differentiation was achieved with statistical significance
(p < 0.001) when using the dual-wavelength atlas method
(bottom of Figure 7A). This example illustrates that the enhanced
differentiation achieved with the dual-wavelength atlas method
can be attributed to the ability to differentiate the two spectra.

Figure 7B shows a comparative evaluation of sensitivity and
specificity between the atlas methods in an ROC-curve format. This
display is included to support the observation that the dual-
wavelength atlas method achieves high classification performance
from a range of wavelengths combinations, whereas the other

methods achieve their highest classification performance from
just a few cases, based on the results shown in Figure 6. For
example, when a threshold region of 0.80 sensitivity and 0.80
specificity is defined as the criterion for adequate classification,
Figure 7B demonstrates that 241 wavelength pairs and 0 single
wavelengths met this criterion for the dual- and single-wavelength
atlas methods, respectively. Therefore, the dual-wavelength atlas
method provides a flexible range of light emission wavelength
pairs such that the ideal pair can be chosen to differentiate
between the same chromophores across multiple imaging
environments. This flexibility is necessary when an unwanted
chromophore produces a considerable photoacoustic response at
the originally selected wavelength pair.

3.4 Dataset Sensitivity
Figure 8 shows the accuracy results of the spectral unmixing
techniques when tested on Datasets 1–3 while varying the additive

FIGURE 7 | (A) Examples of stacked spectra of in-phase quadrature data from MB and Hb using (top) single-wavelength atlas method and (bottom) dual-
wavelength atlas method. The spectra show combined results obtained with 710 and 870 nm laser wavelength. (B) Comparison of sensitivity and 1-specificity from
single- and dual-wavelengths atlas method using a one frame per wavelength and wavelength pair, respectively. The threshold regions delimits cases with both
sensitivity and specificity greater than 0.8, which represents a good classification performance.

FIGURE 8 | Classification accuracy of the spectral unmixing techniques for three testing datasets while varying the additive coefficient c.
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coefficient c in Eq. 3. The dashed line represents the optimal c that
achieved the highest average f(c) value among the three
datasets. When calculating the optimal c1, c2, and c3 for
Datasets 1, 2, and 3, respectively, the absolute difference
between the optimal c and each c1, c2, and c3 in the
conventional spectral unmixing method was 7.01 cm−1,
21.87 cm−1, and 2.70 cm−1, respectively, resulting in a standard
deviation of 12.35 cm−1. In contrast, the difference between the
optimal c and the individual c1, c2, and c3 in spectral unmixing +
NNMF resulted in a standard deviation of 1.37 cm−1. This c
difference suggests that the optimal c of spectral unmixing +
NNMF is less sensitive to the testing data than that of conventional
spectral unmixing. However, when evaluating the standard
deviation of the classification accuracy at the optimal c, spectral
unmixing +NNMF produced standard deviations of 6.47%, 0.54%,
and 0.34% for Datasets 1, 2, and 3, respectively, while conventional
spectral unmixing produced standard deviations of 1.93%, 0.47%,
and 0.48% for Datasets 1, 2, and 3, respectively. Thus, the spectral
unmixing techniques did not demonstrate accuracy robustness
across different datasets, and this detail must be considered in
tandem with the c differences.

Figure 9A shows a summary of the accuracy results obtained
with the spectral unmixing, single- and dual-wavelength atlas,
F-mode, and k-means clustering methods using the full range of
wavelengths and additive coefficient c. When comparing the
distributions among Datasets 1–3, the maximum difference in
median accuracy measured for each dataset when applying
spectral unmixing, spectral unmixing + NNMF, F-mode,
k-means clustering, and the single-wavelength atlas methods
was 15.8%, 21.2%, 6.7%, 4.3%, and 25.5%, respectively, while
the dual-wavelength atlas method showed a maximum difference
in median accuracy of 1.4%. While these results display wide
variations due to the inclusion of a wide range of wavelengths,

wavelength pairs, or additive coefficient c, only specific values can
be selected in advance and later used in clinical practice.

Therefore, Figure 9B shows a subset of accuracy distributions
obtained from the best 5 cases among the datasets, as defined in
Section 2.6. The dual-wavelength atlas method showed a
maximum difference in median accuracy between any two
datasets of 0%, which was significantly lower than that
obtained from spectral unmixing (7.8%), spectral unmixing +
NNMF (9.5%), F-mode (15.6%), k-means clustering (10.1%), and
the single-wavelength atlas method (3.3%). In addition, when
evaluating the dual-wavelength atlas method on Datasets 1-3, the
710–870 nm wavelength pair was present among the five pairs of
wavelengths with the highest accuracy, with sensitivity,
specificity, and accuracy of 1.00, 1.00, and 1.00 respectively.
Therefore, the dual-wavelength atlas method implemented
with this wavelength pair shows higher reproducibility of
classification performance than spectral unmixing and other
acoustic-based methods.

3.5 Sensitivity Against Fluence Changes
Figure 10 shows the classification accuracy of each dataset
acquired with varying fluence pairs. The best 5 cases of
wavelengths and additive coefficient c, as defined in Section
2.6. For each of the five existing methods, the maximum
difference between the median accuracy values reported for
any two fluence pairs (including the “Equal Fluence” Pair) was
3.3% for spectral unmixing, 3.8% for spectral unmixing + NNMF,
18.4% for F-mode, 12.9% for k-means clustering, and 11.9% for
the single-wavelength atlas method. For the dual-wavelength atlas
method, the maximum difference between the median accuracy
values reported for any two fluence pairs was 0.1%, which is lower
than the values reported for the five existing methods. These
results demonstrate that the dual-wavelength atlas method is
robust against changes in fluence levels when compared to
acoustic-based methods that do not apply a normalization step
such as F-mode.

3.6 Performance With Aberrating Media
Figure 11 shows the classification accuracy from the dual-
wavelength atlas method tested on the datasets obtained with
added tissue layers. The five wavelength pairs are sorted by the
median accuracy obtained in the absence of a layer (i.e., in

FIGURE 9 | Classification accuracy of each method when tested on
Datasets 1–3, evaluated with (A) the full range of wavelengths and additive
coefficient c (with each distribution obtained from 270–3,510 samples, i.e., 10
acquired frames × 27–351 wavelengths, wavelength pairs, or c) and (B)
the best 5 cases of wavelengths and c among the datasets (with each
distribution obtained from 50 samples, i.e., 10 frames × 5 cases). SU �
Spectral Unmixing, NNMF � Non-negative Matrix Factorization.

FIGURE 10 | Classification accuracy of each method when tested with
four fluence pairs, evaluated using the best 5 cases of wavelengths and
additive coefficient c among the datasets. Each distribution was obtained from
150 samples (10 frames × 5 cases × 3 datasets). SU � Spectral
Unmixing, NNMF � Non-negative Matrix Factorization.
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descending order from left to right). When comparing the results
obtained in the absence of a tissue layer, the 2 mm tissue layer
resulted in no significant change to the median accuracy for the
780–870 nm and 780–950 nm wavelength pairs and decreased
median accuracies of 3.0%, 11.9%, and 8.0% for wavelength pairs
of 690–950 nm, 690–870 nm, and 690–780 nm, respectively.When
comparing the results obtained in the absence of a tissue layer with
the 5 mm tissue layer results, the 780–870 nm and 780–950 nm
wavelength pair showed a decrease inmedian accuracy of 3.5% and
4.9%, respectively, which was lower than that obtained with the
remaining wavelength pairs, yielding an average median accuracy
decrease of 14.4%. Finally, when comparing the results obtained in
the absence of a tissue layer with the 7 mm tissue layer results, the
780–870 nm wavelength pair showed a decrease in median
accuracy of 7.1%, which was significantly lower than that
obtained with the other wavelength pairs, yielding an average
median accuracy decrease of 22.5%. Results demonstrate that
the aberrating conditions generally reduce performance due to
the presence of the fatty tissue, with a median classification
accuracy of 92.9% for a 7 mm-thick tissue layer when using a
wavelength pair of 780–870 nm.

4 DISCUSSION

We demonstrated a novel method to accurately identify biological
markers by analyzing the acoustic frequency response from either
a single-wavelength emission (i.e., single-wavelength atlas
method) or two consecutive wavelength emissions (i.e., dual-
wavelength atlas method). Overall, the best classification accuracy
obtained with the dual-wavelength atlas approach outperforms
that obtained from previous methods with similar goals,
including spectral unmixing (Xia et al., 2016; Grasso et al.,
2020), F-mode imaging (Moore et al., 2019), and k-means
clustering (Cao et al., 2017).

The dual-wavelength atlas method has three additional
advantages over spectral unmixing techniques. First, the dual-
wavelength atlas method does not require a significant number of
wavelengths, which is often an impediment to both real-time
capabilities and surgical implementation. With only two
wavelength emissions, the overall acquisition time is

significantly reduced as well as the memory bandwidth that is
proportional to the number of acquired frames. Second, our
method does not heavily depend on a hyperparameter to
enhance its classification accuracy, contrary to both
conventional and NNMF spectral unmixing techniques. In
addition, as observed in Figure 8A, there was no single c
value that ensured the highest classification accuracy for the
three datasets using the conventional spectral unmixing
technique, which suggests that testing on a fourth dataset
would not necessarily have the optimal accuracy result when
using the same c. Third, the dual-wavelength atlas method shows
consistent classification performance against different datasets, as
observed in Figure 8B. Consequently, finding the same optimal
wavelength pair for both datasets further supports the benefit of
using only two wavelengths (i.e., 710 and 870 nm) for the
identification of biological markers (i.e., MB and Hb) in
future cases.

Normalization plays a key role in the single-wavelength atlas,
dual-wavelength atlas, and k-means clusteringmethods because it
prevents the use of amplitude as a distinguishing feature for
classification. This is particularly important when characterizing
structures located at different distances from the light source. By
normalizing the spectrum from a single wavelength, both single-
wavelength atlas and k-means clustering algorithms rely purely
on the acoustic frequency content for tissue differentiation, which
is often challenged by the limited frequency content obtained
with a limited-bandwidth ultrasound transducer. In contrast, the
dual-wavelength atlas method normalizes a pair of spectra,
removing the amplitude dependency between two different
regions but at the same time preserving the relative amplitude
difference of two different light emission responses from the same
region. In clinical practice, we envision dual excitation
wavelengths illuminating the region of interest with a fast-
switching laser source that quickly alternates between
wavelengths, providing real-time labeling of photoacoustic-
sensitive regions with comparable performance to that
achieved with more conventional spectral unmixing
techniques. The proposed method could be beneficial for a
range of emerging photoacoustic imaging approaches oriented
to surgeries and interventions (Lediju Bell, 2020; Wiacek and
Lediju Bell, 2021), such as hysterectomies (Allard et al., 2018a;
Allard et al., 2018b; Wiacek et al., 2019), neurosurgeries (Bell
et al., 2014; Graham et al., 2019; Graham et al., 2020b; Graham
et al., 2021), spinal fusion surgeries (Shubert and Lediju Bell,
2018; Gonzalez et al., 2019; Gonzalez et al., 2020), as well as
identification and distinction of metallic tool tips (Eddins and
Bell, 2017; Allard et al., 2018b), cardiac catheter tips (Graham
et al., 2020a), and needle tips (Lediju Bell and Shubert, 2018) from
other surrounding structures of interest.

Although the average accuracy values from the dual-
wavelength atlas method shown in Table 3 are low (i.e., 0.88)
in comparison to the best case of accuracy (i.e., 1.00), this occurs
because we included the classification results from the 351
wavelength pairs combinations used in this study in the
reported average. As observed in Figure 6, several wavelength
pairs yielded classification accuracy values < 0.65, which lowers
the overall accuracy. A similar decrease was observed for the

FIGURE 11 | Classification accuracy of the dual-wavelength atlas
method when varying the thickness of the aberrating tissue layers, evaluated
with five different wavelength pairs. Each distribution was obtained from 10
samples (10 frames × one wavelength pair).
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single-wavelength atlas, F-mode, and k-means clustering methods,
as each method similarly used a range of wavelengths with most
wavelengths producing poor classification results. However, in
practice, only a reduced set of wavelength pairs would be used
for the differentiation of MB and Hb with the dual-wavelength atlas
method. Therefore,Table 4 represents a more realistic average from
a reduced set of wavelength pairs for the dual-wavelength atlas
method, and a reduced set of single wavelengths and hyper
parameters for the other classification methods.

One limitation of the atlas approach is the availability of the
sample material for generating a significant number of spectra in the
training set. While most of the targeted materials for classification
are either biological fluids or contrast agents, a non-fluid biological
landmark (e.g., bone) would require a new setup to couple the tissue
to the background PVCP without using additional photoacoustic-
sensitive materials. In addition, the optical and acoustic properties of
the biological materials contained in the PVCP chambers must be
similar to the expected in vivo properties in order to maximize
success. With consideration that the acoustic response from in vivo
and ex vivo Hb may differ due to expected degradation of ex vivo
blood, the datasets described throughout this manuscript
represented Hb in different states of degradation, and the dual-
wavelength atlas method showed no significant change in the
classification accuracy under these degradation conditions. We
additionally demonstrated the robustness of the dual-wavelength
atlas method against distortions of the acoustic response due to
aberrating media. Future work will explore the impact of additional
confounding factors when characterizing biological tissues (e.g.,
decrease in blood oxygenation (Li et al., 2018), deterioration of
the lipid-rich myelin sheath of nerves (Shen et al., 2010)) on the
classification performance of the dual-wavelength atlas method.

Additional future work includes improvements to the dual-
wavelength atlas method for real-time identification of tissues,
through the utilization of common parallelization and
optimization strategies. The currently sequential comparison of
measurements with atlas spectra can potentially be addressed
with at least one of three possible strategies. First, graphical
processing units (GPUs) may be employed for concurrent
comparisons of a test spectrum with several training spectra. The
feasibility of GPU-based NN classification has been widely studied
and demonstrated in the literature (Garcia et al., 2010; Florimbi et al.,
2018; Zhu et al., 2014; Aydin, 2014; Gil-García et al., 2007). Second,
atlas factors that affect the computation time may be carefully
adjusted (e.g., increase the coherence threshold of the LW-SLSC
mask or reduce the number of acquired frames per wavelength
emission) without compromising classification performance.
Increasing the coherence threshold would produce smaller masks
and thus, less pixels to evaluate for classification. Once a new
coherence threshold is defined, the number of frames needed for
classification can then be empirically determined by maximizing the
combined sensitivity, specificity, and accuracy using Eq. 7. Third,
rather than evaluating the photoacoustic spectra with an extensive
look-up table (i.e., spectral atlas), the classification time can be
reduced by implementing an artificial neural network (ANN) to
learn and match features of the acoustic spectra (i.e., bypassing PCA
feature extraction), which has been successfully implemented in
previous studies (Jain and Mao, 1991; Wang et al., 2018).

The proposed framework could be extended to multinomial
classification (i.e., more than 2 tissues to classify), which is often
necessary during in vivo interventions as photoacoustic signals
originating from the surrounding tissue cannot be neglected. In
contrast to binomial classification, multinomial classification would
benefit from more robust feature extraction methods such as linear
discriminant analysis (Belhumeur et al., 1997; Kwak and Pedrycz,
2005) or more robust classifiers such as sparse representation-based
classifiers (Wright et al., 2008; Yang et al., 2013). While the increase
in the algorithm complexity can be addressed with the strategies
discussed in the preceding paragraph, an alternative solution is to
include a clustering criteria within the NN classification. Specifically,
for trinomial classification where one of the regions would be
labelled as a third component that does not exist in the atlas
(e.g., background noise). Then, the acoustic spectra from this
region can be identified when the error of the closest match
surpasses a specific threshold, indicating the presence of a third
component. Alternatively, NN-k or fuzzy C-means classification
(Chuang et al., 2006) may be employed to characterize the degree of
belonging in regions where two materials are combined, with the
potential benefit of assessing the percentage of a specific material
within a region of interest.

5 CONCLUSION

We developed a novel acoustic-based photoacoustic classifier that
relies on training sets to identify photoacoustic-sensitivematerials. The
proposed method is robust against changes in fluence levels and
showed comparable sensitivity, specificity, and accuracy performance
to those obtained with conventional and enhanced spectral unmixing
methods. In clinical practice, we envision dual excitation wavelengths
illuminating the region of interest with a fast-tuning laser source,
providing real-time labeling of photoacoustic-sensitive regions with a
GPU-based parallelized algorithm version or deep neural network
architectures. Results from the presented experiments are promising
for the identification of biological or bio-compatible markers (e.g.,
blood and contrast agents) during surgical interventions. By using the
normalized photoacoustic response from two wavelength iterations,
surgeons can localize structures of interest and surgical tools while
avoiding other structures that are in close proximity to the targeted
operating region.
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