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Microphytobenthos (MPB) are a diatom-dominated microbial community of
primary producers that inhabit mudflat sediments. The benthic diatoms display
photo-protective strategies to face extreme light variations susceptible to
generate cellular oxidative stress. However, oxidative stress induces the
production of reactive oxygen species (ROS) that generate
oxylipins—oxygenated metabolites of polyunsaturated fatty acids (PUFAs)
—which are among the known chemical mediators in diatoms. Non-
enzymatically generated oxylipins known as “isoprostanoids” or “isofuranoids”
are poorly studied in diatoms. To better understand the roles of the latter in
migrational MPB light response, we investigated the effect of different irradiances
corresponding to dark (D), low light (LL, 50 and 100 μmol. photons. m−2. s−1PAR),
medium light (ML, 250 μmol. photons. m−2. s−1 PAR), and high light (HL, 500, 750,
and 1000 μmol. photons. m−2. s−1 PAR) on isoprostanoid production by the
biofilm’s organisms. The PUFA precursors of the varying oxylipins evidenced a
diatom response to irradiance. Under 1000 PAR, the total amount of
isoprotanoids increased, indicating an oxidative stress response. Isoprostanes
(IsoPs) and prostaglandins (PGs) characterized HL conditions and evidenced lipid
peroxidation, probably linked to the higher generation of ROS by photosynthesis.
In contrast, phytoprostanes (PhytoPs) characterized LL and ML, where the ROS
scavengers were probably not overwhelmed. This first investigation of non-
enzymatic oxylipin production by a microphytobenthic biofilm under different
irradiances highlighted the potential of exploring their possible signaling roles
related to MPB light responses.
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1 Introduction

Microphytobenthos (MPB) are a microbial community of
primary producers usually dominated by motile pennate diatoms
(Haubois et al., 2005; Méléder et al., 2007; Ribeiro et al., 2013). MPB
make a major contribution to the total primary production of the
oceans, representing a substantial food source for invertebrates, fish,
and wading birds (Beninger and Paterson, 2018; Macintyre et al.,
1996; Underwood and Kromkamp, 1999; Werner et al., 2006) and
having an essential role in local socioeconomic activities (Lebreton
et al., 2019) and the global carbon cycle (Hope et al., 2020).

Those MPB present in mudflat sediments are subject to the
strong variability characteristic of the intertidal environments which
have notably high changes of solar irradiance (Prelle and Karsten,
2022; Woelfel et al., 2014). Diatoms, such as the other
photosynthetic organisms, generate reactive oxygen species (ROS)
as byproducts during photosynthesis. Under high irradiance
exposure, the ROS production of PS II reaction centers can
overwhelm the antioxidant systems of microalgae (Foyer, 2018).
Because ROS are highly reactive, they can damage important cell
components such as membranes and DNA (Dall’Osto et al., 2010;
Havaux and Niyogi, 1999; Krieger-Liszkay et al., 2008;
Triantaphylidès and Havaux, 2009). To cope with extreme
intertidal light variations, which can cause cellular oxidative
stress, benthic diatoms present in muddy sediment habitats
employ both physiological and behavioral photo-protective
strategies (Barnett et al., 2020; Cartaxana et al., 2011). Their
physiological responses consist of dissipating excess energy
through the non-photochemical quenching (NPQ) of chlorophyll
(Chl), fluorescence, the adjustment of light-harvesting pigment
production, and ROS detoxification (Lavaud and Goss, 2014;
Lepetit et al., 2013; Nymark et al., 2009). Among environmental
factors such as tide or inorganic carbon availability, high irradiances
trigger the vertical migration of diatoms (Consalvey et al., 2004;
Marques da Silva et al., 2017). This behavior is strongly suspected to
be a behavioral photoprotective mechanism (Consalvey et al., 2004;
Jesus et al., 2023). Indeed, it appears to be a strategy of diatoms to
adapt their vertical positioning to their optimal photon irradiance
threshold, which also depend on wavelength and the spectral quality
of light (Cartaxana et al., 2011; Jesus et al., 2006; Prins et al., 2020;
Serôdio et al., 2012).

Given that some studies have indicated the involvement of ROS
in the signaling processes of microorganisms (D’Autréaux and
Toledano, 2007), and considering their purposeful generation by
plants to regulate various metabolic activities such as defense against
pathogens, programmed cell death, and stomatal behavior (Apel and
Hirt, 2004), our understanding of ROS has evolved in recent decades
(Foyer et al., 2017; Noctor and Foyer, 2016). It now seems clear that
their roles are diverse and are not only detrimental to cellular
functioning. In diatoms, ROS are directly generated during
photosynthesis and depend on its efficiency (Ezequiel et al., 2023;
Krieger-Liszkay, 2005; Nishiyama et al., 2006). Therefore, they
probably play an important role in the signal of photo-protective
response induction such as NPQ and vertical migration. ROS can act
locally but also as a signaling molecule by being transported to
different organelles with maximal distances ranging from 1 nm for
hydroxyl radical (•OH) to more than 1 µm for hydrogen peroxide
(H2O2) (Dumanović et al., 2021; Knieper et al., 2023; Mittler, 2017).

The oxidation by-products of ROS detoxification molecules such as
oxidized glutathione (Meyer, 2008) and those given by 1O2 and
carotenoids also can give rise to signaling molecules (Ramel et al.,
2012). These byproducts can modulate various biological processes,
including transcription, post-translational modification, and
protein–protein interactions, notably by impacting the oxidation
state of thiol groups in redox-sensitive proteins (Dietz, 2008;
Meyer, 2008).

Oxylipins are among the byproducts generated by ROS reaction
with polyunsaturated fatty acids (PUFAs), called “lipid
peroxidation” (Améras et al., 2003; Jahn et al., 2008;
Triantaphylidès et al., 2008). These compounds represent the best
described signaling molecules in diatoms (Orefice et al., 2022;
Ruocco et al., 2020). Oxylipins can influence other species’
abundance and fitness through their antipredator, antibacterial,
info-chemical, and allelochemical functions (Meyer et al., 2018;
Ruocco et al., 2020; Russo et al., 2020). They can be produced by
several enzymatic and non-enzymatic processes, giving rise to an
important diversity in structures (Galano et al., 2017; Gerwick et al.,
1991; Longini et al., 2017). Enzymatic lipoxygenase pathways have
been shown to be species-dependent in the marine diatom genus
Pseudonitzschia (Lamari et al., 2013), while the oxylipin structures
from non-enzymatic processes—isoprostanoids—depend only on
the ROS reaction within a bis-allylic position of PUFAs’ double
bonds in the cells (Galano et al., 2017). Non-enzymatic oxylipins are
likely less species-specific, making isoprostanoids promising
candidates for transmitting signals between various kingdoms of
organisms present in the microphytobenthic biofilm. In addition,
previous research has shown that the presence of H2O2 and copper
in culture media induced C18-, C20-, and C22-derived
isoprostanoid production changes in several diatoms and other
microalgae species; some have been observed to trigger biological
responses (Linares-Maurizi et al., 2023; Lupette et al., 2018; Vigor
et al., 2020).These oxylipins could thus be involved in the MPB
responses to physiological changes and environmental variations
such as light exposure.

Oxylipin biosynthesis by microalgae, especially diatoms, has
triggered much recent interest (Di Dato et al., 2020a; 2020b; 2019),
but little emphasis has been placed on non-enzymatic pathways
(Orefice et al., 2022; Vigor et al., 2020). In addition, their production
in microphytobenthic biofilm has never been studied. Thus, to better
understand the roles of the latter in migrational MPB light response,
we investigated the effect of different irradiances corresponding to
dark (D), low light (LL, 50 and 100 µmol photons m−2 s−1 PAR),
medium light (ML, 250 µmol photons m−2 s−1 PAR), and high light
(HL, 500, 750, and 1000 µmol photons m−2 s−1 PAR) on their
presence in the biofilm’s organisms.

2 Materials and methods

2.1 Biofilm sampling and light exposure

The biofilm samples used in this study were the same as those
generated for our previous untargeted metabolomic analysis (Doose
and Hubas, 2024). The first 2 cm of sediment present in an empty
breeding pond of the Marine Station of Concarneau (France;
47°52.5804′N; 3°55.026′W) at low tide was sampled to collect the
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MPB biofilm. It was dominated by communities of epipelic diatoms
where Pleurosigma formosum and Gyrosigma balticum appeared to
be the two main species.

After 24 h under very low light conditions (PAR <6 µmol
photons m⁻2 s⁻1) to allow settling, the top 5 mm of sediment
containing MPB was re-sampled and re-suspended in 250 mL of
filtered seawater to homogenize the biofilm. A volume of 6 mL of the
homogenized biofilm was then added to 5-cm-diameter Petri dishes
to ensure an equal amount of biofilm in each dish; the dishes were
left for 24 h under very low light (PAR <6 µmol photons m⁻2 s⁻1) to
allow biofilm reformation.

Five Petri dishes (n = 5) were then placed under dark (D), 50, 100
(LL), 250 (ML), 500, 750, and 1000 (HL) µmol. photons. m−2. s−1 PAR
where light was generated by LEDs (SL 3500, white warm, Photon
Systems Instruments). The Petri dishes containing the biofilm were
shifted under the different irradiance concomitantly with the MPB
presence at the sediment surface. After 30 min of exposure, liquid
nitrogen was poured into the Petri dishes to immediately freeze the
sediment without disturbance. The samples were freeze-dried and
stored at −80°C awaiting subsequent analysis.

2.2 Oxylipins

2.2.1 Sample preparation
Non-enzymatic oxylipins were extracted using a protocol

published in Vigor et al. (2018) on marine macroalgae with some
modifications. For the extraction, 150 mg of dried biomass was
placed in lysing matrix tubes (lysing matrix D, MP Biochemicals,
Illkirch, France) with 25 µL of BHT (butylated hydroxytoluene 1% in
methanol), 1 mL of H2O (HPLC grade), and 4 µL of Internal
Standards Mixture (ISM n°18) (1 ng/μL). The sample was then
ground using a FastPrep-24 (MP Biochemicals) at 6.5 m/s for 30 s.
The mixture was transferred into a 15-mL Falcon tube with 3 × 1 mL
of cold chloroform/methanol mixture (2:1) and was stirred with a
vortex mixer for 30 s between each transfer. A volume of 0.5 mL
phosphate buffer (50 mM, pH 2, prepared with NaH2PO4 and
H3PO4, saturated in NaCl and stirred with a vortex mixer for
30 s) was added to the mixture. Then, 3 mL of the cold
chloroform/methanol mixture (2:1) was added and stirred with a
vortex for 30 s. The samples were then centrifuged at 4000 rpm for
5 min at 4 °C. The lower organic phase was collected in Pyrex tubes
and was then dried using a SpeedVac apparatus at 60 °C for 1 h.

To extract the lipid fraction, the dried extract was hydrolyzed by
adding 950 µL of 1 M KOH and incubated at 40 °C for 30 min with a
vertical rotator (100 rpm). To the mixture was added 1mL of 40 mM
formic acid prior to starting the solid-phase extraction. Samples
were then loaded on pre-conditioned Oasis mixed polymeric
sorbent cartridges (Oasis MAX Cartridge, 60 mg, Waters). The
undesired compound was then eliminated using 2 mL of NH3 2% (v/
v), 2 mL of MeOH/20 mM formic acid (30:70; v/v), 2 mL of hexane,
and 2 mL of hexane/ethyl acetate (70:30; v/v). Finally,
isoprostanoids/isofuranoids/PG were eluted by adding 2 × 1 mL
of a mixture of hexane/EtOH/acetic acid (70:29.4:0.6; v/v/v). The
samples were dried using a SpeedVac at 60 °C for an average of 1 h.

The dried extracts were reconstituted with 100 µL of mobile
phase solvents (H2O/ACN; 83:17; v/v) and then stirred via vortex,
ultrasound 2 min, and then vortex, and later filtered in 0.45-µm

Eppendorf (Nanosep Centrifugal Devices) with centrifugation at
10,000 rpm for 1 min at room temperature. A volume of 80 µL was
transferred in an HPLC analytic vial for further analysis, and the
remaining 20 µL was transferred in another HLPC vial for spiking
QC. Note that for the QC, 4 µL of Prostamix GR57 SM0.5 contained
all oxylipin standards at 0.5 ng/μL. The analysis was completed by
injecting 5 µL of the extract into the micro-LC-MS/MS 5500 QTrap
system, which uses high-performance liquid chromatography
coupled with tandem mass spectrometry.

2.2.2 Quantification measurements by micro-LC-
MS/MS

An Eksigent micro- High performance liquid chromatography
(HPLC) 200 Plus (Sciex Applied Biosystems, Framingham, MA,
United Statesa) equipped with CTC Analytics AG (Zwingen,
Switzerland) was used; all analyses were performed on a HALO
C18 analytical column (100 × 0.5 mm, 2.7 µm; Eksigent
Technologies, CA, United Statesa) maintained at 40 °C. The
mobile phases consisted of a binary gradient of H2O with 0.1%
(v/v) HCO2H (solvent A) and ACN/MeOH 80:20 (v/v) (solvent B)
with a flow rate of 0.03 mL.min−1 and an injection volume of 5 µL.
The elution gradient was: 17% B at 0 min, 17% B at 2.6 min; 21% B at
2.85 min; 25% B at 7.3 min; 28.5% B at 8.8 min; 33.3% B at 11 min;
40% B at 15 min; 95% B at 16.5 min for 1.5 min.

Using electrospray ionization (ESI) in negative mode, mass
spectrometry analyses were performed on an AB Sciex QTRAP
5500 (Sciex Applied Biosystems, ON, Canada). The source was
maintained at −4.5 kV, and nitrogen flow served as curtain gas at
30 psi and a nebulization assist at 20 psi at room temperature.

In order to analyze the targeted compounds in a detection window
of 90 s, the monitoring of the ionic fragmentation products of each
deprotonated analyte [M-H]- molecule was carried out in multiple ion
monitoring (MRM) detection mode using nitrogen as the collision gas.
Two transitions for quantification (T1) and specification (T2) were
predetermined by MS/MS analysis of standards. LC-MS/MS data
acquisition was performed using Analyst® software (Sciex Applied
Biosystems) to drive the mass spectrometer. The peak integration
and quantification of analytes were processed by MultiQuant
3.0 software (Sciex Applied Biosystems).

Of the 54 oxylipin standards in hand from several omega 3 and
6 PUFAs, eight PhytoPs and two PhytoFs from α-linolenic acid
(ALA), six IsoPs and one PG from eicosapentaenoic acid (EPA), four
IsoPs and one PG from arachidonic acid (AA), one dihomo-IsoP
from adrenic acid (AdA), seven neuroprostanes from
docosahexaenoic acid (DHA) for the non-enzymatic oxylipins,
and three prostaglandins are highlighted here (see “Results” below).

2.3 Data treatment and statistical analysis

The mean de-epoxydation state data were calculated per light
group (LL, 50-100 PAR; ML, 250 PAR; HL, 500,750, and 1000 PAR).
The object generated by multiple factor analysis (MFA) performed
on oxylipin measurement data was used to run a between-class
analysis on R under the package ade4 following the original script
available on Github (https://github.com/Hubas-prog/BC-MFA).
The result is termed “BC-MFA”. The normality of the oxylipin
data and their residual distribution was tested using the
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Shapiro–Wilk test. When residuals followed a normal distribution,
one-way ANOVA was performed to detect significant light effects
on oxylipin concentrations in the biofilm. When normality was not
verified, a non-parametric Van der Waerden test was performed
with the R package “agricolae”. Outliers were tested using the “1.
5 times the interquartile range (IQR)” rule. The correlation test was
performed on R with the Pearson method.

3 Results

3.1 Effect of light on oxylipin fingerprint
in biofilm

The LC-MS targeted analysis allowed the measurement and
quantification of 29 oxylipins (Supplementary Material S1) from five
different families: neuroprostanes (NeuroPs), isoprostranes (IsoPs),
phytoprostanes (PhytoPs), phytofuranes (PhytoFs), and
prostaglandins (PG). The BC-MFA analysis presented in Figure 1
shows the partitioning of MPB samples depending on their amount
of oxylipin measured. The total inertia of the dataset explained (TIE)
by the light treatments was 37%. The first dimension of the BC-MFA
score plot distinguished the dark from the 1000 PAR treatment as
well as the LL and ML from the HL treatments. The dark, LL, and

ML treatments were characterized by oxylipins from the PhytoP
family, while the HL were characterized by oxylipins from the IsoP
and PG families. This analysis allowed identification of
12 compounds (out of 29) significantly influenced by this light
gradient. The production of molecules forming the NeuroP and the
PhytoF families were not affected by the irradiances.

The highest total amount of oxylipins presented in Figure 2 was
measured in biofilm exposed to the 1000 PAR treatment with 484 ±
27 pg/mg dw. The lowest values were observed in biofilm under dark
(383 ± 39 pg/mg dw), 250, and 500 PAR (385 ± 17 pg/mg dw for
both). Significant differences were observed between biofilm under
the 1000 PAR treatment and all the other irradiances, except for the
100 PAR conditions (ANOVA, p < 0.05). The major oxylipins,
constituting more than 5% of the total oxylipin measured in the
biofilm, included 18-epi-18-F3t-IsoP (EPA), 5-epi-5-F3t-IsoP
(EPA), 5-F3t-IsoP, 9-epi-9-F1t-PhytoP + ent-16-F1t-PhytoP, 9-
F1t-PhytoP, and PGF3.

3.2 Oxylipin variation in function of their
PUFAs precursors

Figure 3 shows the proportion of the metabolite’s precursor. The
oxylipins measured in the biofilm were mainly derived from

FIGURE 1
Between-class (BC) analysis realized on a multiple factor analysis (A). MFA object (B). BC-MFA and its variables (C). on oxylipins measured in the
biofilm exposed to dark (D, n = 10) and to irradiances of low (LL: 50, 100), medium (ML: 250), and high light (HL: 500, 750, 1000) in µmol. photons. m−2. s−1

PAR (n = 5).
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eicosapentaenoic acid (EPA) (Guy et al., 2014; Morrow et al., 1990),
representing more than 60% of the total amount. The total of α-
linolenic acid (ALA) metabolites (Parchmann and Mueller, 1998)
represented more than 10%, and arachidonic acid (AA) (Guy et al.,
2014; Morrow et al., 1990) and docosahexaenoic acid (DHA)
(Nourooz-Zadeh et al., 1998; Roberts et al., 1998) represented
approximately 7% and 5%, respectively. One metabolite measured
was derived from adrenic acid (AdA), representing less than 1% of
the total FA precursor. Only the total of EPA and ALA metabolites
varied under different irradiances. The total EPA metabolites
increased with increasing irradiances from 250 PAR to 1000 PAR
conditions. Conversely, the total ALAmetabolites followed the exact
opposite pattern, with the highest value under the 250 PAR
condition. The 750 and 1000 PAR conditions are significantly
lower than the dark, LL, and ML conditions. The total amount of
oxylipins per FA precursor (Figure 2) showed significantly higher
amounts of oxylipins derived from EPA under the 1000 PAR
irradiance than in the other light conditions. Conversely, the
amount of oxylipins derived from ALA was significantly higher
under the 100 PAR irradiances than under HL. The variations in the
EPA- and ALA-derived oxylipin percentages are thus explained by
both the increase of EPA-derived compounds and the decrease of
ALA-derived compounds.

Figure 4 presents the values of the oxylipins which significantly
varied between the different light conditions, half of which are
derived from the EPA. The amount of the six EPA-derived oxylipins
and two AA-derivatives which varied under light were all
significantly higher under 1000 PAR than in the dark condition
(ANOVA, p < 0.05). However, significant differences were also
observed between the 1000 PAR and the LL and ML conditions,
notably for the 18-epi-18-F3t-IsoP and the 5-epi-5-F3t-IsoP in LL.

The oxylipins derived from ALA exhibited variations exclusively
within the F1t-series and followed an inverse trend to that observed
in EPA metabolites. The amount of ALA-derived oxylipins reached
a maximum under 100 PAR, with 47 ± 10 pg/mg dw for 9-epi-9-F1t-
PhytoP + ent-16-F1t-PhytoP and a decrease following the increasing
irradiance level to reach a minimum value under 1000 PAR with 8 ±
1 pg/mg dw for the ent-16-epi-16-F1t-PhytoP.

The only AdA metabolite measured in this analysis was ent-7
(RS)-7-F2t-dihomo-IsoP. Its amount increased following the
increasing irradiances between the dark and 100 PAR conditions
as well as between the 500 PAR and 1000 PAR conditions,
decreasing between the 100 PAR and 500 PAR conditions. The
maximum amount was observed under 100 PAR with 1.5 ± 0.3 pg/
mg dw, which was significantly higher than the values observed
under the dark, 250, 500, and 750 PAR conditions (ANOVA, p <
0.05). The amounts measured under the 1000 PAR condition were
also significantly higher than those found under 500 PAR
(ANOVA, p < 0.05).

All the oxylipin amounts that varied significantly under different
light conditions were correlated with the level of irradiance, except
for ent-7 (RS)-7-F2t-dihomo-IsoP (Table 1). The PhytoPs derived
from ALA were negatively correlated with the increase of photon
flux; however, the oxylipin amounts derived from EPA and AA were
positively correlated with the light increase. The strongest
correlation was found for 5-epi-5-F3t-IsoP, which is also the
most abundant compound measured.

FIGURE 2
Quantity of oxylipins in pg/mg dw per fatty acid precursors and in
total measured in biofilm exposed to dark (D, n = 10), and to
irradiances of low (LL: 50 and 100), medium (ML: 250), and high light
(HL: 500, 750, and 1000) in µmol photons m−2 s−1 PAR (n = 5). AA
(arachidonic acid), AdA (adrenic acid), ALA (α-linolenic acid), DHA
(docosahexaenoic acid), EPA (eicosapentaenoic acid). Box plot
representsmedian (middle line), 25th and 75th percentiles (ends of box),
and minimum and maximum values (at bottom and top of line,
respectively). Outliers were identified only in the total oxylipin data
using the IQR for the 100, 250, 500, and 750 PAR conditions (for which
n = 4). One-way ANOVA was performed on the data to detect
significant differences between treatments, as indicated by letters
(p < 0.05).

FIGURE 3
Relative abundance distribution in percentage of oxidated
polyunsaturated fatty acids (NEO-PUFAs) in the MPB biofilm: AA
(arachidonic acid), AdA (adrenic acid, <1%), ALA (α-linolenic acid), DHA
(docosahexaenoic acid), EPA (eicosapentaenoic acid). Significant
differences between light exposure indicated by letters (ANOVA, p <
0.05; n = 5).
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4 Discussion

4.1 Oxylipin origins regarding their PUFA
precursors

The microphytobenthic biofilm encompasses a wide diversity of
microorganism taxa, with diatoms overwhelmingly dominant. The
isoprostanoids measured in this work depend only on the ROS

reaction with the PUFAs and their release as free oxidized lipids by
the phospholipases A2 in the cells (Ibrahim et al., 2011; Mallick and
Mohn, 2000; Morrow et al., 1992; Roy et al., 2017). The ALA-derived
oxylipins were in higher proportion in the dark, LL, and ML
conditions than under HL; inversely, the AA- and EPA-derived
oxylipins were measured in higher proportions under HL than the
other light conditions. These variations in amount and composition
under the different irradiances are evidence that light levels affect

FIGURE 4
Concentration of oxylipins in pg/mg dw which significantly varied in biofilm exposed to dark (D, n = 10) and to irradiances of low (LL: 50 and 100),
medium (ML: 250), and high light (HL: 500, 750, and 1000) in µmol photonsm−2 s−1 PAR. One-way ANOVAwas performed on the data to detect significant
differences between treatments, as indicated by letters (p < 0.05; n = 5). Oxylipins were gathered in groups corresponding to their fatty acid precursors AA
(arachidonic acid), AdA (adrenic acid), ALA (α-linolenic acid), DHA (docosahexaenoic acid), and EPA (eicosapentaenoic acid).

TABLE 1 Significant correlation between irradiance levels and amount in oxylipins measured in the biofilm.

Oxylipins Fatty acid precursor p-Value Correlation coefficient

15-(R)-PGF2 AA 8,8E-04 0.51

5-F2c-IsoP 4,5E-02 0.32

PGF2 5,7E-03 0.43

18-epi-18-F3t-IsoP EPA 1,7E-03 0.48

18-F3t-IsoP 1,6E-05 0.63

5-epi-5-F3t-IsoP 4,8E-07 0.70

5-F3t-IsoP 2,9E-03 0.46

8-epi-8-F3t-IsoP 5,8E-03 0.43

8-F3t-IsoP 7,3E-04 0.51

PGF3 2,0E-06 0.67

9-epi-9-F1t-PhytoP + ent-16-F1t-PhytoP ALA 8,0E-06 −0.64

9-F1t-PhytoP 4,7E-05 −0.60

ent-16-epi-16-F1t-PhytoP 1,1E-04 −0.57
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ROS production in the microphythobentic biofilm, triggering
peroxidation on specific PUFAs.

Since FAs are widely recognized as biomarkers (Kelly and
Scheibling, 2012; Parrish, 2013), associations with specific
biological compartments within the biofilm can be established
through the PUFA precursors of light-varying oxylipins. The
IsoPs emerged as the predominant varying oxylipins, with EPA, a
well-known diatom marker, identified as their precursor (Kelly and
Scheibling, 2012; Parrish, 2013). The total of varying EPA-derived
oxylipins significantly increased from 750 PAR to 1000 PAR
(Figure 3). Their amounts were significantly correlated with
increasing irradiance. One of them, 5(R)-5-F3t-IsoP was the most
abundant, with values between 100 and 200 pg/mg dw. In the diatom
Chaetoceros gracilis, the most abundant isoprostanoids identified
were also derived from this PUFA, and 5 (RS)-5-F3t-IsoP accounted
for approximately 42% (1.1 μg/g) of the total oxylipins (Vigor et al.,
2020). We also observed 8-F3t-IsoP or 8-epi-8-F3t-IsoP to
significantly increase in Phaeodactylum tricornutum after 48 h
under 0.75 mM of H2O2 (Lupette et al., 2018), but the inverse
was found after 24 h under 1 mM of H2O2 for P. tricornutum and C.
gracilis (Vigor et al., 2020).

The second group of oxylipins that exhibited significant
variation under different irradiances was PhytoPs. These are
produced from ALA, which is known to be present in higher
concentrations in green algae than in diatoms (D’Souza and
Loneragan, 1999; Kelly and Scheibling, 2012). PhytoPs were,
however, identified as the primary non-enzymatic oxylipins
produced by the P. tricornutum, being measured in the same
concentration range as the non-oxidized ALA (around 400 pmol
per 1 million cells) (Lupette et al., 2018; Vigor et al., 2020).
Therefore, the presence of PhytoPs in the biofilm could also be
linked to diatom response. In diatoms, only certain glycerolipids
(phosphatidylcholine and diacylglyceryl-hydroxymethyl- N,N,N-
trimethyl-β-alanine) present in intracellular endomembranes such
as the endoplasmic reticulum contain sufficient amounts of ALA to
justify a role for the production of PhytoPs (Leblond et al., 2013;
Lupette et al., 2018; Zulu et al., 2018). ALA peroxidation was
observed through the variation of F1t-PhytoPs. However, B1t-
PhytoP and PhytoFs, also derived from this PUFA, did not vary.
In Lupette et al. (2018), the F1t-PhytoPs were also the most
abundant series which varied under H2O2 oxidative stress in P.
tricornutum, while the ent-16-B1t-PhytoP and 16 (RS)-16 A1-
PhytoPs measured in low levels did not vary. Among the specific
PUFA peroxidations, the ROS produced under different light
conditions may also exhibit preferences for specific reaction sites
and pathways.

Interestingly, the increase of oxidation induced by light-
triggered ROS production did not appear to affect all PUFA
precursors. Specifically, in the case of DHA, the peroxidation
products, known as NeuroPs, remained constant across varying
irradiances. In related studies, observations ofC. gracilis (Vigor et al.,
2020) and P. tricornutum indicated that NeuroPs did not vary under
H2O2 oxidative stress. Moreover, these compounds were found to be
produced in the same concentration range as their non-oxidized
precursors (Lupette et al., 2018). Indeed, ROS are constantly
produced as byproducts of metabolisms, such as photosynthesis
or photorespiration, which continuously lead to lipid peroxidation
by healthy organisms (Knieper et al., 2023; Mueller, 2004). This

could partly explain this basal presence of the NeuroPs and the other
non-varying oxylipins measured in the microphytobenthic biofilm
and under non-stressing light levels. This oxidation could also have
originated from laboratory conditions, which may have generated
additional stress on the biofilm organisms, particularly due to the
lack of a photoperiod. However, it is unlikely for MPB that these
conditions induced major stress, as the diel migration was not
perturbed over a week in the same conditions (Doose and
Hubas, 2024).

4.2 Variations in oxylipins indicate different
origin of light-dependent ROS production

In the MPB biofilm, the primary metabolism susceptible to
generating rapid and substantial variations in ROS production
under irradiation changes is photosynthesis, the chloroplast of
these microorganisms being a major site of ROS generation
(Pitzschke et al., 2006). During photosynthesis, H2O2 is notably
generated through the water–water cycle (WWC) (Asada, 1999). In
microalgae and cyanobacteria, theWWC is a significant pathway for
dissipating excitation energy, accounting for up to 49% of total
electron flux in diatoms (Curien et al., 2016; Waring et al., 2010).
ROS production under high light can exceed the rate of the WWC
reactions, leading to H2O2 increase in the chloroplast. It is
challenging to determine whether the concentrations of H2O2

examined in the aforementioned studies are comparable to what
photosynthesis might induce under HL conditions in
microphytobenthic organisms. This difficulty arises due to
uncertainties about the extent of H2O2 entry into the cell
through aquaporins (Knieper et al., 2023; Vogelsang and Dietz,
2022) and the possibility that exposure via the culture medium could
induce peroxidation at other membrane sites than those associated
with H2O2 production in the chloroplast under HL. However,
significant accumulation of H2O2 in the diatom N. epithemioides
was observed in similar light exposure (30 and 40 min at 1,000 µmol
photons m−2 s−1), reaching values of 1–1.5 μmol/μg Chla (Waring
et al., 2010). This suggests that the observed increase in AA- and
EPA-derived oxylipins in the biofilm under 1000 PAR might be
partly attributed to the heightened production of H2O2 through
photosynthesis in MPB.

The increase in PhytoPs was observed under non-stressing light,
where photosynthesis was presumed to be efficient, considering the
Ek and Eopt values in Doose and Hubas (2024) and that ROS
scavengers are likely not overwhelmed. The production of these
oxylipins triggered under an efficient state of photosynthesis might
also suggest that the peroxidation could be attributed to ROS
originating from non-photosynthetic organisms. ROS are
ubiquitous in marine environments (Diaz et al., 2016; Paul
Hansard et al., 2010; Roe et al., 2016; Rose et al., 2008), and
bacteria present in natural water are known to contribute to the
H2O2 source (Dixon et al., 2013; Marsico et al., 2015; Vermilyea
et al., 2010; Zhang et al., 2016) and probably to the IO2

·− source as
well (Diaz et al., 2013; Hansel et al., 2019; Learman et al., 2011;
Sutherland et al., 2019; Zhang et al., 2016). However, their
concentrations in marine environments range from picomolars to
hundreds of nanomolars, which might not be sufficient to trigger all
the intracellular peroxidation in diatoms providing the oxylipins
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amounts measured in the present study (Diaz et al., 2016; Paul
Hansard et al., 2010; Roe et al., 2016; Rose et al., 2008; Rusak et al.,
2011). The observed prevalence of PhytoPs under non-stressful
conditions may suggest a controlled and regulated response by
some microphytobenthic organisms, notably diatoms, as
discussed above. This could result from peroxidation triggered by
a specific ROS signature of photosynthesis in a well-
maintained state.

Interestingly, the total amount of oxylipins measured did not
vary between all the light conditions except for the 1000 PAR
condition. This suggests that the peroxidation rate was the same
under these first mentioned irradiances and that the amount of
ROS could have been maintained at a steady state by the
antioxidant systems of the cells. Indeed, the cell’s capacity to
detoxify, scavenge, or buffer ROS is suspected to control the
quantity and spatial accumulation of ROS, which can be specific
to an intracellular site such as a membrane patch or organelle
(Knieper et al., 2023; Mittler et al., 2011). Moreover, the
antioxidant controls the termination of the peroxidation
reaction (Montuschi et al., 2004), and photoprotectants such
as xanthophylls are known to have an effect on oxylipins present
(Demmig-adams et al., 2012). Furthermore, a persisting or
intensifying light stress triggers an increase of the generated
ROS diversity (H2O2,

1O2,
1O2

·−, etc.) (Foyer, 2018; Waring
et al., 2010). The 1O2, characterized by high reactivity, can
initiate signals but not transport them. In contrast, the lower
reactivity of H2O2 allows it to interact with various biological
sites to function as a mobile messenger and to be excreted in the
extracellular space (Mullineaux et al., 2018; Schneider et al.,
2016). This spatial specificity of ROS and antioxidant presence
could thus also explain the differences in the distinct oxylipin
responses under the different light levels. Moreover, regarding
the localization of the PUFAs precursors in the diatom cell, lipid
peroxidation might predominantly occur in endomembranes
under LL and ML conditions (Lupette et al., 2018), whereas
under HL conditions it might occur in chloroplasts since EPA
is known to be a major fatty acid in diatom thylakoïd membranes
(Büchel et al., 2022). The increase in IsoPs and PGFs observed
under 1000 PAR conditions could thus be triggered by a specific
ROS signature produced under conditions of overwhelmed ROS
scavengers.

4.3 Presence of EPA and ALA derivatives
followed the photoacclimation state of MPB

Under 100 PAR, the total amount of oxylipins measured in the
biofilm tended to increase and had the highest amount of ALA
derivatives, as well as the AdA derivative ent-7 (RS)-7-F2t-
dihomo-IsoP. However, regarding the oxylipin proportion
presented in Figure 2, the higher and lower percentages for
ALA- and EPA-derived oxylipins, respectively, were observed
under 250 PAR. Interestingly, the theoretical optimal light level
for MPB measured and published by Doose and Hubas (2024) is
situated between 100 and 250 PAR (187 ± 22 PAR). It was
suggested that diatoms adjust the irradiance they receive
around this Ek value through their vertical migration in the
sediment (Jesus et al., 2023). Moreover, a downward migration

of MPB was induced from 250 PAR (visual observation),
corresponding to the range of irradiance found in the literature
to induce the downward movement of mudflat MPB (Ezequiel
et al., 2015; Laviale et al., 2016; Perkins et al., 2010; Serôdio et al.,
2008; 2006). Therefore, the PhytoP synthesis was concomitant
with the presence of MPB at the sediment surface, and thus more
exposed to oxidative conditions compare to the anoxic conditions
in the sediment. However, as discussed previously, the water
amounts of ROS are likely not sufficient to explain the entire
presence of these isoprostanoids in the biofilm. Regarding the high
values of those oxylipins compared to general ALA quantities in
diatoms, PhytoPs are suspected to have a biological function
(Lupette et al., 2018). Moreover, ALA serves as a primary
precursor in plants for various signaling compounds generated
through oxidative modification by ROS (Ahme et al., 2020; Schaller
and Stintzi, 2009). It would thus be interesting to further
investigate the possible implication of non-enzymatic oxylipins
such as PhytoPs in the migration response of MPB.

The de-epoxydation rates of the biofilm samples were given by
Doose and Hubas (2024). They also increased significantly between
250 and 500 PAR, indicating a high NPQ response. On one hand,
NPQ is considered to be the most crucial short-term
photoacclimative processes, realized through the xanthophyll
cycle in diatoms (Lavaud, 2007; Lavaud et al., 2002). On the
other hand, xanthophylls are also known to directly scavenge the
triplet-state excitation of Chl a (Larkum, 2003; Müller et al., 2001)
and to have strong anti-oxidant properties. This, in turn, prevents
lipid peroxidation and thus inhibits additional oxylipin production
(Andersson and Aro, 2006; Galinato et al., 2007; Havaux and Niyogi,
1999; Saniewski and Czapski, 1983; Wang and Zheng, 2005).
Therefore, it would be interesting to explore whether the
epoxidation or de-epoxidation state of the xanthophylls
influences isoprostanoid synthesis such the ALA- and EPA-
derived oxylipins.

5 Conclusion

This study is the first investigation of the production of non-
enzymatic oxylipins in a microphytobenthic biofilm under different
irradiances. It revealed that isoprostanoid levels in the
microphytobenthic biofilm respond to varying light intensities.
They were identified as originating from the diatoms, indicating
a light-dependent influence on ROS production originating from
photosynthetic activity. The PUFA precursors showed distinct
peroxidation patterns under different light conditions, suggesting
a link between light-induced ROS diversity, ROS scavenging
efficiency by antioxidant systems, and PUFA oxidation pathways.
Under 1000 PAR, the total amount of isoprotanoids increased,
indicating an oxidative stress. The EPA and AA derivatives
characterized the HL conditions and evidenced lipid
peroxidation, probably due to the antioxidant system becoming
gradually overwhelmed by the higher generation of ROS through
photosynthesis. In contrast, the PhytoPs, ALA derivatives,
characterized the LL and ML where the de-epoxidation state was
low and ROS scavengers were probably not overwhelmed. This
indicates that the lipid peroxidation probably did not occur in the
chloroplast but in other cellular sites such as other endomembranes.

Frontiers in Photobiology frontiersin.org08

Doose et al. 10.3389/fphbi.2024.1441713

https://www.frontiersin.org/journals/photobiology
https://www.frontiersin.org
https://doi.org/10.3389/fphbi.2024.1441713


The concomitant presence of the diatoms at the sediment surface
and the PhytoP synthesis suggests that these oxygenic conditions
could also partly influence this isoprostanoid production in a
photosynthetic independent way. However, the PhytoPs more
likely resulted from a regulated response of MPB organisms. This
study was conducted in a laboratory, focusing solely on the effects of
irradiance variations; the biofilm oxylipin responses might thus
differ under more complex environmental conditions. However,
these findings provide novel insights into oxylipin production in
mudflat biofilms, highlighting interest in exploring their signaling
roles related to photoprotective mechanisms and vertical migration.
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