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Introduction: Polarmicroalgae are exposed to dramatic seasonal changes in light
availability, from continuous summer days to winter nights with rapid changes of
the daylength in spring and fall. Under this challenging light climate, large diatoms
spring blooms occur at the bottom sea-ice and underneath the icepack,
accounting for a significant proportion of the annual marine primary
production in the Arctic Ocean. The on-going earlier melt down of the snow
and ice covers result in a stronger light penetration and consequent increase in
irradiance at the bottom of the sea ice leading to earlier seasonal sea-ice diatom
blooms under shorter daylengths. Therefore, elucidating the response of polar
diatoms to different photoperiods will help to better understand the
consequences of the changing arctic climate on their photosynthetic
productivity.

Methods: In this study, we characterized the response of F. cylindrus, a model
polar diatom, across five different photoperiods with similar light and
temperature conditions (30 μmol photons m-2 s-1 and 0°C respectively).

Results:We report different photoacclimative strategies under shorter and longer
daylengths, with the special case of prolonged darkness (mimicking winter polar
night). We also observed a repeated daily regulation of the photochemistry and
photoprotection parameters when cells were exposed to a light:darkness
alternation, despite the constant and optimal light intensity during the
light periods.

Discussion: Our results highlight the ability of F. cylindrus to grow efficiently
under a wide range of daylengths, finely adjusting the balance between
photochemistry and photoprotection to make the best use of the available
light, supporting sustained production and growth despite low light and
temperature.
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1 Introduction

Polar marine microalgae are exposed to dramatic seasonal
changes in light availability with rapid changes of the daylength
in spring and fall, and between extreme periods of continuous
summer days and winter nights which duration depends on
latitude (Leu et al., 2015; Hopes et al., 2017). In addition, the
light intensity and spectrum perceived by algae at the bottom of
the sea-ice varies enormously during the productive season

depending on the thickness of the ice- and snow-packs (Figure 1)
(Nicolaus et al., 2010; Oziel et al., 2019). Under this challenging light
climate, large spring blooms of microalgae, often mostly composed
of diatoms, occurs at the bottom sea-ice and underneath the icepack
(Figure 1), accounting for a significant proportion of the annual
marine primary production in the Arctic Ocean (Leu et al., 2015;
Mayot et al., 2018; Ardyna and Arrigo, 2020). Many works have
shown how the light-response of polar diatoms is well adapted to
low temperatures climate of high latitudes (Petrou et al., 2016;

FIGURE 1
Schematic representation of a seasonal dynamics of Arctic sea-ice and associated microalgae from spring to summer in Baffin Bay (A) combined
with sea-ice environmental conditions and sea-ice algal community abundance and composition assessed during the Green Edge project during spring
2015 (dashed line) and 2016 (continuous line) in the West Baffin Bay (Qikiqtarjuaq, Nunavut, 67.48°N 63.79°W): (B) Snow depth (grey) and ice thickness
(blue); (C) daily light dose (orange) and day light length (black); (D) Chlorophylla (Chla, green) and diatoms proportion (brown) at the bottom of the
sea-ice. Panel (C) black dashed lines indicate the minimum and maximum daily light dose used in this study (0.65 and 2.6 mol photons m-2 d-1). Panel (A,
C) the green, blue, orange and red arrows indicate, respectively, the periods where daylength is 6 h, 12 h, 18 h and the first day of 24 h daylength. Data are
available at: Green Edge project LEFE-CYBER repository (http://www.obs-vlfr.fr/proof/php/GREENEDGE/greenedge.php); for corresponding Materials
and Methods see Massicotte et al. (2020).
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Lacour et al., 2017; Young and Schmidt, 2020). They can perform
photosynthesis and grow efficiently from very low to high light
(Hancke et al., 2018; Lacour et al., 2018; Randelhoff et al., 2020;
Kvernvik et al., 2021; Croteau et al., 2022). Polar diatoms can also
withstand strong light fluctuations and prolonged periods of
darkness (Kropuenske et al., 2009; Kennedy et al., 2019; Morin
et al., 2020; Croteau et al., 2021; Hoppe, 2021; Joli et al., 2024).

The ecological success of diatoms is notably based on their ability to
efficiently respond to changes in their light climate (Wilhelm et al.,
2014; Lepetit et al., 2022), particularly in polar (sympagic forms) and
benthic (epipelic and epipsammic forms) environments (Petrou et al.,
2016; Lacour et al., 2017; Young and Schmidt, 2020). Light-responses
are typically of two types: rapid and reversible, and/or more prolonged
(several hours and days) (MacIntyre et al., 2000). For prolonged light-
responses, diatoms are able to modify the architecture of their
photosynthetic apparatus in order to adapt their capacities of
absorption and use of light energy (Büchel et al., 2022). To do so,
they can for example, modify the pigment composition of their light-
harvesting complexes (LHCs) (seeArrigo et al., 2010; Lacour et al., 2018;
Croteau et al., 2022 for examples in polar diatoms). For rapid and
reversible light-responses (typically less than an hour), diatoms mainly
use non-photochemical quenching processes (NPQ), which is also
directly depending on above-described long-term modifications,
especially the spatial arrangement of LHCs and their pigment
composition (Lepetit et al., 2022). The NPQ process is located in the
LHCs of photosystems II (PSII), and it dissipates the light energy
absorbed in excess (Lavaud and Goss, 2014; Goss and Lepetit, 2015;
Lepetit et al., 2022). NPQ is essentially controlled by i) the light-driven
xanthophyll cycle pigments, an enzymatic interconversion between
diadinoxanthin (Ddx) and diatoxanthin (Dtx) (Lavaud and Goss,
2014; Lacour et al., 2020), ii) the presence and light-dose regulated
synthesis of different isoforms of LHCx proteins (Taddei et al., 2016;
Lepetit et al., 2017; Buck et al., 2019). Excess light dissipation via NPQ is
essential to alleviate excitation pressure on PSII, which, if not
counterbalanced, results in PSII photodamages and
photoinactivation (Campbell and Serôdio, 2020). In polar strains,
NPQ is even more crucial because i) low temperatures slow down
the enzymatic rate of PSII repair (Petrou et al., 2010; Ni et al., 2017), ii)
the PSII repair process mostly takes place during the daily darkness
periods in diatoms (Li et al., 2016), hence the spring/summer increase in
daylength can generate situations where photodamage can exceed PSII
repair, even under moderate irradiance (Campbell and Serôdio, 2020).

Themicroalgal bottom sea-ice spring bloom can take place under a
broad range of photoperiods (from 14 h to 24 h daylength, Figure 1)
(Massicotte et al., 2020). As the snow and ice covers melt down earlier,
due to the arctic climate warming (Rantanen et al., 2022), there is a
general increase in light penetration to the sea-ice bottom in the Arctic
Ocean. The increase in light availability can supports an earlier sea-ice
bloom under photoperiods with shorter daylengths (Ardyna and
Arrigo, 2020). The response of diatoms to variations in light
intensity was extensively studied (Lepetit et al., 2022), but so far,
few studies have addressed the impact of the diurnal cycle only
(i.e., isolated from changes in irradiance) on their photobiology
(Falciatore et al., 2022). The limited number of works on the
response of diatoms to daylength is even more concerning in polar
strains. Therefore, elucidating the response of polar diatoms to
different photoperiods is arguably one of the keys to better
understand their productivity and ecological success as well as the

ecosystem reaction to the changing Arctic Ocean climate. Fragilariopsis
cylindrus is the model polar diatomwhich genome has been sequenced
(Mock, 2017) andmetabolic networkmodeled (Lavoie et al., 2020). It is
abundant at both poles, and it is found in sea-ice and the water column,
mostly underneath the sea-ice pack. F. cylindrus shows a large number
of LHCx isoforms (11, Mock et al., 2017) as well as an effective NPQ
and xanthophyll cycle at circa 0°C temperatures (Arrigo et al., 2010;
Croteau et al., 2021). In a series of recentworks, we have documented F.
cylindrus growth to a range of irradiances (Croteau et al., 2022), its
response to short-term excess light (Croteau et al., 2021), and to
prolonged darkness (several weeks) and return to light (Morin
et al., 2020; Joli et al., 2024). Complementary to these works, it is
the objective of this study to characterize the features of F. cylindrus
response across five seasonal arctic photoperiods.

2 Materials and methods

2.1 Culturing conditions

Culturing and all experiments were performed in a climate
control “cold” laboratory where temperature was set at 0°C and
humidity (<50%, dew point −10°C) was permanently controlled.
Culturing and experiments were performed in axenic conditions
inside the temperature-controlled laboratory. Axenic F. cylindrus
(CCMP3323) was grown in natural seawater (sampled in Baffin
Bay, Canadian Arctic, 67.48 N; 63.79 W) enriched with f/2
(Guillard, 1975). The sea water was prefiltered through a
polypropylene 1 μm filter (Polypropylene felt filter bag 18–1/2L,
1 μm, Cole Parmer, Canada) and sterilized with a PolyCap 0.2 μm
(Whatman™, United Kingdom). Cultures were pre-acclimated to
each experimental light conditions for at least 3 weeks before the
start of the experiment; they were gently stirred with amagnetic stirrer
and aerated with air bubbling filtered through an activated carbon
filter and a 0.2 μm HEPA filter (Carbon CAP, HEPA-Vent,
Whatman™, United Kingdom). Cells were grown in triplicate in
3 L jacketed cylinder reactors at the temperature of 0°C. The
temperature was controlled by the circulation of thermostated
ethylene glycol through the jacket. Light was supplied uniformly
by a custom illumination system with an array of LEDs (LXML-
PR01, 445 nm; LXML-PB01, 470 nm; LXML-PM01, 505 nm; LXML-
PM01, 530 nm; LXM2-PD01, 630 nm; LXM3-PD01, 660 nm; LXML-
PD01, 4100 K; LXML-PL01, amber; LUXEON REBEL, LUMILEDS,
Germany) that allowed the modulation of light intensity, the
photoperiod and the recreation of a “white” light similar to under
sea-ice solar spectrum (Supplementary Figure S1). PAR
(Photosynthetically Available Radiations) light intensity was
measured continuously in the centre of each reactor using a 4π
PAR sensor (QSL 2101, Biospherical Instruments Inc., CA,
United States) and PAR intensity was automatically adjusted
according to the continuous reading of the PAR sensor to
maintain PAR intensity inside the reactor vessel to the targeted
value. To better highlight the responses to photoperiod changes,
the optimal light intensity for the growth of F. cylindrus was used,
i.e. 30 μmol photons m-2 s-1 of PAR (Morin et al., 2020; Croteau et al.,
2022). Importantly, cultures were maintained optically thin, in order
to control the light field inside the reactors, by a daily dilution semi-
continuous growing to maintain a cell concertation of 106 cells mL-1.
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2.2 Experimental conditions and
sampling plan

The cells were acclimated to five photoperiods: 0 h Light: 24 h
Dark (0L:24D), 6L:18D, 12L:12D, 18L:6D and 24L:0D (Figure 2).
Each experiment lasted 52 h, and the time laps between samplings
was at minimum 2 h and at maximum 6 h to perform cell counts,
samplings for pigment analyses and measurements of
photosynthetic performance (i.e., Rapid Light Curves, see below).
The time laps between sampling were adjusted depending on the
daylength and the moment of the day, for a tighter coverage during
the light compared to the dark period. At the last sampling point,
samples were taken for elemental composition analysis and
photosynthetic carbon fixation estimation (Production Light
Curves, see below). All measured parameters, their definition and
unities are found in Table 1. All samplings and measurements were
performed in the temperature-controlled laboratory under a green
light of low intensity to prevent light alteration of cell photosynthetic
activity and pigments. Cultures acclimated at 0:24 were not diluted,
the cultures acclimated 6L:18D, 12L:12D, 18L:6D were diluted
during the first hour of the dark period of the photoperiods and
the cultures acclimated at 24:0 were diluted at the 10th hour of the
24 h cycle.

2.3 Cell concentration and growth rate

Cell concentration was measured using a particle sizing and
counting analyser (Multisizer 4 Coulter Counter, Beckman Coulter,
United States). We considered counts between 2 and 15 μm cell size.
A dilution of the culture sample was performed before analysis to
remain within the cell concentration measurement range of the
analyser. Dilution was carried out with the electrolyte of the analyzer,
i.e., saltedMilli-Q™ water (35 g L-1. NaCl). The growth rate (μ, in day-1)
was calculated between two dilutions according to Andersen (2005),
and the hourly growth rate (μH, in h-1) between two sampling points.

2.4 Particulate organic carbon and nitrogen
determination

The total particulate carbon (TPC), total particulate nitrogen
(TPN), and the dry algal biomass were determined by filtering
culture samples on pre-burned (450°C for 4 h) 25 mm GF/F glass-
fibre filters (Whatman™, United Kingdom). The CHN analyses were
performed with a PerkinElmer 2,400 Series II CHNS/O elemental
analyzer (PerkinElmer, Waltham, United States). Acetanilide
(99.999%, Perkin Elmer) was used as a standard.

FIGURE 2
Sampling schedule during the experiments performed on Fragilariopsis cylindrus cells acclimated to five different photoperiods: 0 h Light: 24 h
Darkness (0L:24D, dark), 6L:18D (green); 12L:12D (blue); 18L:6D (orange); 24L:0D (red). The white and grey sections correspond to the light and darkness
phases, respectively. The black dashed lines represent the dilution point and the colored solid line represent the sampling point. The photoperiod color
code is the one used all along the manuscript.

Frontiers in Photobiology frontiersin.org04

Guérin et al. 10.3389/fphbi.2024.1387119

https://www.frontiersin.org/journals/photobiology
https://www.frontiersin.org
https://doi.org/10.3389/fphbi.2024.1387119


2.5 Pigment extraction and quantification

Pigments were quantified by High Performance Liquid
Chromatography (HPLC, Agilent Technologies 1,200 Series,

Agilent, United States). Culture samples were filtered onto
25 mm GF/F glass fiber filters (Whatman™, United Kingdom) in
the cold laboratory, immediately frozen in liquid nitrogen and
stored at −80°C until further analysis. Before extraction, 50 μL of

TABLE 1 Synthesis of all parameters measured in this study.

Measurement Parameter (short name, unit.)

Measured for each sampling point Rapid Light Curve (rETR vs. E-light intensity) Dark-acclimated photochemical efficiency (FV/FM, rel. unit.)

Maximum relative electron transport rate
(rETRmax, μmol electrons m−2s−1)

Light usage efficiency (α, μmol electrons m−2s−1 per µmol photons m-2 s-1)

Light saturation coefficient (Ek, µmol photons m-2 s-1)

Light intensity for reaching rETRmax (Eopt, µmol photons m-2 s-1)

Rapid Light Curve (NPQ vs. E) Maximal NPQ induced for the highest intensity of the Rapid Light Curve (NPQmax, rel.
unit.)

Light intensity for reaching 50% of NPQmax (E50NPQ, μmol photons m−2s−1)

PS II excitation allocation Quantum yield of photochemical energy conversion in photosystem II
(PSII, ϕPSII, rel. unit.)

Quantum yield of regulated non-photochemical energy loss in PSII
(ϕNPQ, rel. unit.)

Quantum yield of non-regulated non-photochemical energy loss in PSII
(ϕNO, rel. unit.)

Pigment content Intracellular Chlorophyll a content (Cellular Chl a, pg cell-1)

Chlorophyll c (Chl c, mol 100 mol Chl a −1)

Fucoxanthin (Fx, mol 100 mol Chl a −1)

β -Carotene (β-Car, mol 100 mol Chl a −1)

Diadinoxanthin (Ddx, mol 100 mol Chl a −1)

Diatoxanthin (Dtx, mol 100 mol Chl a −1)

De-epoxidation state (DES, %)

Sum of photosynthetic pigments (PPH, pg cell-1, Chl a+Chl c + Fx+β-Car)

Cell count Cells concentration (cells, mL-1)

Growth rate (µ, d-1)

Hourly growth rate (µH, h-1)

Measured after 52 h of
experiment

Elemental composition Intracellular Carbon content (Cellular C, pg cell-1)

Intracellular Nitrogen content (Cellular N, pg cell-1)

Carbon-Nitrogen ratio (C/N, g g-1)

Chlorophyll a -Carbon ratio (Chl a/C, mg g-1)

Dry weight (dw, mg L-1)

Photosynthesis vs .light intensity-(P-E
curves)

Maximal Carbon fixation (Pmax, mg C mg Chl a−1 h-1)

Net primary production (NPP, mg C mg Chl a−1 d-1)

Gross primary production (GPP, mg C mg Chl a−1 d-1)

Light usage efficiency
(P-α, mg C mg Chl a−1 h-1 per µmol photons m-2 s-1)

Light saturation coefficient (P-Ek, µmol photons m-2 s-1)

Light intensity for reaching Pmax (P-Eopt, µmol photons m-2 s-1)
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internal reference apo-carotene (trans-b-Apo-80-carotenal,
1.98 mg L-1) was added to the 3 mL extraction buffer (100%
methanol HPLC grade) for each sample and to the blanks. Filters
were ground by sonication (Sonicator Ultrasonic Processor XL
2010) for 12 s on ice and centrifuged for 5 min at 3,700×g. The
extracts were filtered through a 0.22 μm polytetrafluoroethylene
syringe filter and placed in an automatic sampling vials filled with
argon to limit oxidation. A volume of 100 μL was injected into a
C8 Symmetry® column (150 × 4.6 mm; 3.5 μm, Waters, France) of
the HPLC system. Elution by the solvent gradient was monitored by
a P4000 Thermo Separation (TSP) pump as indicated in Zapata et al.
(2000). The pigments were detected with a TSP UV 6000 LP
absorbance detector (400–700 nm). Pigment quantification was
carried out using pigment standards provided by D.H.I. Water &
Environment (Horsholm, Denmark) and the internal reference
(apo-carotene). The de-epoxidation state of diadinoxanthin in
diatoxanthin (DES) was calculated as in Equation 1:

DES � Dtx

Ddx +Dtx
× 100 (1)

2.6 Photosynthetic performance

A blue light source (λ = 450 ± 20 nm) Pulse Amplitude
Modulated (PAM) fluorometer (WATER-ED/B, Heinz Walz
GmbH, Germany) was used to measure the photosynthetic
performance of cultures on dark acclimated (30 min) samples.
Rapid Light Curves (RLCs) were performed with eight 30 s steps
of increasing light intensity from 0 to 420 µmol photons m-2 s-1. The
dark-acclimated photochemical efficiency of photosystem II (PSII,
FV/FM) was calculated as in Equation 2:

FV/FM � FM − F0

FM
(2)

were F0 and FM are, respectively, the minimum and maximum levels
of dark acclimated chlorophyll fluorescence. The relative electron
transport rate (rETR) was calculated as in Equation 3:

rETR � E ×
FM′ − F′

FM′
(3)

where E is the light intensity, and F’ and FM’ are, respectively, the
steady-state and maximum fluorescence levels of light acclimated
cells. The determination of rETR for each of the eight intensities of
the RLCs allowed to build rETR vs. E curves that were fitted
according to Eilers and Peeters (1988) in order to extract
photosynthetic parameters (see Barnett et al., 2015): rETRmax, α,
Ek, and Eopt; see Supplementary Table S1 for definitions.

The ouput of the RLCs also allowed to calculate the non-
photochemical quenching (NPQ) as in Equation 4:

NPQ � FM − FM′( )

FM′
(4)

The determination of NPQ for each RLCs step allowed to build a
NPQ vs. E curve used to estimate E50NPQ by fitting it with the model
of Serodio and Lavaud (2011). Additionally, the maximal NPQ
(NPQmax) was the maximal value obtained for the highest RLC step
(420 µmol photons m-2 s-1).

The partitioning of absorbed excitation energy in PSII was
determined by the complementary PSII quantum yields method
(Hendrickson et al., 2004; Klughammer and Schreiber, 2008; Xu
et al., 2019), and computed as: ΦPSII = (FM′−F′

FM′ ), ΦNPQ = F′
FM′ − F′

FM
and

ΦNO = ( F′FM
); (see Table 1 for definitions).

Under our growth conditions, F. cylindrus shows an absorption
coefficient of 0.86 (unitless) for the Water-PAM blue light (450 nm)
and of 0.39 (unitless) for the growing “white” light spectrum. F’ and
FM’were measured during RLC at 16 µmol photons m-2 s-1 providing
13.8 µmol photons m-2 s-1 of photosynthetic useable radiation, PUR,
equivalent to 34.5 µmol photons m-2 s-1 of “white” light PAR as used
for the photoperiod treatments (i.e., the RLC light intensity the
closest to our experimental PAR of 30 µmol photons m-2 s-1).
Absorption coefficient and PUR were calculated as described by
Guérin et al. (2022).

2.7 Production performances

The production vs. light curve (P vs. E, Steeman-Nielsen, 1975)
were measured by adding 20 μL of a solution of 74 MBq mL-1 of
H14CO3 (GE Healthcare, United States) to 40 mL of a culture
sample. Then, 28 subsamples of 1 mL were illuminated for
20 min at increasing light intensities from 0 to 442 μmol m-2 s-1

photons at 0°C. Furthermore, six supplementary sub samples were
incubated for 20 min and 24 h, under the culture respective growth
light intensity and photoperiods (for 24 h incubation), to quantify
the net and gross primary production respectively (NPP and GPP).
Immediately after the extinction of the light, 50 μL of buffered
formalin was added to each incubation vial to stop the reaction.
Samples were acidified with 250 μL of 50% HCl (v./v.) for at least 3 h
to allow the venting of inorganic 14C (Poulain et al., 2014) before
liquid scintillation counting in a Tri-Carb2910 TF (Perkin Elmer,
United States). The P vs. E curves were fitted to the equation of Eilers
and Peeters (1988) to compute the parameters Pmax, P-α, P-Ek and
P-Eopt (see Table 1 for definitions).

2.8 Statistical analysis

A one-way ANOVA followed by Tukey’s HSD post hoc test were
used to tests differences in the measured parameters means between
treatments (Supplementary Table S1). Normality of residuals and
homogeneity of variances were tested using Shapiro-Wilk and
Bartlett’s test respectively. Analysis were performed using R
version 4.2.2 (2022-10-10).

3 Results

3.1 Photoacclimation to seasonal
photoperiod

The growth rate (µ, Figure 3A) increased with daylength and
reached its maximum (0.25 ± 0.04 d-1) for the cells acclimated to 18 h
Light: 6 h Dark (18L:6D). Pmax (Figure 3; Table 1 for the definition of
all parameters) decreased with increasing daylength and was close to
0 under 0L:24D. The gross primary production (Figure 3B)
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increased with the daylength, while the net primary production
(Figure 3B) followed the same trend as the growth rate. The
intracellular C (Table 2) was maximal for 6L:18D cells (19.2 ±
2.7 pg cell-1) and decreased with the increase in daylength until
reaching a minimum for 18L:6D (3.10 ± 0.5 pg cell-1). The C/N
(Table 2) was relatively similar between photoperiods (around 5.1 ±
0.5 g g-1) as well as the Chlorophyll a (Chl a)/C (20.2 ± 5.0 mg g-1),
although the lowest and highest were observed under 6L:18D and
24L:0D, respectively.

Intracellular Chl a (Figure 3) increased with daylength, and the
highest values were observed at both extreme photoperiods (0L:24D
and 24D:0L, Figure 3). The photosynthetic pigments (Chl c and β-
Carotene, fucoxanthin, Figure 3; Table 2) remained stable relative to
Chl a among photoperiods, at the exception of fucoxanthin which
decreased with daylength. Photoprotective Ddx and Dtx (Table 2)
contents nearly doubled from 6 h to 18 h daylength and reached a
maximum under 0L:24D (20.7 ± 0.6 mol 100 mol Chl a−1). The de-
epoxidation state of Ddx into Dtx (DES, Figure 3) was low and
similar (average 7.3% ± 0.7%) under 6L:18D, 12L:12D and 18L:6D
and reached a significant maximum under 24L:0D (34.1% ± 4.6%).

FV/FM (Figure 3) was the highest under 0L:24D (0.660 ± 0.005)
and 12L:12D (0.65 ± 0.01). No significant differences have been
found between the three other treatments with a value of 0.62 ± 0.01.
ΦPSII (Figure 3) was maximal for 12L:12D and 18L:6D growing cells

and divided by a factor of three under 0L:24D. rETRmax (Figure 3)
was similar for 6L:18D and 12L:12D growing cells (average 21.1 ±
1.0) and the lowest under 0L:24D. NPQmax (Figure 3) was the
highest under 0L:24D and 18L:6D (1.5) and halved under 24L:0D.
ΦNPQ (Figure 3) was maximal under 0L:24D and halved under the
other light conditions (average 0.10 ± 0.03) while ΦNO was similar
under all photoperiods (average 0.61 ± 0.04). E50NPQ (Table 2) was
the highest under 12L:12D (152 ± 39 µmol photons m-2 s-1) and the
lowest under 24L:0D and 0L:24D.

3.2 Photoperiodic regulation of
photosynthesis

Beyond the above described photoacclimation status based on
average ± SD of three independent cultures monitored during 52 h,
many of the examined parameters showed daily variations under
light:darkness alternation, although the light intensity was kept
stable (30 µmol photons m-2 s-1) during the light period.

Cultures grown under 6L:18D, 12L:12D and 18L:6D regimes
showed a steady increase of the hourly growth rate (μH, h-1,
Figure 4A) from the beginning of the light period reaching a
maximum after 4–6 h, followed by a plateau (12L:12D and 18L:
6D treatments), and a decrease to a minimum during darkness

FIGURE 3
Photophysiological parameters in (F) cylindrus grown under five different photoperiods 0 h Light: 24 h Darkness (0L:24D), 6L:18D; 12L:12D; 18L:6D;
24L:0D. Daily growth rate (μ, d-1, histograms panel (A), dark-acclimated photochemical efficiency (FV/FM, rel. unit, dots panel (B); Gross (GPP,mg C d-1 mg
Chla−1, sum of color and grey histograms panel (B) and Net (NPP, mg C d-1 mg Chla−1, colored histograms panel (B) primary production, maximal carbon
fixation (Pmax, mg C h-1 mg Chla−1, dots panel (B); cellular chlorophylla (Chla, pg cell-1, colored histograms panel (C) and sum of photosynthetic
pigments including Chla (PPH, pg cell-1, grey histograms panel (C); maximal non-photochemical quenching (NPQmax, rel. unit colored histograms panel
(D), maximum relative electron transport rate (rETRmax, μmol electrons m−2 s−1, dots panel (D); quantum yield of non-regulated non-photochemical
energy loss in PSII (ϕNO, rel. unit, light grey histograms panel (E), quantum yield of regulated non-photochemical energy loss in PSII (ϕNPQ, rel. unit. grey
histograms panel (E), quantum yield of photochemical energy conversion in photosystem II (ϕPSII, rel. unit. colored histograms panel (E); photoprotective
xanthophyll pool per 100 Chlorophylla (Ddx + Dtx, mol 100 mol Chla−1, colored histograms panel (F), de-epoxidation stated (DES, %, dots panel (F). Data
are themean values of independent biological triplicates; sampling at the last time point for µ, GPP, NPP, Pmax, or averaged over the 52 h ofmonitoring for
the other parameters.
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(Figure 4A). In parallel, FV/FM (Figure 4B) rapidly increased during
the first hours of the light period, reaching a maximum before the
middle of the light period. FV/FM decrease systematically started
before the onset of the darkness period, and continuing until light
onset (Figure 2B b, 6L:18D, 12L:12D and 18L:6D). This pattern was
modelled onto the length of the light period (i.g. the longer the light
period, the later the value reach is maximum) and repeated itself
over the next 24 h of monitoring. In contrast, FV/FM values were
stable under treatments with no light:darkness alternation
(Figure 4B, 0L:24D and 24L:0D). Other photosynthetic and
photoprotective parameters (rETRmax, NPQmax, Figures 5A, B),
as well as the photoprotective pigments (Ddx + Dtx, DES,
Figure 5C; Supplementary Figure S8) showed a similar pattern of
daily variations with some modulations, while all of them showed
the same stable pattern as FV/FM under 0L:24D and 24L:0D
(Supplementary Figures S2–S12).

However, different types of patterns were observed during the
light period: i) decrease after reaching their daily maximum
(i.e., rETRmax NPQmax and Ddx + Dtx Figure 5 also Ek, Eopt,
ϕPSII Supplementary Figures S2, S3, S5), ii) a steady increase
during the light period for reaching a maximum at the light-
darkness transition (i.g. E50NPQ and ϕPSII, Supplementary
Figures S5 and S7) at the exception of the 18L:6D which fall
in to the first group, iii) decrease during the first hours of

illumination before increasing again (ϕNO Supplementary
Figure S6). Also, for some parameters, 6L:18D cells showed a
different pattern than 12L:12D and 18L:6D cells: i) Ek 6L:18D
(Supplementary Figure S2) showed an inversed pattern
compared to 12L:12D and 18L:6D cells, i.e., it decreased at
light and increased under darkness; ii) NPQmax 6L:18D
(Figure 5B) was stable under darkness when it increase for
12L:12D and 18L:6D cells; iii) Ddx + Dtx 6L:18D (Figure 5C)
reached its maximum by the end of the light period instead of the
middle for 12L:12D and 18L:6D cells; iv) 6L:18D β-Carotene
synthesis (Supplementary Figure S12) showed daily variations
when it was steady for 12L:12D and 18L:6D cells.

When plotted as a function of the Zeitgeber Time (ZT), a
standardized 24-hour cycle where 0 indicates the beginning of
the illumination and 12 the end of the illumination, and as a
function of the cumulative light dose (LD) received over the
daylight period (Figure 6), some synchronisation appeared either
with ZT and/or LD, depending on parameters. Most photosynthetic
parameters daily oscillations were synchronized with the light
period, reaching their maximum around the sixth hour of ZT
(FV/FM and rETRmax, Figures 6A, B) but also earlier at the fourth
hour (α and Eopt, Supplementary Figures S14A, C). The same holds
true for the photochemistry energy usage with maximum at the
fourth, 6 and 10thh, for ΦPSII, ΦNO and ΦNPQ respectively

TABLE 2 Photophysiological parameters in F. cylindrus cells acclimated to five different photoperiods.

Photoperiod (Light:Dark hours) 0L:24D 6L:18D 12L:12D 18L:6D 24L:0D

Growth, Elemental composition and Production Cellular C 13.7 ± 1.1 19.2 ± 2.7 10.6 ± 1.2 3.10 ± 0.5 11.2 ± 0.7

C/N 5.66 ± 0.05 5.00 ± 0.3 4.92 ± 0.06 5.43 ± 0.2 4.63 ± 0.2

Chl a/C 20.6 ± 0.7 15.3 ± 3.3 20.7 ± 2.8 20.1 ± 1.9 24.3 ± 0.1

P-α 0.11 ± 0.02 0.16 ± 0.02 0.08 ± 0.01 0.08 ± 0.01 0.04 ± 0.02

P-Ek 2.10 ± 0.1 22.2 ± 0.9 29.4 ± 1.7 35.7 ± 4.2 16.1 ± 0.8

P-Eopt 111 ± 27 180 ± 13 219 ± 4.7 137 ± 7.1 93.3 ± 6.0

Photosynthetic pigments Chl c 19.1 ± 0.8 21 ± 1.2 21.2 ± 1.2 21 ± 2.4 22 ± 1.3

Fx 57.0 ± 2.0 66.4 ± 6.5 55.5 ± 1.7 48.8 ± 3.2 57.3 ± 2.7

β-Car 2.30 ± 0.08 3.30 ± 0.75 2.88 ± 0.13 2.75 ± 0.2 2.74 ± 0.08

Photoprotection pigments Ddx 18.3 ± 0.6 9.41 ± 3.1 11.1 ± 1.4 15.9 ± 2.1 8.8 ± 0.63

Dtx 2.44 ± 0.13 0.66 ± 0.37 0.87 ± 0.36 1.38 ± 0.48 4.63 ± 0.97

Photosynthetic parameters α 0.18 ± 0.02 0.33 ± 0.06 0.38 ± 0.04 0.39 ± 0.05 0.30 ± 0.02

Ek 14.8 ± 1.6 58.1 ± 11 57.4 ± 8.5 56.2 ± 8.6 52.5 ± 1.8

Eopt 63.8 ± 5.6 154 ± 19 156 ± 22 153 ± 18 187 ± 8.5

Non-photochemical quenching E50NPQ 32.7 ± 1.3 91.7 ± 10.0 152 ± 39 117 ± 33 43.6 ± 4.0

NPQmax/Ddx + Dtx 0.07 ± 0.007 0.09 ± 0.03 0.10 ± 0.03 0.09 ± 0.03 0.055 ± 0.01

NPQmax/Dtx 0.61 ± 0.06 1.64 ± 1.4 1.53 ± 0.96 1.30 ± 0.69 0.18 ± 0.04

ETR and NPQ derived parameters E50NPQ/Ek 2.20 ± 0.20 1.62 ± 0.35 2.67 ± 0.57 2.21 ± 0.47 0.75 ± 0.13

Eopt/Ek 4.35 ± 0.45 2.58 ± 0.41 2.68 ± 0.36 3.00 ± 0.28 3.57 ± 0.15

E50NPQ/Eopt 0.52 ± 0.06 0.58 ± 0.09 0.99 ± 0.36 0.76 ± 0.13 0.27 ± 0.05

Data correspond to the average value for all sampling points for a triplicate of cultures for each photoperiod. For the growth, elemental composition and production data correspond to the last

sampling time point. For parameters definition and units see Table 1.
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(Supplementary Figure S13) and the non-photochemical quenching
parameters (Figures 6C, D). However, NPQmax (Figures 6C, G),
ΦNPQ (Supplementary Figures S13B, E) which while having a
maximum between the fourth to sixth hours of the ZT the
maximum also coincides with 0.5 LD at the exception of ΦNPQ

6L:18D where a maximum was reach during the dark period.
Regarding pigments, only the β-carotene and Ddx + Dtx
synthesis daily oscillations coincide with ZT (Figure 6D and
supplementary 16. D), while fucoxanthin and the chlorophylls
were not (Supplementary Figure S16).

4 Discussion

4.1 Photoacclimatation to
increasing daylength

Fragilariopsis cylindrus grows efficiently under close to natural
conditions, i.e., low temperature (0°C) and low light intensity
(30 µmol photons m-2 s-1), and it shows a maximum growth rate
(0.25 ± 0.05 d-1) in part with previous reports (Arrigo et al., 2010;
Kropuenske et al., 2010; Morin et al., 2020; Croteau et al., 2021;

FIGURE 4
Hourly growth rate (μH, h-1, panel (A) and dark-acclimated photochemical efficiency (FV/FM, rel. unit, panel (B) recorded at regular time points over
52 h in (F) cylindrus grown under five different photoperiods 0 h Light: 24 h Darkness (0L:24D), 6L:18D; 12L:12D; 18L:6D; 24L:0D. The white and grey
sections correspond to the light and darkness periods, respectively.

FIGURE 5
Maximum relative electron transport rate (rETRmax, μmol electrons m−2 s−1, panel (A), maximal non-photochemical quenching (NPQmax, rel. unit,
panel (B) and photoprotective xanthophyll pool per 100 mol chlorophylla (Ddx + Dtx, mol 100 mol Chla−1, panel (C) recorded at regular time points (see
Figure 2) over 52 h in (F) cylindrus grown under five different photoperiods 0 h Light: 24 h Darkness (0L:24D), 6L:18D; 12L:12D; 18L:6D; 24L:0D. Thewhite
and grey sections correspond to light and darkness periods, respectively. Data are the mean values n = 3 ± SD. The same time series for the other
parameters shown in Table 1 can be found in Supplementary Figures S2–S12. Data are the mean values n = 3 ± SD.
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Croteau et al., 2022). High FV/FM and close C/N and Chl a/C values,
as well as similar Ek and Eopt values, between photoperiods witnesses
of healthy, non-nutrient limited and steady-state acclimated cultures
(Frigstad et al., 2014; Niemi et al., 2015; Kvernvik et al., 2021). Using
a light intensity which matches the growth optimum for F. cylindrus
(Morin et al., 2020; Croteau et al., 2022), we observed a proportional
growth rate increase with daylength until it reached a maximum
with 18 h of light, i.e., further increase in daylength showed to have
no further benefits (Guérin et al., 2022). This pattern is explained by
a precise balance between the pigment content, photochemistry and
photoprotection, which ultimately defines a certain level of
production and growth at 0°C. F. cylindrus adjusted its light-
harvesting and production capabilities with the light dose,
i.e., with more light energy available it decreased its Fx content
(but not Chl c and β-carotene), P-α as well as Pmax, likely by
adjusting the Rubisco content (Lacour et al., 2022), in order to

maintain its investment in light energy harvesting versus C fixation
(Chl a/C), as well as its optimal intensity for C fixation (P-Ek). In
parallel, the maximal potential for NPQ (NPQmax) increased
proportionally with the total pool of xanthophylls Ddx + Dtx
and Dtx content with constant DES (≈7%). This general pattern
of response was achieved by precisely adjusting the PSII
photochemical light energy usage versus energy losses as
illustrated by similar values for effective (ΦPSII, ΦNPQ, ΦNO) and
maximal (FV/FM, rETRmax) parameters with 6 h, 12 h and 18 h
daylength. This PSII activity adjustment was paralleled with the
central maintenance of the light intensity range between the
maximal versus the optimal photochemistry (Eopt/Ek).

This general picture however needs to be modulated with two
main observations. First, the 6 h additional light from 6 L to 12 L and
from 12 L to 18 L did not show the same features. With 12 h light, the
light dose acclimation was close to reaching a plateau (reached with

FIGURE 6
Dark-acclimated photochemical efficiency (FV/FM, rel. unit, panels (A, D), maximum relative electron transport rate (rETRmax, μmol electrons m−2 s−1,
panels (B, E), maximal non-photochemical quenching (NPQmax, rel. unit, panels (C, F) and photoprotective xanthophyll pool per 100 mol chlorophylla
(Ddx +Dtx, mol 100mol Chla−1, panels (D andG) plotted as function of the Zeitgeber time (h, panels (A–D) or the light dose received during [mol photons
m-2 d-1, panels (E–H)]. Measurements were performed at regular time points over 52 h in Fragilariopsis cylindrus cells grown under three different
photoperiods (6 h Light-L:18 hDarkness-D, 12L:12D; 18L:6D) (complete time series in Figures 2, 3, and Supplementary Figures S2–S12). Data are themean
values n = 3 ± SD, see Table 1 for parameters definition. Coloured lines are fitted curves (loess fit) of the mean value.
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18 h) while with 6 h, F. cylindrus did not reach its maximal
acclimation capacity. This was illustrated by a lower Chl a/C and
growth rate, when compared to 12L:12D conditions. Our second
observation is the fact that when the photoperiod increases from
18 h to 24 h light, the response of cells was not directly related to the
increase in light dose (from 2 to 2.67 mol photons m-2 d-1), i.e., in
addition the cells had to face the absence of regular darkness periods
under 24 h day length. The combination of a higher light dose with
the absence of regular darkness periods is known to respectively
generate a stronger excitation pressure on PSII (Lepetit et al., 2013;
Lepetit et al., 2017) and a disruption of photodamaged PSII repair in
darkness (Xu et al., 2017), driving imbalance between functional and
non-functional PSII, and a decrease in photosynthetic efficiency
(Lavaud et al., 2016). Here, it was illustrated by a slightly but
significantly lower FV/FM, ΦPSII and rETRmax which was
nevertheless not reflected in Pmax nor in the growth rate. The
somewhat maintenance of photochemistry was ensured by a
more effective dissipation of the excess light energy (ΦNPQ)
supported in part by a higher DES and content in Dtx. However,
NPQmax was stable, indicating that additional Dtx molecules were
not all involved in NPQ (as illustrated by a lower NPQmax/Dtx +
Dtx), but instead likely participated in direct ROS scavenging
(Lepetit et al., 2010; Lavaud and Lepetit, 2013; Schuurmans et al.,
2015); and/or the number of Dtx binding sites, provided by LHCx
proteins, was stable (Lepetit et al., 2013; Lepetit et al., 2017; Buck
et al., 2019). It is noteworthy that the synthesis of additional Dtx
molecules was “de novo”, i.e., with no change in Ddx content
(Supplementary Figure S17), and it amounted to 1/3 of total Dtx
by the end of the 24L:0D treatment monitoring. This feature was
reported before in several temperate diatom species (Lavaud et al.,
2004; Goss et al., 2006; Blommaert et al., 2017), and was
hypothesised to bring additional photoprotection under strong
and prolonged light stress (Lavaud and Lepetit, 2013; Blommaert
et al., 2017). In parallel, the irradiance range where photochemistry
is optimal/maximal was stretched (higher Eopt/Ek and P-Eopt/P-Ek)
(Falkowski and Raven, 2013) and the induction of NPQ got closer to
Ek (E50NPQ/Ek closer to 1), and the opposite to Eopt. This overall
strategy allowed the cells to make the most of the excess in light
energy without modifying their ability to harvest light (no major
change in pigment content, in α and P-α), as proposed before
(Lacour et al., 2020), driving a smooth transient acclimation
towards 24L:0D conditions. However, mitigating constant
illumination is more costly for the cells, as highlighted by the
greater difference between NPP and GPP, compared to cells
growing under light:dark cycle, which resulted in the observed
lower growth rate.

Finally, it is worth noting the apparent discrepancy between
photochemistry performances and production parameters: while the
former are mainly similar among photoperiods (except for 24L:0D),
the later showed a more contrasted response with a significantly
higher Pmax for the shortest daylength (6 h) and decreasing values
with increasing daylength. Such pattern suggests that for 6L:18D, the
rate of C fixation is likely maximized to compensate for the low light
dose in order to provide the necessary energy to meet the needs for
growth and nighttime processes (such as PSII repair; Xu et al., 2017).
It therefore means that under 6L:18D most of the photosynthetic
electrons are likely used for C fixation, while when daylength is
longer (12 h–24 h) a larger proportion is diverted to other processes

among which NPQ is not the major one as it does not tremendously
increase, even under 24 h daylength. Such decoupling between the
photochemical electron transport rate and C fixation is not
uncommon in cold adapted diatoms (Goldman et al., 2015;
Hancke et al., 2015; Lacour et al., 2017; Schuback et al., 2017;
Lacour et al., 2022). These authors proposed that part of the
photosynthetic electrons is used through alternative pathways to
produce ATP and NAPDH before entering the Calvin cycle
machinery, thus avoiding the need to reoxidize the newly fixed
C, thus allowing a more efficient use of light energy. The evidence of
such cyclic electron flow(s) has been specifically reported in F.
cylindrus (Goldman et al., 2015; Lacour et al., 2017). This process
may play a major role in the acclimation of F. cylindrus, and other
polar diatoms, to changes in daylength and light dose, and it
supports the above described fine tuning between light
harvesting, photochemistry, photoprotection and production
(Lacour et al., 2022).

4.2 Acclimation to continuous darkness

Acclimation of polar diatoms and F. cylindrus to prolonged
darkness (from 7 days to 3 months) has been explored before
(Mock et al., 2017; Kvernvik et al., 2018; Kennedy et al., 2019;
Lacour et al., 2019; Morin et al., 2020; Joli et al., 2024). It showed a
drastically different pattern than acclimation to photoperiods or
continuous light. While PSII remained functional (high FV/FM),
the maximal (rETRmax) and effective (ΦPSII) photochemical
efficiency, and the production (Pmax), were dramatically
lowered. We propose this is due to a decrease in the number of
active, and possibly total, PSII (Lavaud et al., 2016), as also
suggested by the decrease in β-carotene which is mainly
associated with PSII reaction centers in diatoms (Nagao et al.,
2020; Nagao et al., 2022). However, F. cylindrus was able to
preserve its light-harvesting capacity as illustrated by the stable
contents in photosynthetic pigments (Chl a, Chl c and Fx).
Nevertheless, most of the harvested light energy was diverted to
unregulated passive energy losses (high but similarΦNO compared
to photoperiods) and NPQ (more than doubled ΦNPQ), which
explains the low remaining fraction used for photochemistry
(2–3 times lower ΦPSII). Because of the slowed photochemistry,
and whole metabolism (Mock et al., 2017; Kennedy et al., 2019), a
sudden return to light with an intact light-harvesting capacity will
likely generate harmful photooxidative stress (Lacour et al., 2019;
Morin et al., 2020). To prevent such situation, a high
photoprotection potential needs to be ensured (Lacour et al.,
2019; Morin et al., 2020). This was illustrated here by the
largest pool size of Ddx + Dtx which, together with a high DES,
ensured a strong constitutive content of Dtx, only overpassed by
continuous light acclimation. As a result, NPQmax was the highest
(with the 18L:6D treatment) and it was directly related to the
increased ΦNPQ (contrary to 18L:6D). Additionally, to ensure an
efficient induction of NPQ for weak but potentially stressful
irradiances (Lacour et al., 2019; Morin et al., 2020), E50NPQ was
lowered down (32.7 µmol photons m-2 s-1) close to the intensity to
which the cells were acclimated to, i.e. 30 μmol photons m-2 s-1.
Here too, but to a lower extent than under continuous light,
NPQmax/Dtx was <1 suggesting that probably many Dtx
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molecules did not participate to NPQ but served as ROS scavengers
(Lacour et al., 2020).

These results well support the crucial role that NPQ plays in
allowing diatoms to maintain their light-harvesting capacity and the
integrity of their PSII under changing light conditions, an ability that
is especially crucial when metabolic rates are slowed down by low
temperatures (Lacour et al., 2020). This is a straightforward way to
make the best out of the rapidly changing light conditions at the
bottom horizon and underneath the sea-ice during the end of winter
through spring in the Arctic Ocean (Croteau et al., 2022) (see
Figure 1). Especially, it helps polar diatoms to resume their
photosynthetic productivity and growth rapidly and efficiently
under extremely low light at the end of the polar night (Kvernvik
et al., 2018; Randelhoff et al., 2020; Hoppe, 2021).

4.3 Photoperiodic regulation of
photosynthesis

Most of the photosynthetic parameters (photochemistry and
photoprotection) we measured showed repeated daily variations
when cells were exposed to a light:darkness alternation with stable
low light intensity. It holds true for the photoprotective pigments Ddx
and Dtx, and to a lesser extent for β-carotene, but not for the
chlorophylls nor Fx. Because of the relatively short duration of the
monitoring (52 h) and the low sampling frequency (every 4 h
maximum), a reliable cycle analysis of rhythmic oscillations was
not possible. Nevertheless, data visualisation (as in Figures 4, 5)
shows that photosynthetic parameters values and Ddx, Dtx
contents mostly vary, with a rhythm modelled onto the light:
darkness alternation over a ca. 24 h period, and that for most of
them the period of rhythm depends on the daylength reaching their
maximum before/around ZT 6 h, i.e., corresponding to the middle of
the “day.” However, due to the shorter daylength, several parameters
did not follow this trend for the 6L:18D treatment, especially
photoprotection parameters (ΦNPQ, NPQmax, Ddx, Dtx) were often
controlled by the light dose in these conditions.

The photoperiodic rhythms shown by ΦPSII, Fv/FM and rETRmax

indicate a fine modulation of photochemistry in F. cylindrus.
Interestingly, NPQmax oscillated in parallel with these parameters,
suggesting a strong link between the daily regulation of
photochemistry and photoprotection capacity. Moreover, many of
the photoprotection parameters (NPQmax, ΦNPQ, DES, Ddx and Dtx
contents, Figure 6, Supplementary Figures S13, S15) showed a
maximum around the middle of the light period, with the
noticeable exception of DES under 18L:6D, which maximum was
always reached earlier (during the first quarter of the light period).
These observations demonstrate that NPQ is not a binary “ON/OFF”
mechanism. Instead, it is finely regulated through a specific rhythm
that is modelled onto the photoperiod, i.e., both the light:darkness
alternation and the light dose. However, when the daylength is
shorter, it appears that the modulation of NPQ extent is shifted
toward a more direct light dose-dependent regulation.

The circadian rhythmicity of photosynthesis in higher plants,
when measured via dynamic chlorophyll fluorescence, reflects an
underlying inner (“endogenous”) circadian clock regulation
(Haydon et al., 2013; Dodd et al., 2015; Yarkhunova et al., 2018).
In unicellular algae, a molecular circadian clock has been described

only for a handful of species (Hu et al., 2017), including very few works
dealing with rhythmic photosynthetic activity (Harding et al., 1981;
Mackenzie and Morse, 2011). In the temperate model diatom
Phaeodactylum tricornutum, there have been recent proofs for the
existence of such circadian clock (Annunziata et al., 2019). With the
present dataset, it is not possible to conclude on the existence of a
circadian clock in F. cylindrus. Nevertheless, the question is open about
the existence of an underlaying photoperiodic 24 h-based rhythmic
regulation of the photosynthetic activity of F. cylindrus. Thanks to the
recent sequencing of F. cylindrus genome (Mock et al., 2017), the
analysis of F. cylindrus photoperiodic transcriptome will be essential to
establish with certainty the nature of the observed rhythms, and the
homology of the mechanisms in place in temperate and polar diatoms.
Nonetheless, as shown here, non-destructive in vivo chlorophyll
fluorescence appears to be an ideal tool for the integrative and
comprehensive monitoring of photophysiology rhythms.

5 Conclusion

Our findings shed new light on the temporal rhythms that govern
the photosynthetic machinery of the polar diatom F. cylindruswhere it
exists a photoperiodic 24 h-based rhythmic oscillation of certain
aspects of the photophysiology, especially the PSII photochemistry
and the NPQ-related photoprotection, including the synthesis of Ddx
and Dtx xanthophylls. Because our experiments were performed in a
controlled environment under constant low light at 0°C, the
rhythmicity is not based on daily irradiance and temperature
variations as reported during field campaigns (see for instance
Schuback and Tortell, 2019). We believe that such photoperiodic
rhythmicity likely supports the optimisation of the light harvesting
and the use of light energy for C fixation via the daily fine-tuning of
photochemistry and excess energy dissipation (NPQ), necessary
under the extremely changing seasonal light conditions in the
Arctic Ocean (see Figure 1). From our results, and previous ones
(Lacour et al., 2020; Croteau et al., 2021; Guérin et al., 2022), it appears
that the fine balance between photochemistry and photoprotection is
essential, together with a strong capacity for NPQ, in supporting
sustained production and growth despite low light and temperatures,
over the broad range of photoperiods characteristic of the Arctic
spring and fall light climates. Under the two extreme photoperiods of
polar summer and winter, even if the rhythmicity of photosynthesis is
lost, the ability for a strong NPQ is crucial for maintaining functional
PSII and light-harvesting system, to be able to best exploit both
extremely harsh and limiting irradiances at 0°C (Lacour et al., 2020).
While the existence of an inner circadian clock in F. cylindrus remains
uncertain, this research underscores the need for further exploration
of the molecular processes governing photoperiodic regulation in
polar diatoms.

These microorganisms play a vital role in polar ecosystems and
offer insights into how life adapts to the challenges of climate change
in these extreme environments. In an era of shifting polar
environments due to climate change, understanding these
intricate rhythms is a key to deciphering the resilience and
adaptability of polar microalgae in a changing Arctic Ocean
landscape. Indeed, with earlier snow and ice melt and shifting
light conditions, the ability of F. cylindrus, and likely other polar
diatoms, to grow under a wide range of photoperiods, and as soon as
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the light intensity is sufficient (Randelhoff et al., 2020) may influence
the timing and duration of algal blooms, subsequently shaping the
availability of essential resources for higher trophic levels (Amiraux
et al., 2022). However, while in the future algal blooms will likely
occur earlier under shorter day length, algae will grow slower, as
shown here. At higher light intensity, sympagic diatoms, like F.
cylindrus, do not seem able to take advantage of the increase in the
energy available at low temperatures and will likely not grow faster
(Croteau et al., 2021; Guérin et al., 2022). Therefore, the duration of
sea-ice blooms might be limited by the duration of the iced season
and the melting rate of sea-ice. However, the warming surface waters
(i.e., generating higher growth rate, Guérin et al., 2022) in
conjunction with the increasing light intensity, might lead to a
possible intensification and acceleration of phytoplankton diatom
blooms, and increased primary production, depending on sufficient
nutrient stocks (Ardyna and Arrigo, 2020).

In essence, our research not only delves into the intricacies of
photophysiology, but also paints a portrait of resilience and
adaptability in the face of Arctic environmental upheaval. Further
research in this area is essential to grasp the broader consequences of
climate change on polar diatom productivity and the ecosystem
services it supports.
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