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Photosynthesis which harvests energy from the Sun, whether it occurs in prokaryotes
or eukaryotes, is a key biological process that ultimately nourishes the biosphere. The
molecular efficienciesof thephoto-physical andphysiological processes are intricately
tied not only to the photo-physics/enzymatic kinetics of the proteins involved, but also
to their spatial co-localization in membrane microdomains or in cell compartments
(e.g., in membrane-less organelles). Similar heterogeneity in function can be found
also between cells in isogenic cell cultures (phenotypic heterogeneity) or in filaments
of phototrophic cells (e.g., heterocysts/vegetative cells in nitrogen fixing
cyanobacteria). This review paper delves into the connection between the spatial
(co)-localization of biomolecules (lipids, RNA, DNA, proteins, membranes
compartments) and their functionality in situ. We highlight recent methodological
advances in the field (e.g., super-resolution microscopy, Raman micro-spectroscopy,
nanoSIMS, microsensors) and showcase applications of these methods in
understanding heterogeneity on single-cell and on population-scale level. This
paper thus aims to highlight the avenues that will help to unravel the molecular,
cellular and ecological mechanisms in photobiology by combining up-to-date
microscopy techniques with more traditional functional approaches.
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1 Introduction

Light-dependent metabolism in phototrophs is driven by photosynthesis, a key metabolic
process playing a pivotal role in the biosphere. The photophysics, photochemistry and light-
dependent metabolic processes in phototrophic cells and organelles (e.g., chloroplasts) are thus
focal topics in photobiology (Leister, 2023). These processes are influenced not only by the
molecular functions of proteins, lipids and pigments (e.g., absorption of pigmented proteins,
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electron-proton transporting proteins and energy transfer between
pigments) but they depend also on the architecture of the
membrane, the spatial heterogeneity and the co-localization of these
molecules (see examples for proteins nanospots of FtsH proteases
(Krynicka et al., 2023), CurT protein (Heinz et al., 2016),
microdomains and grana/stromal areas of photosystems (Pribil et al.,
2014; Strašková et al., 2019)). Additionally, the overall metabolism of a
community of phototrophs depends also on heterogeneity in the
metabolic activity amongst single cells, which results in spatial
gradients in cellular composition and metabolism. The spatial
heterogeneity of cellular metabolism is an important aspect in
understanding interactions among cells for instance in colonies of
phototrophs (e.g., Microcystis or Trichodesmium (Eichner et al.,
2023)), or in nitrogen fixing filamentous cyanobacteria (Hania et al.,
2023). Importantly, such heterogeneity can be also observed in
genetically identical microbial (monoclonal) cultures as a difference
in cell composition or in metabolic behaviour (i.e., phenotypic
heterogeneity) in microbial cultures (see reviews on the topic in
(Ackermann, 2015; Van Boxtel et al., 2017) and practical examples
in Section 3 and in (Strašková et al., 2019; Masuda et al., 2020)).

The spatial heterogeneity within and amongst single cells is an
emerging topic in the field of photosynthesis, physiology and
photobiology of phototrophs that can be addressed at the
microscopic and mesoscopic scales. The first one is connected with
bio-membranes (e.g., nano- and microdomains of proteins (Johnson
et al., 2014; Koochak et al., 2018; Strašková et al., 2019) or lipids (Strahl
and Errington, 2017). A lesser-known heterogeneity at the microscale
is connected with membrane-less organelles both in chloroplasts and
in bacteria (Kerfeld et al., 2018); it includes bimolecular condensates
caused by liquid-liquid phase separation (Whitman et al., 2023),
microcompartments like carboxysomes (Savage et al., 2010; Sun
et al., 2019b)) or cyanobacterial structural proteins that can be
partially linked to membranes (Springstein et al., 2020).
Mesoscopic level heterogeneity deals with cell populations (Section
3). These approaches require application of various microscopy
(Section 2.1) and mesoscopic microsensor methods (Section 3.1.),
both capable of localizing and characterizing membrane/cytosol/cell
components or cell filaments with sufficient spatial resolution. The
application of such methods has already yielded some interesting
results, such as thylakoid membrane (TM) heterogeneity in the
photosynthetic function in single cells and organelles (e.g., the role
of grana/stroma TM organization in plants (Pribil et al., 2014) or
microdomains in cyanobacteria (Strašková et al., 2019), in addition to
the importance of chromosome polyploidy in cyanobacteria (Chen
et al., 2012; Ohbayashi et al., 2019; Liao and Rust, 2021) andmetabolic
heterogeneity in filamentous cyanobacteria (Popa et al., 2007). This
current paper will thus examine newly emerging methods applicable
for studying importance of spatial heterogeneity in the photobiology
of phototrophs.

2 Spatial heterogeneity within single
cells of phototrophs–questions
and methods

Traditionally, the complex mosaic of photosynthetic proteins
has been studied through in vitro methods such as Electron
Microscopy (EM) and Atomic Force Microscopy (AFM) (Zhao

et al., 2020; Weiner et al., 2022). However, the introduction of
advanced imaging techniques like Confocal Microscopy (CM) and
Super-Resolution Microscopy (SM) has revolutionized our ability to
investigate in vivo processes in phototrophs (see recent reviews
(Yokoo et al., 2015; Ovečka et al., 2022; Cui et al., 2023; Zhang et al.,
2023). These cutting-edge methods enable the exploration of
structures (Section 2.1) and dynamics (Section 2.2) covering
orders of magnitudes in scale, starting at the nanoscopic scale
(e.g., lipids, RNA molecules, plasmids and proteins), via the
microscopic scale (e.g., membrane domains and organelles) up to
individual cells, filamentous organisms, entire colonies and plant
tissues (Section 3.1). While some of these approaches target the
autofluorescence of the photosynthetic pigments, others rely on
fluorescent labelling of RNA, DNA or proteins. Distinguishing the
low fluorescent signal of such labels from the (high) background
autofluorescence which covers a wide spectral range can be
challenging and may require special method adaptations
including precise spectral control, differential photobleaching, or
fluorescence lifetime measurements (FLIM); for additional potential
artefacts when using fluorescent proteins labelling see Section 4.3.

Importantly, besides producing visually captivating images,
Live-Cell Imaging (LCI) can complement high-resolution EM
and AFM data by providing quantitative information on the
dynamics within cell membranes and sub-cellular compartments.
This is particularly important if one wants to understand the
significance of the dynamics of lipids, membranes and proteins
on the observed photobiology, for instance during variable light
conditions (Sarcina et al., 2006; Herbstova et al., 2012; Canonico
et al., 2020; Moore et al., 2020; Tay and Cameron, 2023). These up-
to-date LCI methods open-up new ways for scientific inquiry and
the exploration of photobiology of phototrophs that cannot be
addressed by in vitro methods. In the following subsections we
have summed-up two important avenues of photobiology in the field
of photosynthesis where LCI methods will greatly impact: (1) the
study of the slower processes of adaptation and the structure/
organization of TM/proteins/lipids/RNAs/DNAs (Section 2.1); (2)
to resolve fast dynamics in TM architecture/proteins/lipids/RNAs/
DNAs (Section 2.2).

2.1 Classical and super-resolution confocal
microscopy suitable for phototrophs

Various in vivo and in vitromicroscopy techniques are available
for investigating spatial heterogeneity in phototrophs, each
characterized by distinct physical principles and applications. In
vitro methods, notably AFM and EM, are widely employed in the
field (see e.g., (Bussi et al., 2019; MacGregor-Chatwin et al., 2019;
Zhao et al., 2020; Zhao et al., 2022; Garty et al., 2024). AFM operates
by visualizing samples through the measurement of forces between a
sharp tip and a sample surface whereas EM relies on the interaction
of an electron beam with the specimen. These methods offer
superior resolutions, that can reach up to 1 nm or better
(Hoogenboom, 2021), compared to in vivo techniques like
confocal microscopy employed in Live-Cell Imaging (LCI).
Confocal microscopy, based on fluorescence detection, yields
resolutions from approximately ~250 nm (in x-y) under
conventional conditions and 20–120 nm in super-resolution
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mode depending on the method. Unlike AFM and EM based
approaches the various LCI methods tend to not necessitate
additional sample preparation but more importantly provide a
wealth of complimentary information that address dynamic
responses to the environment. In the following paragraphs of this
review, we primarily focus on rapid 2D/3D live-cell imaging
methods, with some exceptions (e.g., nanoSIMS, Fluorescence In
Situ Hybridization–FISH). For further insights into in vitro imaging
methods offering the highest possible resolution for phototrophic
cells/membranes, we recommend consulting recent leading papers
in the field of AFM, EM and its alternatives such as cryo-electron
tomography and focused ion beam milling cryo-electron
tomography (Bussi et al., 2019; Zachs et al., 2020; Zhao et al.,
2020; Zhao et al., 2022; Wietrzynski and Engel, 2023).

The application of standard CM and SM in vivo methods have
already shed light on many open questions in photosynthetic
research; for instance how and where are the TM proteins
assembled into the thylakoid membrane (Sun et al., 2019a;
Huokko et al., 2021), and evidence of mosaic membrane protein
nanodomains (Johnson et al., 2014; MacGregor-Chatwin et al.,
2017) and microdomains (Strašková et al., 2019). LCI methods
also revealed slow dynamics of photosynthetic protein complexes
inside (Liu et al., 2012; Gutu et al., 2018; Rast et al., 2019; Krynicka
et al., 2023) and outside of TMs in the form of proteins/complexes
(Savage et al., 2010). LCImethods together with fluorescence tagging
also helped to explore dynamics of membrane-less organelles
containing RNA Helicase (Whitman Brendan et al., 2023), spatial
and temporal dynamics of cyanobacterial chromosome (Chen et al.,
2012; Liao and Rust, 2021), localisation of RNAs molecules during
protein synthesis (Mahbub et al., 2020) and the role of several
proteins (“structural determinants”) important for cyanobacterial
morphogenesis, shape and cell division (see references in
(Springstein et al., 2020)). Additionally, 2D and 3D confocal
imaging has been able to visualise in vivo TM architecture in
cyanobacteria (Strašková et al., 2019) as well as in chloroplasts
(Iwai et al., 2016; Bykowski et al., 2021). LCI has facilitated the
visualization of changes in TMs caused by various controlling
factors like carotenoids (Bykowski et al., 2021), the role of Mg2+

ions on chloroplast structure (Rumak et al., 2010) and kinetic
changes in the membrane architecture (Iwai et al., 2014; Iwai
et al., 2016). These standard CM methods are limited in their
resolution (in x-y ca. 250 nm), however, this weak point can be
overcome by application of super-resolution methods that bypass
Abbe’s diffraction limit (Baddeley and Bewersdorf, 2018;
Schermelleh et al., 2019), reaching a resolution of up to 100 nm
in x-y, such as commercial Structural Illumination Microscopy
(SIM; MacGregor-Chatwin et al., 2017; Masakazu et al., 2018)
and the Airyscan detector added to the Zeiss Confocal
microscope (see the recent application in (Kaňa et al., 2023)).
Regarding the physical principles, SIM methods enhance the
resolution by projecting structured light patterns onto samples,
while the Airyscan method is based on increasing the number of
detectors (hexagonally packed detector array) together with image
deconvolution (Huff, 2015). Additionally, there are a newly
emerging methods named Expansion Microscopy, based on
special sample preparation (Wassie et al., 2019; Bos et al., 2023)
and Super-resolution Confocal Live Imaging microscopy (SCLIM)
that is based on the combination of high-speed spinning-disk

confocal scanning, ultrahigh-sensitivity detection and data
processing (Iwai et al., 2016). Another useful method is re-scan
confocal microscopy (RCM–see (De Luca et al., 2013)), which
increases the resolution of standard confocal microscopy with an
optical (re-scanning) unit that projects the image directly on a CCD-
camera (see application for phototrophs in (Simonovic
Radosavljevic et al., 2021)). Recently, a new super-resolution
method named Single Pixel Reconstruction Imaging (SPiRI) was
developed (Streckaitė et al., 2022) which represents a promising
approach as the images are obtained simply using a classical
epifluorescence microscope equipped with a sensitive detector
and a precisely focused laser beam. The technique has been
successfully applied recently in vivo in chloroplasts (Messant
et al., 2023) and cyanobacteria (Chenebault et al., 2020). SPiRI
and Airyscan (Figure 1) together with SIM, SCLIM and Re-scan
confocal microscopy (RCM) represent some of the most promising
techniques in the field of photosynthesis with resolution
reaching ~120 nm.

Other SM methods can achieve even higher spatial resolutions,
up to 10–50 nm, then the methods described in the previous
paragraph. These include PAINT (Point Accumulation for
Imaging in Nanoscale Topography), PALM (Photoactivated
Localization Microscopy), STORM (Stochastic Optical
Reconstruction Microscopy) methods. However, their application
on phototrophs is still rather challenging due to their special
methodology connected with stochastic optical reconstruction
(Ovečka et al., 2022). This approach can interfere either with
high-pigment content or/and with the natural process of
excitation energy transfer in photosynthetic light-harvesting
antennae that is stochastic in nature (e.g., random nature of
molecular interactions and fluctuations in pigment excitations/
emissions). The PAINT method relies on the stochastic process
of binding/unbinding of organic fluorophores to the target
molecules of interest. The “blinking” effect observed in PAINT
images allows then increase in resolution up to ~30 nm
compared to conventional dye-based strategies (Farrell et al.,
2022). PALM/STORM methods are based on the stochastic
activation (photoswitching) and localization of sparse subsets of
fluorophores to achieve high-resolution imaging (~10–30 nm)
(Betzig et al., 2006; Shroff et al., 2008). Finally, a partially
different approach is then applied in STED that relies on the
overlap of two light beams in the focal region to deplete the
fluorophores’ excited state around the focal point (Willig et al.,
2006). It creates sub-diffraction-sized areas of emission and
significantly increases resolution (20–50 nm). These three types of
SM methods with resolution below ~50 nm–PAINT, PALM/
STORM, and STED–potentially have promise for future research
in phototrophs however they need to overcome specifics of
photothrophic samples (Bierwagen et al., 2010) to surpass
Ayriscan, SPiRI, RCM, or SIM methods (resolution reaching
~120 nm) that currently dominate in the application for
photothrops (Iwai et al., 2016; Chenebault et al., 2020; Kaňa
et al., 2023). Additionally, further progress in the field can be
expected when all these SM methods will be combined with
other specific microscopy techniques employing some additional
principles (e.g., spectral detection, antiStokes microscopy,
fluorescence kinetics, FLIM, Raman microscopy, cryo-confocal
microscopy, etc.–see Section 4 - Special Microscopy Methods).
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2.2 Special microscopy methods to study
protein/lipid trafficking in vivo

Studying the dynamical rearrangement of the TM structure
and proteins/lipid trafficking is crucial for understanding the
regulation of photosynthesis. For instance TM architecture and
protein co-localization have been recognized as significant players
regulating light-harvesting and electron transfer processes (see the
review (Johnson and Wientjes, 2020)). Additionally, they are also
important in protein assembly (Herbstova et al., 2012; Sun et al.,
2019a; Huokko et al., 2021) and in functional re-shaping of the
membrane architecture (see, e.g., review (Pribil et al., 2014)) that is
one of the key questions in the field. Traditionally, the protein/lipid
dynamics in TMs has been studied by means of the Fluorescence
Recovery After Photobleaching method (FRAP; see the reviews of
(Mullineaux, 2008; Kaňa, 2013; Kirchhoff, 2014). The FRAP
method relies on photobleaching of fluorescently labelled
molecules in a specific cell/membrane area followed by
monitoring of the recovery of fluorescence in that region over
time. This method allows researchers to estimate mobility
parameters (e.g., diffusion coefficients in of lipids/proteins in
TM see (Kaňa, 2013; Kirchhoff, 2014) or proteins binding
dynamics (see, e.g., (McNally, 2008)) within different cellular
environments. The method however has several pitfalls and
possible artefacts (e.g., internal photo-physics effects in PBS
(Liu et al., 2009; Gwizdala et al., 2018)) or in fluorescence
proteins like GFP (Mueller et al., 2012). Additionally, FRAP
measures mobility processes only at the mesoscopic scale
(Mullineaux, 2008) whereas nanoscale protein trafficking visible
by SM (Kaňa et al., 2023) is invisible for FRAP. Therefore, a
perspective approach requires a combination of FRAP with other
“single-pixel-based” methods like Single particle tracking (based
on tracking single fluorescence particles, see, e.g., (Consoli et al.,
2005) or with the more common method called microscopic
Fluorescence Correlation Spectroscopy - FCS (Iwai et al., 2014;
Janik et al., 2017; Crepin et al., 2021; Kaňa et al., 2021; Crepin et al.,
2022). FCS is a semi-single molecule method that relies on

detection of fluorescence fluctuation in time inside of the focal
volume and on a subsequent time-correlation analysis of the
obtained fluorescence kinetics. Typically, the focused laser beam
illuminates only a few fluorescent molecules (between
10–100 particles) in a very small focal volume (~250 nm in
x – y). The time course of fluorescence changes in FCS reflects
then all processes that change fluorescence intensity/yield inside of
this focal volume. Microscopic FCS can measure molecule
diffusion through the focal volume, protein-protein interactions,
absolute proteins concentration and other parameters (see, e.g.,
(Digman and Gratton, 2011). The other microscopic correlation
methods, Raster Image Correlation Spectroscopy (RICS) and/or
Spatial-Temporal Correlation Spectroscopy (STICS) (Di Rienzo
et al., 2013) are then built upon the foundational principles of
single-spot FCS and extend it by moving the focal point alongside
the sample. Therefore, they allow analysing the spatial and
temporal dynamics of fluorescent molecules (correlation pixel
by pixel) leading to creation of a detailed “map” depicting
various measured parameters, such as molecular diffusion,
binding kinetics, concentration gradients, particle movement
directionality, dynamic alterations in cellular structures, and
others. The future adaptation of these time-space correlative
microscopy methods for photothrophs will allow us to resolve
the nano-scale spatial variance in the protein/lipid dynamics in
thylakoids (with, e.g., 100 nm resolution) that is currently only
known with sub-micrometre resolution (see, e.g., difference in
protein mobility between grana and stroma TM in (Kirchhoff
et al., 2013).

It needs to be noted that only a combination of semi-single
molecule microscopic FCS with mesoscopic FRAP will be able to
address both types of proteins/lipids movement in TM, faster free
diffusion and slower restricted diffusion (Im et al., 2013), because
FCS can address only the fast processes (with characteristic time
τchar ~ 1–1000 ms) and FRAP is suitable only for the slower
processes (τchar ~ 1–300 s - protein-protein interactions
(Wachsmuth et al., 2008)). This is one of the reasons why the
diffusions of TM proteins obtained by FCS (Iwai et al., 2014) are so

FIGURE 1
Typical applications of super-resolution methods on phototrophs. Panel (A) Reconstructed image of a vegetative cell from a filament of Anabaena
sp. obtained with SPiRI–Single Pixel Reconstitution Imaging (Setup: scanning step-50 nm x/y steps; λexc = 488 nm; detection range: 660–700 nm; scale
bar 500 nm) Fluorescence intensity coding: from white (minimum) to red (maximum). For methodical details of the method, see (Chenebault et al.,
2020).Panel (B) 3 channel RGB coded images obtained with Airyscan from Synechocystis sp PCC 6803 cells with YFP-tagged PSI. Channels:
Red–chlorophylls of Photosystem II (ex. 488 nm, PSII); Blue—phycobilisomes (Exc. 633 nm - PBS); Green–YFP- Photosystem I (Exc. 488 nm - PSI-YFP).
Magenta areas represents PSII + PBS dominant microdomains (grana-like), green areas PSI dominant microdomains (stroma-like) (Kaňa et al., 2023).
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different from those obtained by FRAP (Kirchhoff et al., 2013): each
method (FCS or FRAP) “observes“ different protein fractions
(Wachsmuth et al., 2008). Their combination will better reflect
the mosaic of TM proteins representing a complex combination
of a stable organization (e.g., grana/stromal-like thylakoids in
cyanobacterial microdomains (Strašková et al., 2019)) with fast
protein (see super-resolution time-lapse imaging (Iwai et al.,
2014; Iwai et al., 2016; Kaňa et al., 2023) and possibly also lipid
trafficking (Sarcina et al., 2003). In fact, the importance of
specialized lipid-based membrane microdomains is known in
bacterial membranes as regions of increased fluidity (Strahl et al.,
2014; Gohrbandt et al., 2022) or special “Functional Membrane
Microdomains” (bacterial rafts-like domains) representing a mix of
lipids and a specific set of proteins (Lopez and Koch, 2017).
Therefore, the study of interaction between the polymorphic TM
lipids (Garab et al., 2017) and the small structural proteins (e.g.,
Vipp, Curt, Flotilins (Siebenaller and Schneider, 2023) represent a
future direction in the field of photosynthesis research.

3 Cell-to-cell spatial
heterogeneity—from filaments to
colonies/aggregates of cells

If we look beyond spatial heterogeneity of proteins, lipids,
DNA and RNA within individual cells (see section 2.1) we can
observe heterogeneity amongst different cells in filamentous
cyanobacteria as well as in free-living microbial populations.
Notably, such cell-to-cell heterogeneity is found to be a
common phenomenon not only in natural communities
composed of different species (Martínez-Pérez et al., 2016;
Eichner et al., 2017; Klawonn et al., 2019; Irion et al., 2021),
but also in clonal cultures in the laboratory; in the latter case it is
referred to as phenotypic heterogeneity (Ackermann, 2015; Van
Boxtel et al., 2017). While the origins remain elusive, phenotypic
heterogeneity has been attributed to the cell cycle stage and its
interaction with the circadian clock, stochastic gene expression, or
different functional roles allowing for a division of labour
(Ackermann, 2015; Martins et al., 2018). A classic example of
cell-to-cell differentiation in phototrophs is nitrogen-fixing
heterocysts (protecting nitrogenase from photosynthetically
evolved O2) in filamentous cyanobacteria such as Anabaena. A
more subtle spatial and temporal division of photosynthesis and
nitrogen fixation has been also observed in filamentous
Trichodesmium (Berman-Frank et al., 2001) and heterogeneity
in nitrogen fixation rates is visible even in the community of
unicellular diazotrophs like Crocosphaera watsonii and Cyanothece
sp. (Masuda et al., 2020). Other studies have shown cell-to-cell
heterogeneity with regard to the response to photodamage (Tay
and Cameron, 2023), the distribution of membrane microdomains
(Konert et al., 2019; Strašková et al., 2019; Canonico et al., 2020) or
fluorescence emission during colony formation (Moore et al.,
2020). The various microscopy techniques discussed in this
perspective paper lend themselves to further quantifying and
understanding the phenomenon of cell-to-cell heterogeneity
with regard to photosynthesis (Figure 2B), including standard
confocal microscopy (see section 2.1.), non-microscopy
methods with single-cell resolution (e.g., Fluorescence-Activated

Cell Sorting, FACS (Lin et al., 2020)). More specialized microscopy
methods like Raman spectroscopy, spectral imaging or isotope
mapping by nanoSIMS (see Sections 4.2. and 4.3.) or their
combinations provide alternate descriptions and additional
information toward understanding the phenomenon of cell-to-
cell heterogeneity in microbial cultures (Calabrese et al., 2019;
García-Timermans et al., 2020; Schreiber and Ackermann, 2020).

3.1 Microsensors—methods to study
communities of phototrophs

At a larger scale, phototrophic cells or filaments can form
multicellular tissues (e.g., higher plants) or characteristic cell
colonies (certain cyanobacteria such as Microcystis or
Trichodesmium) or microbial mats representing associations of
different cyanobacterial and bacterial species. The microbial
heterogeneity in these systems (scaling from hundreds of
micrometres to a few mm) can be analyzed in vivo by different
sensor-based approaches. These include traditional microelectrodes
as well as microfiber-based optical sensors. The classical
microsensors allow spatially resolved measurements (with point
measurements at 100 to ~10 µm resolution) of various
parameters connected with photosynthetic or respiratory
processes like O2 concentration, pH, carbonate ion concentration,
variable chlorophyll fluorescence, or irradiance. Recent
developments in sensor technology have further improved spatial
resolution; for instance minimum tip sizes of Clark-type O2

electrodes are close to 3 µm (Weits et al., 2019), and smaller than
0.5 µm for carbon-fibre based electrodes (Alova et al., 2019). Also
various new sensor types have been developed, including sensors for
H2O2 (Ousley et al., 2022), CO2 (Revsbech et al., 2019) and total
dissolved inorganic carbon (Steininger et al., 2021). Additionally,
planar optodes and optode micro/nanoparticles can simultaneously
provide temporal and spatial distribution (2D or 3D) of pH, CO2 or
O2 (Moßhammer et al., 2019; Elgetti Brodersen et al., 2020). The
combination of multiple sensors applied on the same sample
together with machine-learning approaches (Zieger and Koren,
2023) shows promise in understanding the complex interactions
and feedback mechanisms between biological processes in microbial
microenvironments (Lichtenberg et al., 2017; Wangpraseurt et al.,
2017; Haro et al., 2019).

4 Special microscopy methods

In this section, we provide a short exploration of a wide range of
advanced techniques employed in the study of photosynthetic
organisms, each playing a role in enhancing our comprehension
of the intricate and dynamic processes governing their metabolism.
These methods represent an extension of the classical static (see
Section 2.1) or dynamic methods (see Section 2.2) of confocal,
super-resolution or epifluorescence microscopy methods. We
provide a list of methods applicable for phototrophs based either
on different physical phenomena (e.g., Raman scattering, secondary
ion emission in mass spectrometry) or on different methodologies
like Life-time imaging (Verhoeven et al., 2022), two dimensional
electronic spectroscopy (Tiwari et al., 2018) or energy transfer-based
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methods (Vasilev et al., 2022). Some of the special microscopy
methods are then described in the following sections.

4.1 Kinetics and spectral fluorescence
imaging of phototrophs

Most microscopy methods are based on detection of
autofluorescence from the abundant photosynthetic pigments
(e.g., chlorophylls, phycobilins), the fluorescence of lipid dyes
(Strahl and Errington, 2017), protein tagging by fluorescent
proteins (Yokoo et al., 2015; Cui et al., 2023; Zhang et al., 2023),
or imunofluorescence staining (Trigo et al., 2017;Whitman Brendan
et al., 2023). Chlorophyll a-based methods are very useful to detect
photosynthetic activity and photosynthetic efficiency in vivo (Lazar,
2015). They target either the faster kinetics of fluorescence lifetimes
(in 0.1–10 ns range—Fluorescence Lifetime Imaging (FLIM)), or the
slower fluorescence kinetics (e.g., fluorescence kinetics microscopy
(FKM) that detects activity of photosystem II (PSII) either by
epifluorescence microscopy (Setlikova et al., 2005; Komárek et al.,
2010), or by confocal microscopy (Storti et al., 2023)). FLIM
represents a powerful technique that acquires the fluorescence
lifetimes by photon-counting pixel-by-pixel with the spatial
resolution depending on the microscopy method (see previous
Section 2.). In contrast to steady-state fluorescence microscopy or
slower FKM-based methods, FLIM is, by definition, concentration
independent and is governed by the excitation states dynamics.
Therefore, it can resolve and co-localize chromophores/proteins
with the same emission band, that are however different in their

fluorescence lifetimes (e.g., highly quenched emission from
photosystem I (PSI) vs. mildly quenched light harvesting
antennae of PSII). Therefore, FLIM has been widely used to
study different processes in phototrophs with applications
including spatial and temporal information about the distribution
of the photosynthetic complexes (Iwai et al., 2010; Iermak et al.,
2016; Nozue et al., 2016), regulation of light-harvesting processes
and photoprotection (Pascal et al., 2005; Holub et al., 2007; Bhatti
et al., 2021), chromatic adaptation in cyanobacteria (MacGregor-
Chatwin et al., 2022) and to study proteins redistribution
(Verhoeven et al., 2023).

The much slower kinetics of FKM-like methods are based
chlorophyll autofluorescence (from microseconds to minutes)
and they are used as a marker of photosynthetic activity (see e.g.
(Kupper et al., 2000; Setlikova et al., 2005; Komárek et al., 2010;
Storti et al., 2023)). Additionally, these microscopy methods are
sometimes combined with kinetic detection of the whole
fluorescence spectrum (Grigoryeva and Chistyakova, 2020). These
slow FKM-like methods require commercial and custom-made
measuring systems combining chlorophyll a fluorimeters with a
camera and/or microscope (e.g., WALZ Imaging PAM, Microscopy
PAM). They include systems suitable for sequential multicolour
variable fluorescence imaging (RGB-Microscopy-IPAM) allowing to
distinguish the photosynthetic activity of cells with different
pigmentation in natural samples (e.g., epiphytes on seagrass
leaves; see (Brodersen and Kühl, 2023)). Measuring the slow
kinetics of variable chlorophyll fluorescence has already provided
insights into the cell-to-cell variability in the regulation of
photosynthesis in nitrogen-fixing filamentous cyanobacteria

FIGURE 2
Examples of cell-to-cell heterogeneity in vivo in photosynthetic cyanobacteria. Panel (A): Heterogeneity in the Carbon (red) and Nitrogen (green)
allocation to cyanophycin in Cyanothece sp. ATCC 51142 visualized by stable isotope labelling and nanoscale Secondary Ion Mass
Spectrometry—nanoSIMS (Polerecky et al., 2021b). Panel (B) Co-localization of phycobilisomes (PBS) fluorescence (blue), and YFP fluorescence (green)
in YFP-tagged PSI strain of Synechocystis sp. PCC6803 in re-greening after long stationary growing phase visualized by confocal microscopy (see
(Strašková et al., 2019) for details on 3 channel detection methodology and cell-to-cell heterogeneity).
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(Kupper et al., 2004; Ferimazova et al., 2013; Nozue et al., 2017;
Colussi et al., 2024). Besides the epifluorescence-based FKM
(Komárek et al., 2010) other systems have been used including
confocal (Grigoryeva and Chistyakova, 2020; Storti et al., 2023),
two-photon excitation (Kumazaki et al., 2007; Kumazaki et al., 2013)
as well as a hyper-spectral confocal microscope that allows the
detection of variability in the fluorescence emission or absorption
spectra inside a single cell (Vermaas et al., 2008; MacGregor-
Chatwin et al., 2017) or chloroplast (Kim et al., 2015).
Additionally, there are some other less-known methods like
excitation spectral microscopy (Zhang et al., 2021), cryo-electron
microscopy (see (Vacha et al., 2007; Shibata et al., 2014; Steinbach
et al., 2015)), and an Anti-Stokes fluorescence microscopy that is
driven by thermally activated intramolecular vibrations, effective in
selective imaging of PSI in different organisms (Nozue et al., 2016).
We recommend those interested in these specialized methods to
read the recent review on optical spectroscopy/microscopy by
(Zhang et al., 2023).

4.2 Infrared (IR) and Raman-based
microscopy

Apart from spectroscopy methods based on visible (VIS)
light, infrared (IR) absorption and Raman spectroscopy are
two important techniques providing useful information on the
photo-physics and photochemistry of photosynthetic organisms
at the microsocpic level. In contrast to VIS methods (Section
2.1.), these methods analyze the frequencies of molecular
vibrations, providing insights in to the chemical composition.
IR absorption has limited applications in microsopy in aqueous
environments due to the strong interference of the absorption
band of water. In contrast, in vivo Raman microscopy requires
minimal sample preparation (Bec et al., 2020) and it does not
require the introduction of artificial staining or labelling to detect
different chemical components, simultaneously, with a sub-
cellular resolution. It has revealed spatial details about
photosynthetic pigments, and other organic and inorganic
compounds in various algae (Collins et al., 2011; Moudríková
et al., 2016; Mojzes et al., 2020; Moudríková et al., 2021; Oka et al.,
2021). Very few studies have addressed photosynthetic
heterogeneity using Raman microscopy. Nevertheless it has
been used to follow changes in thylakoid membranes by
probing chlorophyll a-associated photoluminescence and
carotenoid/phicobilin Raman signals in heterocyst cells
(Tamamizu and Kumazaki, 2019). Raman applications need to
cope with strong autofluorescence, long acquisition times and/or
high laser intensities that can cause local heating of the sample
(Butler et al., 2016). Some of these difficulties can be overcome by
using near-IR excitation wavelengths (Heraud et al., 2018;
Tamamizu and Kumazaki, 2019) or by coupling a
spectrometer to a light-sheet illumination (Müller et al., 2016).
An efficient way of increasing the Raman signal is to tune the
excitation wavelength to closely match an electronic transition of
the studied molecule and this is called resonance Raman (RR).
Under these conditions, the Raman signal can be enhanced by
orders of magnitude, allowing selective observation of the
molecule of interest in a highly complex medium, thereby

negating most of the negative aspects described above
(Llansola-Portoles et al., 2022). For example, RR spectroscopy
has been applied macroscopically to pinpoint signals of the
pigments involved in photoprotective energy dissipation in
intact chloroplasts and whole leaves (Ruban et al., 2007).
Further advances in the field include the development of a
high-resolution fluorescence-resonance Raman microscope
based on the SPiRI methodology described in Section 2.1.

4.3 Other selected methods: mass
spectrometry based isotope mapping, RNA/
protein localization, application of
fluorescent proteins

Spatial mapping of chemical elements up to a resolution of
50 nm can be achieved using nano-scale Secondary Ion Mass
Spectrometry (nanoSIMS) (Musat et al., 2016). It is a powerful
analytical technique used for high-resolution imaging and
quantification of stable isotopes and elemental composition at
the nanoscale. By bombarding a sample surface with a focused
primary ion beam, nanoSIMS induces the emission of secondary
ions, which are then detected and analyzed using a mass
spectrometer. Therefore, it is a destructive method that
however enables investigation of spatial distribution and
heterogeneity of elements and their stable isotopes within
biological samples with an unparalleled sensitivity and
resolution. Indirectly, nanoSIMS can be used to adress
physiological activity, such as spatial heterogeneity in the
carbon/nitrogen assimilation processes (see Figure 2A), when
it is combined with stable isotope incubations (Polerecky et al.,
2021a). The method has been succesfully applied to phototrophs,
revealing cell-to-cell heterogeneity in carbon and nitrogen
assimilation in nitrogen-fixing filamentous (Eichner et al.,
2017; Nieves-Morión et al., 2021) and unicellular
cyanobacteria (Schreiber et al., 2016; Masuda et al., 2020;
Polerecky et al., 2021b)). Its informative value can be further
enhanced by correlative imaging involving, e.g., transmission and
thin section EM, immunolabelling, X-ray fluroescence or
Fluorescence In Situ Hybridization (FISH) for mRNA, rRNA
or DNA (Martínez-Pérez et al., 2016; Krueger et al., 2018; Decelle
et al., 2019; Loussert-Fonta et al., 2020; Polerecky et al., 2021b).
The molecular cytogenetic technique FISH is a very useful tool to
address RNA localization in cells hybridized with fluorescently
labelled probes. The mRNA FISH technique has already provided
important insights into the localization of TM protein biogenesis
in cyanobacteria (Mahbub et al., 2020; Mahbub and Mullineaux,
2023), chloroplasts (Uniacke and Zerges, 2009; Schottkowski
et al., 2012; Sun et al., 2019a) and the spatial localization of
various physiological processes (e.g., carbon assimilation (Savage
et al., 2010), respiration (Liu et al., 2012), DNA localization
(Chen et al., 2012; Ohbayashi et al., 2019; Liao and Rust, 2021).

The most common methods that address spatial heterogenity
in physiological processes in phototrophs are
immunofluorescence approaches (Trigo et al., 2017) and
genetically-based tagging of non-fluorescent membrane/
cysosolic proteins with fluorescent proteins (FPs) ((Yokoo
et al., 2015). To avoid potential artifacts or misinterpretations
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when employing FPs in highly pigmented phototrophs, several
possible side-effects and important factors need to be considered:
1) FPs can interfere with the fuction of the tagged protein by
affecting the natural photosynthetic energy transfer (fluorescence
quenching, energy transfer from FPs to photosynthetic antenna,
etc.); 2) Spectral crosstalk: the FPs may exhibit spectral overlap
(in absorption and fluorescence) with other fluorophores or
autofluorescent cellular components like chlorophylls/
phycobilins (Yokoo et al., 2015); 3) pH sensitivity of the FPs:
a low pH, as present in the lumen may quench the fluoresecence
of FPs and it should be consider when selecting the probe
(Shinoda et al., 2018); 4) Photostability and photophysics of
the FPs: the effect of photostability on fluorescence blinking
should be considered for particular microscopy methods (see,
e.g., effect of GFP photoswitching in FRAP (Mueller et al., 2012),
or natural blinking of the PBS protein (Gwizdala et al., 2018); 5)
Background autofluorescence: it is crucial to include control
strains (without FPs) in case of FPs tagging of low-abundant
proteins. (5) Aggregational and structural artifacts: FPs tagging
may cause unnatural filamentous structures (e.g., MreB proteins
after YFP tagging (Swulius and Jensen, 2012)) or oligomerisation
artifacts (Petersen et al., 2020).

Hence, several control expertiments are necessary to validate
(unusual) fndings obtained using FP tagging. This includes
application of label-free methods (e.g., EM), comparing protein
tagging with different FPs (the most suitable FPs for the
phototrophic “spectral window” between 500–600 nm are eGFP,
YFP, mClover, TFP), and localization by immunogold labeling
(Petersen et al., 2020). Another key control experiment is
verifiying the proper assembly of the protein-complexes tagged
by the FPs (CLEAR-Native native gels), testing the physiological
function of the new strain (see, e.g., (Strašková et al., 2018; Strašková
et al., 2019) and also the use of special methods that can address
changes in energy transfer on the microcospic level (e.g., FLIM).

5 Final comments and conclusion

This paper summarizes recent methodological advances in the
application of microscopic and mesoscopic approaches to study
spatial heterogeneity of the photobiology in phototrophs.
Especially, the application of SM methods opens new doors
towards our understanding of the control mechanisms in
phototrophic metabolism (e.g., photosynthesis, nitrogen fixation,
protein synthesis, etc.). Traditional methodical bulk-level
approaches are typically not able to address the localization of
particular processes, which is sometimes crucial for our process-
understanding. For instance, a currently emerging topic in the field
of cyanobacterial photosynthesis is the process of assembly of TM
proteins, their repair, and their de-novo synthesis, where the efficiency
of the process depends on localization of several factors including
ribosomes, RNAs (Mahbub et al., 2020) or other proposed factors
(Rast et al., 2019). LCI methods have also showed that primary
reactions in photosynthesis cannot be described by the traditional
text-book view, where efficiency of linear and cyclic electron flows
depends only on efficiency of their particular sub-components (e.g.,
Photosystems). In contrast, it depends also on photosystems co-
localization that varies between organisms (see higher plants

grana/stroma TM versus cyanobacterial microdomains).
Additionally, even though these membranes are relatively stable in
time, albeit fluctuating with respect to naturally evolving light regimes
(Strašková et al., 2019), specific proteins andmembrane infrastructure
show surprisingly dynamic behaviour, as visualized by SM and CM
(Iwai et al., 2014; Iwai et al., 2016; Kaňa et al., 2023). How the
continuous trafficking of enzymatically active membrane proteins on
nano-scale level (e.g. movement of oxygen evolving PSII complex)
result in a stable organization and function of microdomains at the
single cell/cell suspension level (e.g., oxygen evolution in bulk) is a key
question that needs to be addressed in future research.

A similar spatial heterogeneity is also visible at the level of
filaments, colonies and microbial mats. In recent years, it was
found that in isogenic cultures of bacteria typically two or more
subpopulations with different metabolic states can be observed.
This type of heterogeneity, called phenotypic cell-to-cell
heterogeneity (Schreiber and Ackermann, 2020) is a key topic
for future studies as it is tightly linked to the productivity of the
whole culture (at a cell suspension level) and an important factor
from a biotechnological point of view. Notably, it has additional
practical and methodical consequences, even with monoclonal
cultures of phototrophs: a higher numbers of cells (tens or better
hundreds) need to be analysed to fully understand the behaviour
of the whole population of cells. Interestingly, even isogenic
populations of phototrophs can make surprisingly complex
and diverse lifestyles (Mullineaux and Wilde, 2021) indicating
collective and coherent behavior in analogy with multicellular
organisms (Shapiro, 1998). To understand such behaviour, future
studies will inevitably require application of innovative single cell
methodologies (Moore et al., 2020) like continuous imaging by
microfluidic systems (Széles et al., 2022), advanced adaptations of
the various microscopy-based approaches presented in this
review, or systems mimicking the native membranes (e.g.,
proteins in nanodiscs or in liposomes) that can be used as a
proxy for protein heterogeneity in single cells (Manna et al.,
2021). The understanding of the complex behaviour of cell-to-
cell variability of multicellular systems of phototrophs will
require also new terminologies (e.g., diffusion based Turing
patterning for Heterocyst (Zeng and Zhang, 2022)) and a shift
in our view especially in cyanobacteria: there seems to be no
“average cell” that could represent the whole population, as
shown for phenotypic heterogeneity in bacteria (Norris, 2019).
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