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Light plays a crucial role in ecological dynamics, both as a consumable resource
and as an environmental factor. Prokaryotic and eukaryotic photoautotrophs use
light as an energy source for photosynthesis, which forms the basis of food chains
and determines the flow of energy and matter in ecosystems. Light availability and
quality can influence resource complementarity and species coexistence, as well
as the stoichiometry of primary producers and the transfer efficiency of food
webs. In addition, light serves as an important source of information for organisms,
influencing their activities and interactions with the environment. Light shapes
biotic interactions, including competition, predator-prey relationships, and
mutualistic and antagonistic relationships between photoautotrophs and
heterotrophs. Anthropogenic activities affect these photoecological processes,
with largely unknown consequences. Hence, understanding the ecological role
and control of light is essential for understanding the functioning of ecosystems
and biogeochemical cycles.
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Introduction

While photosynthesis was not an initial metabolic pathway of early life on Earth and light
is not a prerequisite for life per se (Shih, 2015; Ralser et al., 2021), the perception of light is
already a vital trait of a vast number of prokaryotes (Williams, 2016). It is necessary for the
evolution of pathways to obtain energy for metabolic processes from light. As either a
consumable resource and/or an environmental factor structuring life, light is part of the
ecological (Hutchinsonian) niche (Hutchinson, 1978) of most species on Earth. Niche
requirements for resources and environmental factors shape the interactions of organisms
with their environment and thus ecological dynamics and biogeochemical cycles.
Consequently, light is one of the key drivers of such processes (Figure 1): light as a
resource underlies the global ecological and biogeochemical consequences of carbon
fixation by photoautotrophs since the invention of photosynthesis (Ozaki et al., 2018).
Moreover, light as an environmental factor can trigger the behaviour of organisms on a
global scale, such as the diel vertical migration (DVM) of marine zooplankton moving
between the surface and deeper water layers (Bandara et al., 2021).

Light affecting ecological dynamics as a consumable
resource for photoautotrophs

Prokaryotic and eukaryotic photoautotrophs use light as an energy source to split
molecules, most commonly H2O, to obtain electrons to reduce carbon dioxide to organic
molecules (Messinger and Shevela, 2011). These processes are typically at the base of so-
called food chains or food webs - man-made maps of interactions between organisms - that
determine the flow of energy and matter to higher trophic levels (May, 1974; Pimm et al.,
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1991). In a broader sense, the ecology of food webs is therefore
largely influenced by being driven by photo-ecological processes.
Even the voracious energy demands of modern human populations
are largely met by light-driven biotic processes. Fossil fuels such as
petroleum are largely the result of photosynthetically produced
organic biomolecules that are one hundred or more million years
old (Ourisson et al., 1984) and which have not yet been recycled back
to carbon dioxide.

Consumable resources are necessary for the survival, growth and
reproduction of individuals. Consumption of a resource by one
individual precludes its availability to another individual, leading to
intra- and interspecific competition for resources and evolutionary
adaptations (Begon et al., 2006). As a resource, light can be
considered both quantitatively (high light, low light) and
qualitatively (bundles of different wavelengths). This holds true
especially in aquatic environments. Phytoplankton moving up
and down the water column experience a much greater variation
in background colour than land-based plants. As a result, differential
sensitivity to different wavelengths has evolved (Stomp et al., 2007a;
Kehoe, 2010; Falkowski and Raven, 2013).

Photosynthetic active radiation (PAR) consists of wavelengths
from approximately 400–700 nm (McCree, 1972) and the selective
use of certain wavelengths within the resource bundle by
phytoplankton can allow resource complementation and hence
species coexistence (Stomp et al., 2007b). In addition, resource
complementarity may also be a mechanism underlying
relationships between biodiversity and ecosystem functioning,
such as higher resource use efficiency of highly diverse
phytoplankton communities that use the PAR spectrum more
efficiently (Striebel et al., 2009).

Too much of the resource light can have detrimental effects,
while too little does not allow for a positive net energy balance
through photosynthesis. Therefore, a variety of responses are known
to optimise light use related traits (Poorter et al., 2019). In addition
to such ecophysiological processes at the individual level, there are
also food web effects of varying light levels. Light can affect the

stoichiometry of primary producers, mainly their carbon to nutrient
ratio (Elser et al., 2000). This can theoretically lead to the so-called
“energy enrichment paradox”, where an increase in light resources
can have a negative effect on the transfer efficiency of the food web,
as described for plankton food webs (Diehl, 2007). The mechanistic
basis of this paradox is that an increase in light, and hence
photosynthesis, can lead to an increase in the carbon to nutrient
ratio of phytoplankton biomass (Dickmann et al., 2006), which
affects food quality for higher trophic levels (Urabe et al., 2002).
Higher trophic levels may experience a shift from carbon to nutrient
limitation. Such a shift can result in lower production at higher
trophic levels despite an enrichment of resources (more light) at the
base of the food web (Urabe and Sterner, 1996).

In addition to the energy enrichment paradox mentioned above,
light-driven shifts in the biomass stoichiometry of flexible primary
producers can have a variety of other implications for ecological
dynamics on land and underwater (Güsewell, 2004; Elser et al.,
2010). Spatial and temporal light distribution and environmental
light-nutrient ratios also influence terrestrial vegetation successional
patterns, driving vegetation structure and biodiversity along
successional dynamics (Tilman, 1985; Matsuo et al., 2021). Early
successional communities are often characterized by thriving at high
light to nutrient ratios, whereas the opposite is true for late
successional species. Such light-dependent dynamics have far-
reaching consequences, as the composition and hence functional
characteristics of vegetation determine to some extent the functional
and species composition of higher trophic levels (Russo et al., 2023).

Light as a resource shapes biotic interaction between
photoautotrophs (mainly through competition) and between
photoautotrophs and heterotrophs, either in the form of
predator-prey relationships (e.g., by affecting the quantity and
quality of food for herbivores as described above) or in complex
mutualistic and antagonistic relationships. Examples of mutualistic
relationships include spatially intimate phototroph-bacteria (Cirri
and Pohnert, 2019), phototroph-ciliate (Dziallas et al., 2012),
phototroph-fungi (Ahmadjian, 1993) or phototroph-animal
relationships (Venn et al., 2008), where partners provide
resources to each other in both directions. For example, algae
can provide photosynthetic products in the form of dissolved
organic carbon sources to associated bacteria, which in turn
provide essential nutrients to the algae, such as fixed nitrogen or
vitamin B12 (Croft et al., 2005; Thompson et al., 2012). The
importance of the photosynthetic processes of coral-associated
dinoflagellates for tropical reefs and their impact on
biogeochemical cycles is undisputed and well documented (Roth,
2014; van Oppen and Medina, 2020). Light as a resource can also
strongly regulate the important symbiotic nitrogen fixation of
endosymbiotic bacteria of terrestrial plants (Taylor and Menge,
2018; Ottinger et al., 2023), with far-reaching consequences for
food web processes and biogeochemical cycles. Resource availability
can influence such mutualistic interactions (Hom and Murray,
2014), which are often better characterised by functioning along
a mutualistic-antagonistic transition gradient (Sachs and Wilcox,
2006; Drew et al., 2021).

Combinations of phototrophic and heterotrophic nutritional
pathways are not restricted to combinations of different
phototrophic and heterotrophic species forming a holobiont.
Both pathways can also occur within a single species, for

FIGURE 1
Simplified schematic of the different ways in which light affects
ecosystem processes.
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example, carnivorous plants obtaining additional nutrients by
feeding on animals (Tĕšitel et al., 2018), or algae combining
photosynthesis with heterotrophic pathways, either by using
organic carbon sources in addition to CO2, either dissolved or
specific (Flynn et al., 2013). In addition, heterotrophic feeding
can also serve as a source of nutrients from particulate matter.
Aquatic environments are mostly light-limited and highly nutrient-
depleted. As a result, a large number of marine and freshwater
phytoplankton species are so-called mixotrophic species, operating
along a gradient from predominantly autotrophic to predominantly
heterotrophic (Flynn et al., 2013; Stoecker et al., 2017). Light as a
resource can influence the proportion that each of the two pathways
contributes to the overall carbon budget (Ptacnik et al., 2016).
Assuming that approximately 50% of global carbon fixation in
aquatic environments is by phytoplankton (Field et al., 1998), it
is clearly important to understand the ecological role and control of
mixotrophic nutrition (Mitra et al., 2014). In addition to large-scale
carbon cycling, the abundance of mixotrophs within phytoplankton
and their individual level of mixotrophy can also influence biomass
stoichiometry and food quality, and thus transfer efficiencies within
aquatic food webs (Katechakis et al., 2005; Vad et al., 2020).

Light as an environmental factor
shaping biotic interactions

Light can be converted into thermal energy and is an important
source of heat for poikilotherms, which depend on external heat
supply to determine their activities and thus their interactions with
their biotic and abiotic environment. A large number of
poikilothermic organisms have evolved mechanisms to efficiently
absorb light, such as specific colouration (Clusella-Trullas et al.,
2007), which is often flexible in response to temperature (Zhang
et al., 2020). Absorbed light can also be re-emitted at longer
wavelengths by a living organism, a common phenomenon
known as biofluorescence, which is known from aquatic and
terrestrial habitats (Lamb and Davis, 2020). Potential functions of
biofluorescence include processes such as communication (Marshall
and Johnsen, 2017) or sexual selection (Hausmann et al., 2003),
which affect biotic interactions. Blue light-induced fluorescence of
phytoplankton chlorophyll can convey information about
population density at the microscale level and regulate resource
uptake (iron) in diatoms (Liu et al., 2021).

Most obviously, however, light contains rich and complex
information that is very useful for exploring the environment
through photosensitive morphological structures (photosensing),
allowing a more or less complex picture of the visual
environment to be formed and enables appropriate responses to
it (photoregulation, Nilsson et al., 2022). These processes allow
ecological interactions such as the identification and evaluation of
other organisms for intra- or interspecific interactions such as
interference competition, sexual reproduction, determining
suitable prey, escaping predators, shaping predator behaviour,
synchronising the timing of reproduction, etc. A famous example
of such a light-induced behavioural process operating on a large
scale is the Diel Vertical Migration (DVM). It is the world’s largest
synchronised movement of organisms (plankton) and occurs in the
open water (pelagial) of marine and freshwater systems (Bandara

et al., 2021). Organisms such as zooplankton migrate into deep and
therefore dark water layers during the day and return to surface
waters at night. Light is either an ultimate or proximate factor
controlling DVM. It can act as a proxy for a dangerous environment
where visual predators such as large numbers of fish are active,
resulting in a high mortality risk for their food, the zooplankton.
Light can also act as an ultimate cause of DVM, such as in high
altitude lakes where high UV levels in the upper water layers force
zooplankton to perform a diel vertical migration to escape the risk of
UV damage (Rhode et al., 2001). Light and light-driven cycles
control the behaviour and activity patterns of a wide range of
organisms, with major consequences for the dynamics of biotic
interactions such as predation or competition. Such light-driven
processes can operate even during the polar night (Berge et al.,
2020), modulated by lunar and auroral components at very low light
levels (Cohen et al., 2021). At the base of aquatic and terrestrial food
webs, photosynthetic dynamics (such as photosynthetic light
absorption) are regulated by photosensing required to detect light
direction or diurnal/seasonal irradiance cycles, such that light as an
environmental factor regulates the uptake of the resource light
(Haeder et al., 2009; Forbes-Stovall et al., 2014; Jaubert et al.,
2017; Schuback and Tortell, 2019). In an antagonistic bacteria-
algae relationship, bacteria can destroy the primitive visual
system of the green alga Chlamydomonas, preventing phototactic
behaviour important for resource uptake (Hotter et al., 2021).
Prokaryotes can also link light perception to control of motility
use, thereby optimising light use efficiency for photosynthesis
(Wilde and Mullineaux, 2017). For example, in non-phototrophic
prokaryotes, light can regulate virulence (Bonomi et al., 2016) and
thus interactions with their host organisms, which affect population
and food web dynamics.

In environments lacking sufficient sunlight for visual
orientation, such as the deep sea or nocturnal habitats, a large
number of dark-active organisms have evolved the ability to actively
produce light, known as bioluminescence (Widder, 1999; Haddock

FIGURE 2
Simplified schematic of anthropogenic impacts on
photoecology.
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et al., 2010). Such biogenic light production can be used to attract
prey, mates for reproduction, intraspecific synchronisation or to
confuse predators (Widder, 2010; Ellis andOakley, 2016; Verdes and
Gruber, 2017; Wainwright and Longo, 2017). Bioluminescence is far
from being an exotic phenomenon, as shown by a study that
examined a marine water column from the surface to the deep
sea, where bioluminescence was observed in a large number of
organisms across a large variety of phylogenetic groups.
Bioluminescence is considered to be a common and important
ecological trait in the dark (Martini and Haddock, 2017).

Anthropogenic impacts on
photoecology

In addition to the large diversity of organisms mentioned
above that are able to produce their own light to attract mates or
prey, or to confuse predators, humans have also developed
increasingly complex cultural skills to produce light. This has
allowed humans to become independent of natural day-night
cycles and to extend activities that rely on vision to 24 h a day.
However, the use of artificial light sources has not only allowed
humans to extend vision and related activities to any time of day
in any place on Earth; it is also visible to other organisms, both
mobile and sessile, disrupting their natural light cycles
(Rodrigues-Comino et al., 2023). Darkness, usually defined as
light below a critical and individual-specific threshold, can play a
similarly important role for ecological traits (feeding,
reproduction) as light itself (Gerrish et al., 2009). These
disturbances of the dark period can affect a wide range of
ecological processes (Gaston et al., 2013; Sanders et al., 2021)
(Figure 2). Light pollution can have far-reaching indirect effects
on wildlife through its interactions with other environmental
factors (Bennie et al., 2016). For example, artificial light at night
(ALAN) can attract insects, disrupting their natural behaviour
and leading to changes in insect populations. This in turn can
affect the foraging behaviour of insectivorous birds and bats,
leading to potential declines in their populations (Longcore and
Rich, 2004). Similar far reaching impact can be seen in aquatic
primary producer systems, where ALAN decreases biomass and
alters community composition (Grubisic et al., 2017). Such
processes affect biodiversity and associated ecosystem services
(Hölker et al., 2021).

Human activities not only increase the spatial and temporal
availability of light, disrupting a wide range of ecological processes,
but also cause shifts in atmospheric chemistry. These shifts affect the
atmospheric filtering of electromagnetic radiation from the Sun and
thus the spectral composition of light at the Earth’s surface
(Figure 2). A well-known example is the anthropogenic depletion
of atmospheric ozone, which can result in a lower retention
efficiency of the atmosphere for ultraviolet radiation (UVB) and
hence higher levels of UVB reaching the Earth’s surface (Solomon,
1999). UVB radiation is known to have adverse effects on terrestrial
(Caldwell et al., 1998) and aquatic organisms (Bancroft et al., 2007),
with important implications for population and community
dynamics and far-reaching consequences for ecosystems
(Mostajir et al., 2000). Although the Montreal Protocol (1987)
regulating the production and consumption of ozone depleting

substances has led to an improvement of the ozone layer (Barnes
et al., 2021), global climate change may cause it to deteriorate again.
For example, aerosols originating from increasing wildfires have the
potential to negatively impact the ozone layer (Solomon et al., 2023).
In addition smoke from wildfires can result in direct changes of light
quantity and light quality, for example, smoke selectively absorbs
UV radiation, which can for example, have consequences for DVM
in lakes (Williamson et al., 2016).

However, beside human-induced shifts in atmospheric
composition, human-induced shifts in the spectral composition
of underwater light also affect ecological dynamics (Figure 2).
Increased transport of terrestrial carbon into aquatic systems due
to global change leads to browning of water, resulting in shifts in
light quantity and quality (Blanchet et al., 2022). As a result,
browning can alter phytoplankton dynamics in terms of
production and community composition, with far-reaching
consequences for higher trophic levels (Soulié et al., 2022).

Furthermore, global change is affecting stratification and
mixing of water columns. There is no clear direction of this
shifts on a global scale. Warming of surface waters due to global
change can lead to earlier and stronger stratification of water
columns, characterised by decreasing mixing depths of upper
water layers (Woolway et al., 2021; Sugimoto, 2022). In temperate
seasonal regions, stratification in lakes also starts earlier, which
can lead to earlier development of phytoplankton blooms in
spring (Peeters et al., 2007), potentially leading to so-called
match-mismatch scenarios between phototrophs and their
herbivore consumers, where the timing of food availability to
consumers is no longer synchronized with their seasonal
dynamics (Winder and Schindler, 2004). However, climate
change can also result in wind driven intensification of upper-
ocean turbulence (Young and Ribal, 2019; Li et al., 2020; Sallee
et al., 2021). Independent in which direction stratification and
mixing depth shifts, phytoplankton suspended in the mixed layer
of oceans and lakes thereby experience changes in both light
quantity and quality. For example, a decrease in mixing depth
results in a higher proportion of red light within the available
PAR in the mixed layer, favoring cyanobacteria. Such shifts can
potentially disrupt food web transfers to higher trophic levels due
to the potential toxicity or poor food quality of large numbers of
cyanobacteria (Stockenreiter et al., 2021).

Another aspect of global change that affects light properties for
ecological dynamics is shorter ice seasons in temperate and polar
regions, which shifts light availability for ecosystems, potentially
leading to earlier and longer growing seasons for phototrophs, with
the potential for light-driven tipping points. For example, earlier ice
loss in polar regions is likely to cause extensive regime shifts, with
endemic shallow-water invertebrate communities being replaced by
algae, reducing coastal biodiversity and fundamentally altering
ecosystem functioning (Clark et al., 2013).

Conclusion

In summary, the few selected examples described above,
illustrate just how many ways light shapes the interaction
between organisms and their environment; from being a
resource for metabolism that influences growth, life history,
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and population and community dynamics, to being an
environmental factor necessary to create a visual environment,
or acting as a cue to structure daily and seasonal routines
(Figure 1). Common to all is that light influences interactions
between individuals and their biotic and abiotic environment,
and thus ecological dynamics and biogeochemical cycles.
Directed and undirected human-induced changes in light
dynamics, as part of recent global changes, therefore affect a
wide range of ecological processes (Figure 2). Modern tools in the
toolbox of ecologists and environmental biologists allow the
study of such processes at unprecedented resolution, providing
mechanistic insights through, for example, new molecular
approaches and increased causality through modern
experimental capabilities. Thus, photoecology and
environmental photobiology (Haeder, 2004) are core research
areas that contribute to the mechanistic understanding and
conservation of the unique dynamics of life on Earth.
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