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Editorial on the Research Topic
The potential of transferrin as a drug target and drug delivery system

Transferrin (Tf), the major iron-binding protein in plasma, appears to have both cargo
and signaling functions. It has two homologous lobes, N and C, each of which can bind one
iron molecule. Clefts in these lobes close upon binding iron (Luck and Mason, 2012),
resulting in a conformational shift that alters the affinity for transferrin receptors and may
have additional consequences for protein-protein interactions. The ability of each lobe to
independently bind an iron atom results in four circulating species of Tf: apoTf, monoferric
N, monoferric C, and holoTf. The monoferric forms of transferrin influence erythropoietin
sensitivity and iron homeostasis (Parrow et al., 2019). Thus, targeting them may have
therapeutic potential in diseases characterized by erythropoietin resistance or dysfunctional
hepcidin levels.

Transferrin has two receptors: transferrin receptor 1 (TFR1) and transferrin receptor 2
(TFR2). TFR1 is ubiquitously expressed, including in the brain endothelium (Roberts et al.,
1993), and primarily serves to deliver iron from transferrin to cells. At serum pH, iron-
loaded Tf binds TFR1 with high affinity and the complex undergoes endocytosis. A decrease
in endosomal pH promotes the release of iron from Tf and the apo-Tf-TfR1 complex is
recycled to the cell surface where apoTf is released (Steere et al., 2012). TFR1 is upregulated
in highly proliferative cells (Zhang et al., 2024) and in response to iron deficiency (Tong
et al., 2002; O’Donnell et al., 2006; Meyron-Holtz et al., 2004).

TFR2 is thought to primarily serve as a signaling receptor. In mice (Fleming et al., 2002)
and humans (Camaschella et al., 2000), loss of TFR2 results in hereditary hemochromatosis,
a disorder characterized by excessive iron absorption secondary to inappropriately low
hepcidin levels.

This Research Topic focuses on Tf as a therapeutic target and a drug delivery system.
Li et al. present a review of the potential therapeutic applications of Tf

(Pathophysiological aspects of transferrin-A potential nano-based drug delivery signaling
molecule in therapeutic target for varied diseases). They provide an overview of the use of TF
as a therapeutic agent in various clinical conditions. One of these is transferrin replacement
therapy in the rare transferrin deficiency disease, atransferrinemia. Another is the use of
transferrin therapies, such as the administration of ApoTf, to neutralize free iron in
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ischemia reperfusion injury models. This review also covers an array
of studies where chemotherapeutics or imaging agents are delivered
via transferrin-conjugated moieties or are otherwise directed to
TfR1 by an antibody or peptide. These approaches leverage the
upregulation of TfR1 that characterizes proliferating tumor cells.

He et al. also present studies investigating transferrin-
conjugated therapies or TfR1-targeting in the context of
reviewing the potential for natural products to alleviate
chemotherapy-related cognitive impairment (Natural products for
the treatment of chemotherapy-related cognitive impairment and
prospects of nose-to-brain drug delivery). One such study indicates
that targeting nanocarrier-wrapped ginsenoside RG1 (an active
constituent of ginseng) to TfR1 increased penetration of the
blood brain barrier and decreased brain infarct volume in a
cerebral ischemia model (Shen et al., 2019). He et al. also
propose nose-to-brain delivery as a mechanism to bypass the
blood-brain barrier. Proof of principle is provided by at least one
study that generated and investigated transferrin-conjugated
chitosan nanoparticles (Gabold et al., 2023). Nanoparticles with
the highest surface expression of transferrin had the highest uptake
in a human nasal epithelial cell line and transferrin-conjugated
nanoparticles passed more quickly through an epithelial layer to
glioblastoma cells in co-culture model systems.

In a specific study of transferrin as a delivery system, Alrouji
et al. present a primary investigation of the binding mechanism of
capsaicin with human transferrin (Evaluation of binding mechanism
of dietary phytochemical, capsaicin, with human transferrin:
targeting neurodegenerative diseases therapeutics). Capsaicin is the
primary component of chili pepper. Recent studies suggest dietary
capsaicin may have neuroprotective properties, with specific
therapeutic potential for Alzheimer’s disease (Wang et al., 2020;
Xu et al., 2017). Transferrin provides a potential means to deliver
capsaicin across the blood-brain barrier via TfR1. Using a
combination of approaches, their studies indicate that capsaicin
binds transferrin in the iron-binding pocket without significant
structural alterations. They report a binding constant of 3.99 ×
106 M-1, indicating that transferrin has a considerably lower affinity
for capsaicin compared to Fe3+ (Aisen et al., 1978). In vivo studies
comparing the efficacy of transferrin-mediated capsaicin delivery to
dietary capsaicin in mouse models of disease will be useful in
evaluating the feasibility of this approach.

Ren et al. present an umbrella review of meta-analyses of the
effects of the prolyl hydroxylase inhibitors (PHI) on anemia in
chronic kidney disease (Efficacy and safety of hypoxia-inducible
factor-prolyl hydroxylase inhibitor treatment for anemia in
chronic kidney disease: an umbrella review of meta-analyses). This
class of drugs inhibits the oxygen-dependent prolyl hydroxylases
responsible for degradation of hypoxia inducible factor (HIF)
(Haase, 2021). HIF controls the myriad responses to hypoxia
(Semenza, 2012), and transferrin itself is upregulated in response
to hypoxia (Li et al., 2022). Their meta-analysis confirms an increase
of ~ 1 g of hemoglobin per deciliter in studies of PHIs. As expected,
the increase is more pronounced compared to placebo than to
erythropoiesis-stimulating agents (ESAs). Treatment with PHIs
decreases levels of the hepatic iron-regulatory hormone hepcidin,
also demonstrating a stronger effect compared to placebo than to
ESAs. Surprisingly, 7 of 11 studies analyzed did not show a
significant difference in serum iron concentration compared to

ESA or placebo. There was, however, evidence of increased total
iron-binding capacity, a surrogate measure of transferrin, and
transferrin level itself. A corresponding decrease in transferrin
saturation was also observed. Based on the demonstrated capacity
of lobe occupancy of transferrin to influence erythropoietin
responsiveness and iron homeostasis, it is tempting to speculate
that the upregulation of transferrin by the prolyl hydroxylase
inhibitors may have previously unrecognized effects on the
distribution of iron-bound transferrin species that contribute to
the efficacy of these therapeutics in the anemia of chronic
kidney disease.

In total, this Research Topic provides exciting evidence that
transferrin has therapeutic utility in a variety of diseases.
Additionally, targeting TfR1 may provide specific mechanisms for
delivering chemotherapeutics and imaging modalities to rapidly
proliferating cells, as well as bypassing the blood-brain barrier.
We look forward to the continued development of drugs based
on transferrin.
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