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Sepsis is a life-threatening condition characterized by a dysregulated host
response to infection, resulting in high mortality rates and complex clinical
management. This study leverages transcriptomics and machine learning (ML)
to identify critical biomarkers and therapeutic targets in sepsis. Analyzing
microarray data from the Gene Expression Omnibus (GEO) datasets
GSE28750, GSE26440, GSE13205, and GSE9960, we discovered three pivotal
biomarkers that BMX (bone marrow tyrosine kinase gene on chromosome X),
GRB10 (growth factor receptor bound protein 10), and GADD45A (growth arrest
and DNA damage inducible alpha), exhibiting exceptional diagnostic accuracy
(AUC >0.9). Functional enrichment analyses revealed that these genes play key
roles in reactive oxygen species metabolism and immune response regulation.
Specifically, GADD45A was positively correlated with eosinophils and inversely
associated with activated NK cells, CD8 T cells, and activated memory
CD4 T cells. BMX showed positive correlations with eosinophils, mast cells,
and neutrophils, while GRB10 was linked to eosinophils and M2 macrophages.
Additionally, we constructed a comprehensive mRNA-miRNA-lncRNA regulatory
network, identifying key interactions that may drive sepsis pathogenesis.
Molecular docking and dynamics simulations validated Bendroflumethiazide,
Cianidanol, and Hexamidine as promising therapeutic agents targeting these
biomarkers. In conclusion, this integrated approach provides profound insights
into the molecular mechanisms underlying sepsis, pinpointing BMX, GRB10, and
GADD45A as pivotal biomarkers and therapeutic targets. These findings
significantly enhance our understanding of sepsis pathophysiology and lay the
groundwork for developing personalized diagnostic and therapeutic strategies
aimed at improving patient outcomes.
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Introduction

Sepsis is a severe, life-threatening condition characterized by a
dysregulated host response to infection, leading to systemic
inflammation, multi-organ dysfunction, and high mortality rates
(Laura et al., 2021). Globally, sepsis affects approximately
48.9 million individuals annually and accounts for over
11 million deaths, making it a critical public health concern
(Kristina et al., 2020). Beyond its immediate lethality, sepsis
survivors often endure long-term functional impairments,
underscoring the urgent need for more precise diagnostic and
therapeutic strategies (Evangelos et al., 2024).

Although widely used clinical biomarkers such as procalcitonin
and C-reactive protein provide some prognostic value, they fail to
capture the full complexity and dynamic nature of sepsis (Saxena
et al., 2024). The pathophysiology of sepsis involves a delicate
balance between hyperinflammatory and immunosuppressive
responses, complicating efforts to develop effective treatments
(Liu D. et al., 2022). Consequently, there is a pressing need for
more comprehensive and specific biomarkers that can enhance
diagnostic accuracy, predict clinical outcomes, and guide targeted
therapies (Cohen and Banerjee, 2024). Traditional approaches to
biomarker discovery typically focus on a limited set of molecular
factors and often do not account for the multifaceted biological
interactions that drive sepsis progression (Pierrakos et al., 2020).

Recent advancements in transcriptomics have significantly
improved our understanding of the molecular mechanisms
underlying sepsis. Transcriptomic studies have revealed numerous
genes implicated in immune dysregulation and disease progression,
offering valuable insights into the complex pathophysiology of sepsis
(Liu B. et al., 2022). However, analyzing these high-dimensional datasets
and identifying clinically meaningful biomarkers remains a challenge
(Mohanty et al., 2023). Machine learning (ML) algorithms provide a
powerful solution to this complexity. By leveraging computational
techniques capable of handling vast amounts of transcriptomic data,
ML methods can identify subtle patterns, complex interactions, and
critical features that conventional statistical approaches may overlook
(Ke et al., 2023). This approach is particularly novel and promising in
the context of sepsis, as it enables the comprehensive analysis of
thousands of molecular factors and their relationships to immune
infiltration patterns. Identifying key transcriptomic biomarkers
associated with immune cell dynamics and sepsis outcomes can
illuminate disease mechanisms and reveal new therapeutic targets

(You et al., 2023). Moreover, ML-driven biomarker discovery has
the potential to substantially improve patient risk stratification,
inform personalized treatment strategies, and facilitate earlier, more
accurate interventions, ultimately improving survival rates and quality
of life for sepsis patients.

This study leverages advancements in transcriptomics and ML
methodologies to uncover biomarkers and therapeutic targets that can
improve sepsis diagnosis and treatment. By combining differential
gene expression analysis, weighted gene co-expression network
analysis, ML-driven feature selection, functional enrichment
analyses, immune cell infiltration profiling, mRNA-miRNA-
lncRNA network construction, and in silico drug target prediction,
we uncover key biomarkers involved in sepsis pathogenesis and
explore their therapeutic potential. This integrated approach
provides valuable insights into novel therapeutic strategies for
sepsis, paving the way for more targeted diagnostic tools and
precision therapies in clinical sepsis management.

Materials and methods

Data download and preprocessing

High-throughput microarray expression sequencing data for
sepsis were retrieved from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/) (Barrett et al., 2013).
Four datasets were selected for this study: GSE28750, GSE26440,
GSE13205, and GSE9960. The datasets GSE28750, GSE26440, and
GSE13205, which include a total of 132 sepsis patients and
60 healthy controls, were used as the training set. These datasets
underwent log transformation and batch effect correction using the
“Combat” function from the “sva” package in R (Leek et al., 2012).
The GSE9960 dataset, consisting of 54 sepsis patients and 16 healthy
controls, was designated as the validation set. Detailed information
regarding the sample types, group sizes, and inclusion criteria is
provided in Supplementary Table S1.

Screening of potential hub biomarkers
in sepsis

Differentially expressed genes (DEGs) between sepsis patients
and healthy controls were identified using the “limma” package in R,
with statistical thresholds set at |log2 fold change (FC)| > 2 and
adjusted P-value (Padj) < 0.05 (Ritchie et al., 2015). The distribution
and significance of DEGs were visualized using heatmaps generated
by the “pheatmap” and “ggplot2” packages (Ito and Murphy, 2013).
To identify gene modules associated with sepsis, we performed
weighted gene co-expression network analysis (WGCNA) using
the “WGCNA” package in R (Langfelder and Horvath, 2008). All
samples were initially clustered to identify and exclude outliers, and
genes with similar expression patterns were grouped into modules
based on a topological overlap matrix (TOM) derived from the
adjacency matrix. The analysis was performed with a deep splitting
level of 2, a minimummodule size of 100, and a soft-threshold power
of 15. Gene significance (GS) and module membership (MM) were
calculated for each gene, and modules with a correlation coefficient
greater than 0.7 were identified as hub modules for further analysis.

Abbreviations: AUC, area under the curve; BMX, bone marrow tyrosine kinase
gene on chromosome X; CLP, cecal ligation and puncture; DEGs, differentially
expressed genes; DO, Disease Ontology; GADD45A, growth arrest and DNA
damage inducible alpha; GEO, Gene Expression Omnibus; GO, Gene
Ontology; GRB10, growth factor receptor bound protein 10; GS, Gene
significance; GSEA, Gene Set Enrichment Analysis; GSVA, Gene Set
Variation Analysis; LASSO, Least Absolute Shrinkage and Selection
Operator; MD, molecular dynamics; ML, machine learning; MM, module
membership; KEGG, Kyoto Encyclopedia of Genes and Genomes; Rg,
Radius of gyration; RF, Random Forest; ROC, Receiver Operating
Characteristic; RMSD, root mean square deviation; RMSF, root mean
square fluctuation; SASA, solvent accessible surface area; SVM-RFE,
Support Vector Machines with Recursive Feature Elimination; ssGSEA,
Single-sample Gene Set Enrichment Analysis; TOM, topological overlap
matrix; WGCNA, weighted gene co-expression network analysis.
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Screening of hub biomarkers using
machine learning

To identify robust biomarkers, 5 ML algorithms were applied to
the training datasets. Least Absolute Shrinkage and Selection
Operator (LASSO) regression, implemented with the “glmnet”
package, was used to shrink regression coefficients and select key
features (Waldorp and Haslbeck, 2024). The Random Forest (RF)
model, constructed using the “randomForestSRC” package, ranked
features based on mean decrease in accuracy (Hu and Szymczak,
2023). Support Vector Machines with Recursive Feature Elimination
(SVM-RFE) was performed using the “caret” package, iteratively
removing less informative features to optimize prediction accuracy

(Sanz et al., 2018). Neural networks were built using the “nnet”
package, and Gradient Boosting Machine (GBM) were implemented
with the “gbm” package (Salditt et al., 2023). Common features
identified across all five methods were visualized using a Venn
diagram (Jia et al., 2021). Diagnostic accuracy was assessed using
Receiver Operating Characteristic (ROC) curves, with area under
the curve (AUC) calculated for each gene.

Validation of hub biomarkers

The diagnostic performance of the selected biomarkers, BMX
(bone marrow tyrosine kinase gene on chromosome X), GRB10

FIGURE 1
Identification of key candidate genes in sepsis through DEGs and WGCNA. (A) Heatmap of differentially expressed genes (DEGs) between sepsis
patients and healthy controls. (B) Scale-free topologymodel fit plot for the soft thresholding power. (C, D)Mean connectivity for various soft thresholding
powers. (E) Clustering dendrogram of genes with dissimilarity based on topological overlap, along with assigned module colors. (F) The heatmap
visualizes the topological overlap matrix (TOM) among the selected genes. (G) Correlation between module eigengenes and sepsis status,
highlighting the MEgreen module. (H) Venn diagram showing the intersection of DEGs and genes in the MEgreen module.
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(growth factor receptor bound protein 10), and GADD45A
(growth arrest and DNA damage inducible alpha), was
validated using the GSE9960 dataset. Gene expression levels
were visualized with violin plots generated using “ggplot2” in
R. ROC curves were generated to evaluate diagnostic accuracy,
and AUC values were calculated. Prognostic significance was
assessed using cox proportional hazards regression, with hazard
ratios (HRs) and 95% confidence intervals visualized in forest
plots (Cioci et al., 2021).

Enrichment analysis and protein-protein
interaction network

Gene Ontology (GO), Kyoto Encyclopedia of Genes and
Genomes (KEGG), and Disease Ontology (DO) enrichment
analyses were performed to understand the functions of genes
associated with sepsis, using the “clusterProfiler” and “DOSE”
packages in R (Yu et al., 2012). The significance threshold was set
at p < 0.05, and the top 15 most significant GO terms and KEGG
pathways were visualized with “ggplot2”. Gene Set Enrichment
Analysis (GSEA) was used to predict significant biological
processes and pathways associated with hub genes, while Gene
Set Variation Analysis (GSVA) compared gene set variations
between groups, using the “clusterProfiler”, “enrichplot”, and
“ggplot2” packages (Kleino et al., 2022). Protein-protein
interaction (PPI) networks were constructed using the
STRING database (https://cn.string-db.org/) with a confidence
score >0.7, and further visualized with Cytoscape (version 3.9.1) (Elisa
et al., 2021).

Immune infiltration analysis

Immune cell infiltration patterns in sepsis and healthy controls were
evaluated using the CIBERSORT algorithm, which estimates the relative
abundance of 22 immune cell types. Single-sample Gene Set Enrichment
Analysis (ssGSEA) was used to score immune-related pathway activities
(Kleino et al., 2022). Correlation analyses were conducted to examine the
relationships between gene expression levels and immune cell
proportions, using Spearman’s rank correlation. The results were
visualized as scatter plots, violin plots, and heatmaps.

Molecular docking and molecular dynamics
simulations

Drug-gene interactions were identified using the Comparative
Toxicogenomic Database (CTDbase) (https://ctdbase.org/) and
Enrichr (https://maayanlab.cloud/Enrichr/). Protein structures
were retrieved from UniProt (https://www.uniprot.org/) (Bateman
et al., 2022), and molecular docking simulations were performed
using AutoDock Vina (version 1.2.0) (Jerome et al., 2021).

A 100-ns molecular dynamics (MD) simulation was
conducted using GROMACS 2023 to evaluate the reliability
of the protein-drug docking results (Gabriel et al., 2023).
The protein structure was parameterized using the
CHARMM36 force field, and drug topology was generated

with the GAFF2 force field. The protein-drug complex was
solvated in a cubic box using the TIP3P water model, and
electrostatic interactions were treated with the particle mesh
Ewald (PME) method and the Verlet algorithm. Van der Waals
and Coulomb interactions were computed with a cutoff of
1.0 nm. The system underwent a 100-ns MD simulation
under constant temperature (300 K) and pressure (1 bar) to
ensure stability and validate the docking results.

Statistical analysis

Transcriptome data analysis, ML model construction, and
validation were performed using R (version 4.3.3). Molecular
docking simulations were conducted using AutoDock Vina (version
1.2.0), and molecular dynamics simulations were performed using
GROMACS 2023. Statistical significance was set at p < 0.05.

Results

Identification of key candidate genes in
sepsis through DEGs and WGCNA

To explore the potential molecular mechanisms of sepsis, we
merged and standardized the training datasets, creating an
expression matrix with 15,748 genes from 132 sepsis patients
and 60 healthy controls (Supplementary Figure S1). Differential
expression analysis revealed 175 upregulated and
45 downregulated genes (Figure 1A). A weighted gene co-
expression network was constructed with a soft threshold of 15,
achieving an R2 value of 0.850 (Figures 1B–D). The topological
overlap matrix (TOM) was used to perform hierarchical clustering,
identifying 13 gene modules, with the MEgreen module
(930 genes) showing the strongest positive correlation with
sepsis (r = 0.7) (Figures 1E–G). A total of 181 candidate genes
were identified from the intersection of DEGs and the MEgreen
module (Figure 1H), highlighting their potential role in sepsis
pathogenesis.

TABLE 1 Key genes outputted by five machine learning algorithms in this
study.

Machine
learning

Gene Names

LASSO MCEMP1, S100A9, UPP1, HP, BMX, GADD45A,
ANKRD22, ITK, CD2, SLC22A4, NOG, FCER1A, TRAT1,

GRB10, HLA-DQA1

RF BMX, GRB10, GPR84, FAM20A, RAB13, PADI4,
S100A12, GADD45A, CPEB4, MMP8

SVM S100A9, CA4, BMX, TRAT1, GRB10, FCER1A, TLR5,
S100P, GADD45A, CYSTM1, CYP1B1, LOC100134822,

DACH1, NOG, LRG1, SAMSN1, CD177

NNET GADD45A, BMX, GRB10, FOLR3, HPGD, G0S2, MMP9,
TNFAIP6, DACH1, LOC441081

GBM GADD45A, BMX, GRB10,OLAH, CYSTM1,
IL10RB,CEACAM1, UPP1, RETN, CLEC5A
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Core biomarkers for sepsis identified
through ML approaches

To identify key biomarkers with diagnostic potential for sepsis,
we applied 5 ML algorithms: SVM-RFE, LASSO, Random Forest,
NNET, and GBM (Table 1). SVM-RFE identified 17 genes with the
lowest root mean square error (Figures 2A, B), while Random Forest
ranked the top 10 genes based on their importance in sepsis-related

pathways (Figure 2C). LASSO regression revealed 15 key features at
a lambda of 0.040 (Figures 2D, E). NNET and GBM identified
10 genes each, highlighting nonlinear relationships (Figures 2F, G).
ROC analysis confirmed the diagnostic potential of all models, with
AUC values exceeding 0.7 (Figure 2H). Integration of the outputs
from all five algorithms identified BMX, GRB10, and GADD45A as
the core biomarkers for sepsis (Figure 2I), reinforcing their reliability
for diagnosis.

FIGURE 2
Core biomarkers for sepsis identified through ML approaches. (A, B) Root mean square error for Support Vector Machine-Recursive Feature
Elimination (SVM-RFE). (C) Importance ranking of the top 10 genes identified by Random Forest (RF). (D) Coefficient profiles of Least Absolute Shrinkage
and Selection Operator (LASSO). (E)Optimal lambda selection in LASSO. (F)Gene importance scores identified by the Neural Network (NNET) model. (G)
Gene importance scores identified by theGradient BoostingMachine (GBM)model. (H) Receiver Operating Characteristic (ROC) curves showing the
diagnostic accuracy of ML-models. (I) Venn diagram highlighting BMX, GRB10, and GADD45A as shared optimal feature genes identified by five
ML-models.
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Upregulation of BMX,GRB10, and GADD45A
in sepsis and their diagnostic performance

We examined the expression of BMX, GRB10, and GADD45A
in sepsis patients, observing significantly elevated expression in
sepsis compared to healthy controls (Figures 3A–C). ROC curve
analysis demonstrated excellent diagnostic potential, with AUC
values of 0.942 for BMX, 0.900 for GRB10, and 0.954 for
GADD45A (Figures 3D–F). Validation with the
GSE9960 dataset confirmed the upregulation of these genes,
with AUCs >0.9 (Figures 3G, H). Cox regression analysis
further showed that increased expression of these biomarkers
correlated with higher risk of sepsis (HR > 1, Figure 3I),
underscoring their diagnostic relevance.

Functional enrichment and pathway analysis
of BMX, GRB10, and GADD45A in sepsis

To explore the biological roles of the identified biomarkers,
functional enrichment analyses were performed. GO analysis
revealed strong associations with processes such as reactive oxygen
species metabolism, cellular stress response, and immune response
(Figure 4A). The chord diagram highlighted BMX, GRB10, and
GADD45A’s involvement in reactive oxygen species metabolism, a
critical pathway in sepsis (Figure 4B). KEGG pathway analysis
identified pathways related to complement activation,
staphylococcus aureus infection, and neutrophil extracellular trap
formation (Figure 4C). Among the genes, BMX and GRB10 are
particularly associated with immune-regulating signaling pathways,

FIGURE 3
Expression analysis and validation of sepsis-related feature genes. (A–C) Violin plots of BMX, GRB10, and GADD45A expression levels in sepsis
patients vs. healthy controls. (D–F) ROC curves for BMX, GRB10, and GADD45A in the training datasets. (G, H) Expression levels and ROC curves of BMX,
GRB10, and GADD45A in the validation dataset. (I) Forest plot of hazard ratios (HR) from cox regression analyses for BMX, GRB10, and GADD45A.
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while GADD45A is mainly involved in the defense response to
bacterial infections (Figure 4D). DO analysis further linked these
genes to bacterial diseases such as tuberculosis (Figure 4E). PPI
network analysis revealed interactions with key proteins like
CD177, S100P, and S100A9, suggesting their roles in immune cell
activation and inflammation (Figure 4F). GSEA showed that BMX,
GRB10, and GADD45A are involved in several upregulated pathways,
such as inflammatory response for BMX, cytokine signaling for
GRB10, and regulation of apoptosis for GADD45A (Figures 4G–I).
These findings demonstrate that BMX, GRB10, and GADD45A play
central roles in the immune and inflammatory mechanisms of sepsis,
offering insights into its pathogenesis and potential avenues for
intervention.

Prediction of miRNA and lncRNA regulatory
networks for BMX, GRB10, and GADD45A

We applied the ceRNA hypothesis to predict the interactions
between miRNAs and lncRNAs for the three biomarkers (BMX,
GADD45A, and GRB10) (Figure 5). BMX was found to interact
with 5 miRNAs and 16 lncRNAs, with the BMX-miR-758-3p-
AC079586.1 pathway showing the highest connectivity. GADD45A
interacted with 6miRNAs and 12 lncRNAs, with theGADD45A-miR-
1226-5p-CTB-60B18.18 pathway showing significant correlation.
GRB10 exhibited the most extensive network, with 53 interactions,
and the GRB10-miR-15a-5p-RP11-483P21.6 pathway demonstrated
the highest correlation. These findings underscore the regulatory roles

FIGURE 4
Functional enrichment and pathway analysis of BMX, GRB10, and GADD45A in sepsis. (A) Top 15 significant Gene Ontology (GO) terms (Biological
Process, Cellular Component, Molecular Function) associated with BMX,GRB10, andGADD45A. (B)Chord diagram linking BMX,GRB10, andGADD45A to
GO terms. (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis highlighting key sepsis-related pathways. (D) Chord diagram
mapping BMX,GRB10, andGADD45A to their respective KEGG pathways. (E)Disease Ontology (DO) analysis indicating bacterial infectious diseases.
(F) Protein-Protein Interaction (PPI) network of sepsis-related genes. (G–I) Gene Set Enrichment Analysis (GSEA) plots for pathways involving BMX,
GRB10, and GADD45A.
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of BMX, GADD45A, and GRB10 in sepsis via complex interactions
with miRNAs and lncRNAs.

Immune microenvironment alterations in
sepsis and correlation with hub gene
expression

Previous studies have shown that pathogenic genes can alter the
immunemicroenvironment of sepsis (Nicole andHongbo, 2022). Using
the CIBERSORT algorithm, we estimated the abundance of 22 immune
cell types and observed significant alterations in immune cell infiltration
in sepsis (Figure 6A). Sepsis was associated with increased infiltration of
naive CD4 T cells, M0 and M2 macrophages, and activated mast cells,

while a decrease was seen in CD8 T cells, resting memory CD4 T cells,
and eosinophils (Figure 6B). Further analysis revealed that BMX was
positively correlated with eosinophils, activated mast cells, and naive
CD4 T cells, but negatively correlated with resting dendritic cells and
activated NK cells (Figures 6C, F; Supplementary Figure S2A). GRB10
exhibited positive correlations with eosinophils and M2 macrophages,
and negative correlations with follicular helper T cells and activated NK
cells (Figures 6D, G; Supplementary Figure S2B). Similarly, GADD45A
showed positive correlations with eosinophils and negative correlations
with activated NK cells and CD8 T cells (Figures 6E, H; Supplementary
Figure S2C). GSVA analysis further confirmed the roles of BMX,
GRB10, and GADD45A in immune dysregulation during sepsis
(Figure 6I), highlighting their involvement in immune environment
alterations.

FIGURE 5
Prediction of miRNA and lncRNA regulatory networks. Competing endogenous RNA (ceRNA) network for BMX, GRB10, and GADD45A showing
significant miRNA and lncRNA interactions.
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Drug target prediction for BMX, GRB10, and
GADD45A in sepsis treatment

To identify effective therapeutic molecules targeting the hub
biomarkers BMX, GRB10, and GADD45A, we retrieved protein
structures from the UniProt database and selected full-length models
from AlphaFold predictions (BMX-HUMAN, GRB10-HUMAN, and

GADD45A-HUMAN; Figures 7A–C). We then conducted virtual
screening of 2115 FDA-approved small molecules from the ZINC
database, selecting the top 10 drugs for each target based on their
combined binding scores (Table 2). Molecular docking simulations
revealed that Hydrochlorothiazide, Bendroflumethiazide, and
Benzthiazide are strong binders for BMX; Chloroquine, Cianidanol,
and Quercetin for GRB10; and Warfarin, Hexamidine, and Ethacrynic

FIGURE 6
Immune microenvironment alterations in sepsis. (A) Barplot of immune cell type proportions in sepsis and healthy samples. (B) Violin plot showing
significant differences in immune cell infiltration between sepsis and healthy samples. (C–H)Correlation plots of BMX,GRB10, andGADD45Awith various
immune cell types. (I–K) Gene Set Variation Analysis (GSVA) of immune pathways involving BMX, GRB10, and GADD45A.
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Acid for GADD45A (Figures 7D–F). Detailed binding interactions,
including energy values, bond lengths, and hydrogen bond formations,
are summarized in Table 3.

To confirm the stability of these drug-protein complexes, we
performed molecular dynamics simulations. The root mean square
deviation (RMSD) values for Bendroflumethiazide-BMX, Cianidanol-
GRB10, and Hexamidine-GADD45A were 17.7 Å, 16.4 Å, and 3.6 Å,
respectively (Figure 8). Radius of gyration (Rg) and Solvent Accessible
Surface Area (SASA) analyses indicated reduced protein flexibility,
suggesting stable binding. Additionally, root mean square fluctuation
(RMSF) analysis and hydrogen bond data further confirmed strong
interactions (Figure 8). These results suggest that Bendroflumethiazide,
Cianidanol, and Hexamidine are promising therapeutic candidates for
sepsis treatment.

Discussion

This study utilized an integrated transcriptomics and ML
approach to uncover key biomarkers and therapeutic targets in
sepsis. The analysis identified BMX, GRB10, and GADD45A as
crucial biomarkers with high diagnostic accuracy (AUC >0.9).
Functional enrichment and immune cell infiltration analyses
highlighted the involvement of these biomarkers in reactive
oxygen species metabolism and immune response regulation.
Additionally, we constructed a comprehensive mRNA-miRNA-
lncRNA regulatory network, identifying critical interactions that
may influence sepsis pathogenesis. Docking and molecular
dynamics studies further pinpointed potential therapeutic agents,
including Bendroflumethiazide, Cianidanol, and Hexamidine,

FIGURE 7
Protein structures and molecular drug docking for BMX, GRB10, and GADD45A. (A–C) The protein structures of BMX, GRB10 and GADD45A. (D–F)
Protein target-small molecule drug docking models showing interactions and binding sites.
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which demonstrated promising binding affinities with these
biomarkers.

Previous sepsis research has largely focused on traditional
biomarkers such as procalcitonin, C-reactive protein, IL-6, and
TNF-α, which are critical mediators of the early inflammatory
response. However, their diagnostic utility is constrained by a
short detection window and high variability (Pierre et al., 2021).
In contrast, our integrative transcriptomics and machine learning
approach has identified more specific and robust biomarkers, as
demonstrated by the superior diagnostic accuracy of BMX, GRB10,
and GADD45A. These biomarkers not only exhibit greater
specificity but also provide valuable insights into the immune
and metabolic dynamics of sepsis, potentially enhancing their
applicability across different disease stages. Although these genes
have not been extensively characterized in sepsis, their known
functions in other disease contexts provide important clues.
BMX, a non-receptor tyrosine kinase, participates in
inflammatory signaling and can influence vascular integrity
(Xiuxiu et al., 2023). GRB10 modulates insulin signaling and
growth factor pathways, thereby affecting cell growth and
metabolic homeostasis (Ashlin et al., 2019). GADD45A is

associated with DNA damage repair, apoptosis, and immune
regulation (Mengbing et al., 2024; Markus and KJMRRMR,
2019). These attributes suggest that BMX may help regulate
endothelial stability and leukocyte trafficking, GRB10 could shape
the metabolic and proliferative states of immune cells, and
GADD45A might enable immune cells to adapt to prolonged
inflammatory stress (Dominic et al., 2012; Deng et al., 2020; She
et al., 2023). Collectively, these features position BMX, GRB10, and
GADD45A as potential key contributors to the interplay of
hyperinflammation, immunosuppression, and oxidative stress
that underlies sepsis progression.

Building on these insights, our functional enrichment analyses
revealed that BMX, GRB10, and GADD45A are closely linked to
critical pathways governing immune responses and reactive oxygen
species metabolism. Such pathways are central to sepsis
pathogenesis, where a dysregulated immune response and
oxidative stress contribute to multi-organ failure (Wang and Liu,
2023). The correlations observed between these biomarkers and
specific immune cell subsets further underscore their potential roles
in modulating immune cell infiltration, activity, and overall
inflammatory balance within the septic milieu. For example,

TABLE 2 Prediction of target drugs for hub genes.

Gene IDG drug targets P-value Odds ratio Combined score

BMX Hydrochlorothiazide 0.006290571 135.3537415 1125.317013

Bendroflumethiazide 0.006290571 135.3537415 1125.317013

Benzthiazide 0.006290571 135.3537415 1125.317013

Phenol 0.00760878 81.20408163 615.4043164

Ditiocarb 0.00760878 50.74489796 346.3917718

Salicylic Acid 0.00760878 45.10430839 298.9843051

Hydroquinone 0.00760878 45.10430839 298.9843051

Brinzolamide 0.00760878 45.10430839 298.9843051

Mafenide 0.00760878 45.10430839 298.9843051

Methazolamide 0.00760878 40.59183673 261.8039189

GRB10 Chloroquine 0.010888425 14.27561328 64.52655689

Cianidanol 0.015214448 11.75460487 49.1990133

Quercetin 0.031675223 3.493345164 12.05979787

GADD45A Warfarin 0.024753529 50.24242424 185.836037

Hexamidine 0.024753529 50.24242424 185.836037

Ethacrynic Acid 0.029630963 40.19191919 141.4327674

Dicoumarol 0.034484249 33.49158249 112.7746184

Ximelagatran 0.039313504 28.70562771 92.89678501

Ixabepilone 0.044118846 25.11616162 78.38423124

Vinflunine 0.044118846 25.11616162 78.38423124

Carfilzomib 0.044118846 25.11616162 78.38423124

Cabazitaxel 0.044118846 25.11616162 78.38423124

Eribulin 0.044118846 25.11616162 78.38423124
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GADD45A’s positive correlation with eosinophils and negative
correlation with CD8 T cells is consistent with its involvement in
calibrating proinflammatory and regulatory immune dynamics, in
line with previous evidence of its role in inflammation (Dominic
et al., 2012). BMX’s positive associations with eosinophils, activated
mast cells, and neutrophils align with its capacity to promote
inflammatory responses (Deng et al., 2020), while GRB10’s
correlation with eosinophils and M2 macrophages supports its
putative contribution to anti-inflammatory or homeostatic
processes (She et al., 2023). These findings highlight the intricate
relationships between these biomarkers and immune cell
populations, reinforcing the notion that BMX, GRB10, and
GADD45A may influence sepsis progression through complex
immune regulatory networks.

The construction of themRNA-miRNA-lncRNAnetwork provides
further mechanistic insights. For instance, the BMX-miR-758-3p-
AC079586.1 and GRB10-miR-15a-5p-RP11-483P21.6 axes highlight
potential regulatory mechanisms through which non-coding RNAs
may influence gene expression and sepsis progression (Tian et al., 2024).
Previous studies have demonstrated the critical role of miRNAs and
lncRNAs in sepsis by regulating gene expression at the post-
transcriptional level. For example, miR-758-3p has been implicated
in inflammatory response regulation and cell apoptosis (Peng et al.,
2020), while miR-15a-5p has been shown to modulate immune
responses and oxidative stress (González-López et al., 2023). The
involvement of lncRNAs, such as AC079586.1 and RP11-483P21.6,
in sepsis further underscores their potential as therapeutic targets. This
network approach underscores the complexity of gene regulation in
sepsis and highlights potential targets for therapeutic intervention.

Our docking studies identified several promising therapeutic
agents targeting BMX, GRB10, and GADD45A, offering
opportunities for drug repurposing and targeted therapy.
Specifically, Bendroflumethiazide exhibited strong binding affinity
with BMX, Cianidanol showed significant interaction with GRB10,
and Hexamidine formed stable complexes with GADD45A. The
repositioning of these FDA-approved drugs could accelerate the
development of effective sepsis treatments by targeting these newly
identified biomarkers.

Despite our robust findings, several limitations must be
addressed to fully utilize BMX, GRB10, and GADD45A as sepsis
biomarkers and therapeutic targets. Experimental validation is
crucial to confirm their roles in sepsis pathogenesis, necessitating
cell-based assays with monocytes and endothelial cells using gene
overexpression and CRISPR/Cas9-mediated knockdown.
Additionally, animal models, such as LPS-induced sepsis and
cecal ligation and puncture (CLP) mouse models, will be
employed to assess the therapeutic effects of compounds like
Bendroflumethiazide, Cianidanol, and Hexamidine on multi-
organ damage and inflammation. A further increase in the
sample size, along with the support of multicenter studies, is
necessary to verify their diagnostic value across diverse
populations through qRT-PCR and Western blot analysis of
patient samples for clinical validation. Furthermore,
experimentally confirming the interactions within the mRNA-
miRNA-lncRNA network and integrating additional omics data,
such as proteomics and metabolomics, will enhance our
understanding of sepsis pathogenesis. These efforts aim to
incorporate BMX, GRB10, and GADD45A into diagnostic panels

TABLE 3 Details of molecular docking analysis in this study.

Binding
energy

(Kcal/mol)

Hydrogen bonds Hydrophobic interaction Salt
bridges

BMX-
Bendroflumethiazide

−8.3 Ser 425A (3.85 Å), Gln 427A (3.14 Å), Asp 554A
(3.19 Å)

Leu 423A (3.80 Å), Val 431A (3.67 Å), Ala 443A
(3.63 Å), Leu 543A (3.66 Å, 3.65 Å)

BMX-Benzthiazide −7.1 Lys 20A (3.89 Å), Lys 138A (3.15 Å) Lys 19A (3.64 Å), Lys 138A (3.86 Å), Val 567A
(3.70 Å)

BMX-
Hydrochlorothiazide

−6.9 Lys 445A (3.29 Å), Thr 489A (3.78 Å), Asp 554A
(4.03 Å)

Val 431A (3.73 Å, 3.84 Å)

GRB10-Chloroquine −4.9 Lys 171A (3.15 Å), Phe 243A (3.93 Å) Lys 171A (3.78 Å, 3.75 Å), Phe 173A (3.48 Å)

GRB10-Cianidanol −8.5 Glu 225A (3.90 Å), Asn 248A (3.29 Å), Lys 251A
(4.00 Å), Ser 346A (2.98 Å), Glu 384A (3.49 Å), Arg
387A (3.29 Å), Arg 395A (3.30 Å), Thr 388A (3.47 Å,

3.47 Å)

Ala 250A (3.89 Å), Leu 512A (3.75 Å)

GRB10-Quercetin −8.5 Arg 246A (3.85 Å), As 387A (3.16 Å), Asn 248A
(3.20 Å, 2.99 Å), Ser 346A (3.99 Å, 3.99 Å), Thr 388A

(3.52 Å, 3.52 Å)

Ala 250A (3.51 Å)

GADD45A-Ethacrynic
acid

−5.3 Tyr 41A (3.68 Å), Leu 71A (3.61 Å) His 123A
(4.15 Å)

GADD45A-
Hexamidine

−5.6 Pro 51A (2.99 Å), Asp 52A (3.25 Å), Asn 88A
(2.89 Å), Asn 129A (3.78 Å), Ser 141A (3.10 Å,

3.01 Å)

Val 55A (3.88 Å), Leu 140A (3.25 Å), Ile 144A
(3.77 Å)

GADD45A-Warfarin −6.5 Val 38A (2.90 Å), Thr 106A (3.45 Å) Ile 36A (3.46 Å), Leu 102A (3.58 Å), Leu 103A
(3.58 Å), Thr 106A (3.71 Å), Pro 120A (3.92 Å), Leu

122A (3.35 Å)
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FIGURE 8
Molecular dynamics simulation results for drug target complexes. Simulation results including Root Mean Square Deviation (RMSD), Radius of
Gyration (Rg), Solvent Accessible Surface Area (SASA), Root Mean Square Fluctuation (RMSF), and hydrogen bond numbers for (A) Bendroflumethiazide-
BMX, Benzthiazide-BMX, and Hydrochlorothiazide-BMX complexes; (B) Quercetin-GRB10, Cianidanol-GRB10, and Chlo roquine-GRB10 complexes,
and (C) Ethacrynic-GADD45A, Hexamidine-GADD45A, and Warfarin-GADD45A complexes.
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and personalized treatment strategies, thereby improving sepsis
management and patient outcomes.

Conclusion

In conclusion, this study leverages integrated transcriptomics and
ML approaches to identify BMX, GRB10, and GADD45A as pivotal
biomarkers and therapeutic targets in sepsis. These findings enhance
our understanding of sepsis pathophysiology and offer new directions
for diagnostic and therapeutic strategies. The identified biomarkers
exhibit high diagnostic accuracy and are involved in key pathogenic
pathways, providing potential targets for personalized medicine.
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