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Propofol has become one of the most commonly used anesthetic agents
because of its good sedative effects, rapid onset, and fast metabolism.
However, its associated respiratory and circulatory depression and injection
pain make it difficult for patients to tolerate. Ciprofol, which is structurally
similar to propofol but has an additional cyclopropyl group, is less likely to
impact respiratory and circulatory function and cause injection pain,
highlighting its potential for clinical application. Currently, as research on
Ciprofol is still in the exploratory stage, its clinical application is limited
because its underlying mechanisms are not yet fully understood. The aim of
this article is to review the pharmacologicalmechanisms of propofol, hypothesize
the primary pharmacological effects and potential adverse reactions of Ciprofol,
and summarize its current clinical application status, with the goal of providing a
reference for future clinical use.
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1 Pharmacological characteristics of ciprofol

Ciprofol is a novel GABA-A receptor agonist that is structurally similar to propofol but
with the addition of a cyclopropyl group and exists as both R- and S-enantiomers (Qin et al.,
2017) (Figure 1). Studies suggest that the incorporation of the R-chiral center and
cyclopropyl group causes a structural change that provides a better spatial volume,
moderately increasing its lipophilicity and pharmacological properties. As a result,
ciprofol may bind to the GABA-A receptor more tightly than propofol does, causing an
anesthetic potency approximately four to five times greater than that of propofol (Qin et al.,
2017; Hu et al., 2021; Lu et al., 2023; Luo et al., 2022). Moreover, owing to its increased
lipophilicity, ciprofol crosses the blood-brain barrier, demonstrating wide and rapid
distribution in tissue. This may account for its rapid onset of central nervous system
effects (Hung et al., 2023). It has been reported that a single intravenous dose of 0.4 mg kg−1

ciprofol can induce hypnosis within 2 min, with an average time to awakening of 10.6 min
and a minimum of 5.5 min (Bian et al., 2021).

The primary metabolic pathways of ciprofol include oxidation, glucuronidation, and
sulfation, with the major metabolite in plasma being the glucuronide conjugate M4 (79.3%),
which is pharmacologically inactive and primarily excreted via the kidneys (Bian et al.,
2021). Compared with propofol, ciprofol exerts minimal effects on the respiratory and
circulatory systems and is less likely to cause injection pain (Li J. et al., 2022; Wu et al., 2022;
Zhu et al., 2023). Therefore, ciprofol appears to have promising clinical applications, and
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understanding its main pharmacological effects and mechanisms of
adverse reactions is crucial for its safe clinical use.

2 Potential sedative mechanism

γ-Aminobutyric acid (GABA) is the major inhibitory
neurotransmitter that controls synaptic transmission and
neuronal excitability in the central nervous system (CNS), is
widely distributed in the brain, and maintains a balance between
excitation and inhibition in the cerebral cortex (Kim and Hibbs,
2021). GABA has three receptor subtypes, namely, GABAA, GABAB,
and GABAC (Shimizu-Okabe et al., 2022). Among these, GABAA is a
ligand-gated ion channel composed of α1-6, β1-3, γ1-3, δ, ε,Φ, and π
subunits that can form different subtypes. The most common
subtype found in the brain is α1β2γ2, which is also the primary
receptor targeted by propofol (Kim and Hibbs, 2021; Solomon et al.,
2019; Kim et al., 2020).

Ciprofol, a novel γ-aminobutyric acid (GABA) receptor
inhibitor, shares a similar chemical structure with propofol and
exerts its anesthetic and sedative effects primarily through the
activation of GABAA receptors (Solomon et al., 2019; Duan et al.,
2023). Upon activation of GABAA receptors by ciprofol, chloride
ions influx, and ciprofol also competes with tert-
butylbicyclophosphorothionate (TBOB) and tert-
butylbicyclophosphorothionate (TBPS) for competitive binding to
the chloride ion channel, enhancing the chloride influx induced by
GABA, leading to membrane hyperpolarization and inhibiting the
transmission of excitatory neurotransmitters (such as glutamate)
between neurons, thereby suppressing the central nervous system
and producing sedative effects (Kim et al., 2020; Liao et al.,
2022) (Figure 1).

Furthermore, studies have shown that glutamate can reduce the
expression and activation of GABAB through the NMDA receptor
(Guetg et al., 2010; Xu et al., 2014; Maier et al., 2010). Therefore, low
concentrations of glutamate may promote the activation of GABAB

receptors. The GABAB receptor is a seven-transmembrane G

protein-coupled receptor that, once activated, inhibits adenylyl
cyclase, reducing cyclic adenosine monophosphate (cAMP)
synthesis and leading to a decrease in the cAMP concentration
(Li et al., 2020). As cAMP is an important neurotransmitter for
activating protein kinase A, a decrease in the cAMP concentration
reduces the activity of the cAMP‒PKA signaling pathway, further
inhibiting neuronal excitability and synaptic transmission and
enhancing the sedative effect (Connelly et al., 2013) (Figure 2).
The activation of GABAB may also enhance the sustained GABAA

current through downstream regulation by PKA, further
strengthening central inhibition and achieving rapid sedation.
Currently, some studies suggest that the anesthetic effects of
propofol may be attributed to the activation of GABAB receptors
(Schwieler et al., 2003); however, direct evidence regarding the
relationship between ciprofol and GABAB receptors is still
lacking. Nevertheless, this may provide a new avenue for research
into the mechanism underlying the stronger anesthetic potency of
ciprofol: in addition to differing affinities for GABA receptors, it
may also be related to selective differences in binding to the GABAA
and GABAB subtypes.

3 Mechanisms of potential
adverse reactions

3.1 Cardiovascular depression

One of the common adverse reactions of ciprofol is hypotension,
which, similar to propofol, may involve multiple mechanisms.
Studies have revealed that GABA can regulate renal sympathetic
and visceral sympathetic nerve activity through GABAA receptors,
leading to changes in cardiovascular activity (Milanez et al., 2020).
Therefore, it is likely that ciprofol, like propofol, induces
hyperpolarization of neuronal membranes upon activation of
GABAA receptors, which in turn inhibits renal and visceral
sympathetic nerve activity, resulting in a decrease in blood
pressure (Ebert et al., 1992). Additionally, ciprofol may cause
blood pressure reduction by indirectly dilating blood vessels

FIGURE 1
Schematic diagram of the chemical structure of propofol and
ciprofol, with a schematic diagram of their binding to GABAA. The
above is a schematic diagram of the chemical structure of propofol,
and the following is a schematic diagram of the chemical
structure of ciprofol, which binds more closely to the GABAA receptor
and has a higher affinity.

FIGURE 2
Schematic diagram of the mechanism of the central sedative
action of ciprofol production. The binding of ciprofol to the GABAA
receptor results in a change in membrane potential, inhibiting
glutamate release and ultimately producing a sedative effect.
AMP: cyclic adenosine monophosphate, PKA: cyclic AMP-dependent
protein kinase.
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through other mechanisms, possibly involving a protein kinase C
(PKC)-dependent pathway (Noguchi et al., 2023).

Researchers have reported that propofol can stimulate the
translocation of PKC isoforms, leading to the activation of
endothelial nitric oxide synthase (eNOS) (Wang et al., 2010),
which increases nitric oxide (NO) levels. The generated NO
activates guanylate cyclase (GC), increasing cyclic guanosine
monophosphate (cGMP) production. This, in turn, reduces
calcium influx into smooth muscle cells, resulting in smooth
muscle relaxation and vasodilation (Nagakawa et al., 2003;
Kamitani et al., 1995; Yamanoue et al., 1994). Moreover, the
activation of NO and cGMP can lead to the activation of
calcium-activated potassium channels (K+ (Ca2+)) and ATP-
sensitive potassium channels (K+ (ATP)), inducing
hyperpolarization and relaxation of vascular smooth muscle and
further promoting vasodilation (Nagakawa et al., 2003) (Figure 3).
eNOS activation also decreases intracellular calcium concentrations
and reduces myocardial sensitivity to calcium, thereby inhibiting
myocardial contractility and contributing to blood pressure
reduction (Kanaya et al., 2005; Wickley et al., 2006).
Additionally, propofol may lower the calcium threshold for the
activation of arterial smooth muscle cell channels by increasing the
calcium sensitivity of large conductance calcium-activated
potassium channels (BKCa), resulting in greater vasodilation (Liu
et al., 2012). Notably, propofol may also reduce the production of
cAMP through PKC activation, thereby diminishing β-adrenergic
signaling in cardiomyocytes and reducing the heart’s excitatory
response to β-adrenergic receptor activation (Kurokawa et al.,
2002). Recent studies have revealed that ciprofol can attenuate
myocardial injury caused by β-agonists, suggesting that it may
exert similar effects on β-receptors (Yang et al., 2022).

Unfortunately, research on the mechanisms underlying
ciprofol-induced hypotension is limited. Given the structural and

pharmacological similarities between ciprofol and propofol, we
speculate that their mechanisms of action may be similar.
However, in clinical practice, ciprofol appears to have a milder
effect on the cardiovascular system.We hypothesize that this may be
due to the following reasons: 1. Ciprofol is a more potent anesthetic,
thus the doses administered in clinical settings are typically lower
than those of propofol, resulting in lower plasma concentrations and
reduced effects on receptors or channels involved in cardiovascular
depression. 2. Ciprofol is metabolized more rapidly at lower doses,
and its metabolites are pharmacologically inactive, leading to a
shorter duration of cardiovascular suppression than that of
propofol (Bian et al., 2021).

3.2 Respiratory depression

Both ciprofol and propofol inevitably cause respiratory
depression, which is closely related to their action on GABA
receptors. The preBötzinger complex (preBötC) in the ventral
medulla of mammals regulates normal respiratory rhythm (Song
et al., 2016; Kam et al., 2013), and the role of the neurotransmitter
GABA in this process is significant (Johnson et al., 2002; Ghali and
Beshay, 2019). Studies have revealed that high concentrations of
GABA in the ventricular pool can significantly reduce tidal volume
in dogs (Kazemi and Hoop, 1991). This regulation is likely mediated
through the activation of GABAA receptors, as research has
indicated that GABAA receptor antagonists in the brainstem
significantly increase the frequency and amplitude of respiratory-
modulated hypoglossal (XII) neuron bursts, enhancing the control
of respiratory rhythm (Johnson et al., 2002).

As an agonist of GABAA receptors, ciprofol is likely to inhibit
preBötC’s regulation of respiratory rhythm, leading to respiratory
depression. Additionally, studies have revealed that GABAB receptor

FIGURE 3
Schematic diagram of the mechanism by which ciprofol causes hypotension. Ciprofol promotes the release of nitric oxide (NO) by promoting
protein kinase C (PKC) translocation, activating endothelial nitric oxide synthase (eNOS), thereby causing cyclic guanosine monophosphate (cGMP),
which ultimately leads to vascular smooth muscle relaxation. O2: oxygen, GC: guanylate cyclase, GTP: guanosine triphosphate, K+(Ca2+): calcium-
activated potassium channels, K+ (ATP): ATP-sensitive potassium channels.
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agonists can cause significant respiratory depression (Follman and
Morris, 2022), although whether GABAB receptors are involved in
ciprofol-induced respiratory depression requires further
investigation. Interestingly, despite the structural similarity
between ciprofol and propofol, ciprofol tends to cause less severe
and less frequent respiratory depression (Lan et al., 2023). This
difference may be related to their distinct interactions with GABAA

receptor subunits. Propofol has a relatively high affinity for the
β2 and β3 subunits (Jonsson Fagerlund et al., 2010; Jonsson
Fagerlund et al., 2012), and its sedative effects are primarily
mediated by these subunits (Zeller et al., 2005). Respiratory
depression induced by propofol is mainly mediated by the
β3 subunit (Zeller et al., 2005), suggesting that ciprofol may
predominantly target different subunits, thereby resulting in
milder respiratory depression.

Moreover, since ciprofol is four to five times more potent than
propofol is, the doses administered in clinical settings are lower,
leading to lower plasma concentrations, faster metabolism, and a
shorter duration of action. Compared with that of propofol, its main
metabolite, M4, does not have any toxic or hypnotic properties (Qin
et al., 2017; Bian et al., 2021), which further contributes to its shorter
duration and milder manifestation of respiratory depression.

3.3 Injection pain

Injection pain is a common clinical issue associated with
propofol, as evidenced by an incidence as high as 60% (Jalota
et al., 2011). This is thought to be caused by direct stimulation of
the free afferent nerve endings between the tunica media and
intima of the vein or by the activation of the kinin cascade,
resulting in the release of mediators such as kininogen when the
active ingredients in the propofol emulsion come into contact
with the vascular endothelium (Tan and Onsiong, 1998).
Additionally, the intensity of injection pain is proportional to
the concentration of the drug in the aqueous phase of the
emulsion (Jalota et al., 2011). Although ciprofol has a
chemical structure similar to that of propofol and a similar
mechanism for causing injection pain, the incidence of
injection pain is significantly lower (Hu et al., 2021; Luo et al.,
2022), possibly because of multiple factors. First, ciprofol is a
more potent anesthetic than propofol is, so the doses
administered in clinical settings are typically lower (Qin et al.,
2017; Klement and Arndt, 1991). Second, ciprofol, which has an
additional cyclopropyl group, has significantly increased
lipophilicity and hydrophobicity (Qin et al., 2017). As a result,
it is typically formulated as a water-in-oil emulsion, which
further reduces its water solubility. In emulsions with the
same lipid concentration, the aqueous phase concentration of
ciprofol is significantly lower than that of propofol (Qin et al.,
2017). Additionally, the higher lipophilicity of ciprofol allows it
to rapidly cross cell membranes and distribute into other tissues
(Hung et al., 2023), further lowering the concentration of free
drug in the aqueous phase. The concentration of free drug in the
aqueous phase is a key factor in determining whether injection
pain occurs, and since the aqueous phase concentration of
ciprofol is lower than that of propofol, the likelihood of
injection pain is correspondingly reduced (Ding et al., 2022).

4 Clinical applications

4.1 General anesthesia induction and
maintenance

4.1.1 Anesthesia induction
Ciprofol is being increasingly incorporated into clinical practice,

and its safety and efficacy are being more frequently validated. For
anesthesia induction, 0.3–0.5 mg kg−1 ciprofol is not inferior to
2.0–2.5 mg kg−1 propofol (Wang et al., 2022). A single infusion of
0.4 mg kg−1 ciprofol is pharmacokinetically stable and safely and
successfully induces anesthesia in healthy individuals (Bian et al.,
2021;Wang et al., 2022). In clinical studies, researchers reported that
a dose of 0.4 mg kg−1 ciprofol successfully induced anesthesia in
100% of patients and was associated with a low incidence of poor
responses to intubation and a significantly smaller drop in blood
pressure within the first 10 min after induction than 2.0 mg kg−1

propofol was (Chen et al., 2022). Owing to individual differences,
0.3 mg kg−1 is more suitable for elderly patients (aged ≥65), with
similar efficacy to 0.4 mg kg−1 in younger patients, maintaining
stable hemodynamics and a low incidence of respiratory depression
(Duan et al., 2023; Li et al., 2021). Notably, the incidence of
hypotension caused by the same dose of ciprofol increases with
age (Lu et al., 2024). In contrast to elderly patients, children require a
higher induction dose. A study revealed that a dose of 0.6 mg kg−1 in
children results in stable circulation and BIS values (Pei et al., 2023).

Ciprofol has been successfully used in various noncardiac
surgeries, including abdominal, orthopedic, urological, thoracic,
and neurosurgical procedures, and has demonstrated favorable
outcomes (Ding et al., 2022).

4.1.2 Anesthesia maintenance
For anesthesia maintenance, ciprofol at a rate of 0.9 mg kg−1 h−1

provides similar anesthetic potency to isoflurane at 5.7 mg kg−1 h−1

(Liang et al., 2023). A population pharmacokinetic-
pharmacodynamic (PK-PD) model suggests that the optimal
maintenance dose of ciprofol is 0.8 mg kg−1 h−1 during surgery
(Liu L. et al., 2024). A phase III clinical trial revealed that after
induction with 0.4 mg kg−1 ciprofol, anesthesia was maintained at an
initial rate of 0.8 mg kg−1 h−1, with adjustments between 0.4 and
1.7 mg kg−1 h−1, the BIS value was maintained between 40 and 60,
and blood pressure remained stable, highlighting the safety of
ciprofol (Liang et al., 2023). In elderly patients, ciprofol also
maintains stable hemodynamics, resulting in good postoperative
recovery and lower CAM scores (Liu Z. et al., 2024). Notably,
ciprofol is less toxic to the hepatic and renal systems, and
patients with mild to moderate hepatic or renal impairment
tolerate it well without the need for dosage adjustments (Hu
et al., 2022; Liu S. B. et al., 2023). Its ability to maintain stable
hemodynamics also ensure smooth kidney transplantation and
therefore good post-transplantation renal function recovery (Qin
et al., 2022).

4.2 Pain-free procedures

Ciprofol ensures a pain-free procedure. Studies have revealed
that when used for gastrointestinal endoscopy, 0.2–0.5 mg kg−1
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ciprofol has a 100% success rate (Teng et al., 2021). When used for
colonoscopy, a dose of 0.4–0.5 mg kg−1 ciprofol provides a sedation
effect similar to that of 2.0 mg kg−1 propofol, with a lower incidence
of injection pain and no severe adverse events (Teng et al., 2021; Gao
et al., 2024). Some studies revealed that the incidence of respiratory
depression and hypotension is lower at doses of 0.2 mg kg−1 and
0.3 mg kg−1 than at 0.4 mg kg−1 ciprofol (Chen et al., 2023), although
further research is needed to determine whether this dose provides
the same efficacy and depth of anesthesia. For fiberoptic
bronchoscopy, ciprofol at doses of 0.3 mg kg−1 and 0.4 mg kg−1

has successful anesthesia induction rates of 91.3% and 100%,
respectively, with the option of administering one-third to one-
quarter of the initial dose at 2-min intervals as needed and providing
sedative effects comparable to those of propofol at doses of
1.2 mg kg−1 and 2.0 mg kg−1. Ciprofol also maintains more stable
blood oxygen saturation and hemodynamics and is less likely to
cause injection pain (Luo et al., 2022; Wu et al., 2022). After
induction with 0.4 mg kg−1 ciprofol, maintaining anesthesia with
a dose of 0.6–1.2 mg kg−1 h−1 during hysteroscopic examination
provides success rates similar to those of 2.0 mg kg−1 propofol, with a
significantly lower incidence of respiratory adverse events (4.0% vs
31.1%) (Lan et al., 2023). It is noteworthy that a Phase IIa trial found
that a dose of 0.4 mg kg−1 of ciprofol had a higher incidence of
adverse reactions related to muscle fasciculation compared to
2.0 mg kg−1 of propofol (4.5% vs 0%) (Gao et al., 2024).
Subsequently, a Phase IIa study compared doses ranging from
0.2 to 0.5 mg kg−1 of ciprofol and found that muscle fasciculation
occurred only in the 0.2 mg kg−1 group (6.8%), with muscle
fasciculations not being dose-dependent (Gao et al., 2024). This
may be attributed to the low doses of ciprofol used, leading to
anesthesia-related seizures (Lu et al., 2023).

In summary, ciprofol is associated with more stable
hemodynamics, a lower incidence of respiratory adverse events,
safe anesthesia induction, a lower likelihood of injection pain, and
greater patient acceptance than propofol is and ensures a pain-free
procedure. However, since various pain-free diagnostic and
therapeutic procedures involve different intensities of stimulation
and varying demands on the respiratory system, the optimal doses of
ciprofol required in different settings should be explored further to
ensure that the desired depth of anesthesia can be achieved under the
safest conditions.

4.3 Sedation in the ICU

ICU patients often experience severe pain, anxiety, and
discomfort, and many require mechanical ventilation to maintain
respiration, which increases the likelihood of agitation (DallıÖ et al.,
2023; Bauerschmidt et al., 2023). Therefore, prolonged sedation is
often required in the ICU setting (Bauerschmidt et al., 2023). A
phase I study involving healthy volunteers revealed that ciprofol
effectively maintains sedation via continuous intravenous infusion
without drug accumulation, and patients can tolerate it for at least
12 h. Furthermore, ciprofol is associated with milder respiratory
depression and less circulatory impact than propofol is (Hu
et al., 2021).

For sedation in the ICU, the recommended regimen involves an
initial bolus dose of 0.1 mg kg−1 intravenously, followed by a

maintenance dose of 0.3 mg kg−1 h−1, with the dose adjusted
between 0.06 and 0.8 mg kg-1 h−1 to maintain a RASS sedation
score of −2 to +1 (Liu et al., 2022; Liu Y. et al., 2023). This dosage
regimen provides more stable hemodynamics andmilder respiratory
depression and is safe and well tolerated for at least 24 h (Liu Y. et al.,
2023). Compared with propofol, ciprofol appears to be safer for
prolonged infusion. Long-term infusion of propofol has been
associated with hypertriglyceridemia (Pancholi et al., 2023),
whereas continuous 24-h infusion of ciprofol does not lead to
elevated serum triglyceride levels (Liu et al., 2022; Liu Y. et al.,
2023). Additionally, prolonged infusion of propofol can result in
propofol-related infusion syndrome (PRIS), with an incidence rate
of 2.9% and a related mortality rate of up to 36.8% (Li W. K. et al.,
2022). High dosage and prolonged use are recognized as major risk
factors for the development of propofol infusion syndrome
(Hemphill et al., 2019). Given that ciprofol is a more potent
anesthetic, the cumulative dose during prolonged infusion is
much lower than that of propofol, which theoretically may
reduce the risk of PRIS. However, more clinical data are needed
to further validate this hypothesis.

While the advantages of ciprofol over propofol are clear,
research on its use for sedation in the ICU is still limited.
Moreover, as a novel 2,6-disubstituted phenol derivative similar
to propofol, the effects of long-term ciprofol infusion on adrenal
cortical function remain unclear. Furthermore, there is currently no
evidence to suggest that ciprofol improves long-term outcomes in
ICU patients. More research is needed to clarify these aspects in
the future.

5 Conclusion

Ciprofol, a new (GABA)-A receptor agonist, has a
pharmacological mechanism similar to that of propofol.
However, owing to the addition of a cyclopropyl group, ciprofol
is a stronger anesthetic than propofol is, allowing for lower clinical
doses. We believe that the lower clinical doses of ciprofol may be one
of the key reasons for its association with lower incidences of
hypotension, respiratory depression, and injection pain. This
finding is consistent with the observation that lower doses of
propofol tend to result in fewer adverse reactions. The primary
difference in pharmacological effects between ciprofol and propofol
may lie in anesthetic potency rather than adverse effects.

Overall, ciprofol has shown promising clinical outcomes and is
suitable for use in both elderly and pediatric patients. Its
performance in clinical settings thus far suggests excellent
potential, although further exploration is needed to determine the
optimal dose for various clinical scenarios.
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