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Background:Osteoarthritis (OA) and impaired glucose tolerance (IGT) frequently
coexist, leading to compounded clinical and metabolic challenges. This study
investigates the effects of metformin in improving both clinical outcomes (pain,
stiffness, physical function) and metabolic parameters (inflammatory markers,
lipid profile, BMI) in patients with knee OA and IGT.

Methods: The study included 60 patients diagnosed with knee OA and IGT.
Participants were divided into two groups: 26 patients received standard OA
treatment without metformin (Without Metf), while 34 received metformin
(500 mg twice daily) for 3 months, in addition to standard treatment (With
Metf). Clinical assessments (WOMAC, Lequesne Algofunctional Index, KOOS,
VAS) and metabolic markers (CRP, NLR, SOD, lipid profile, BMI) were
measured before treatment, after 1 month, and after 3 months.

Results: The With Metf group showed significantly greater improvements in pain,
stiffness, physical function, and quality of life compared to the Without Metf
group. Metformin also led to significant reductions in inflammatory markers and
improvements in lipid profiles and metabolic health indicators. The With Metf
group demonstrated enhanced BMI, waist-to-hip ratio, andwaist-to-height ratio.
Furthermore, the need for increased NSAID doses was predicted by factors such
as pain severity and inflammatory markers.

Conclusion: Metformin effectively alleviates osteoarthritis symptoms and
improves metabolic health in patients with both OA and IGT. Further research
is needed to explore its long-term effects on joint health, inflammatory markers,
and its potential role in OA management in patients without IGT.
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1 Introduction

The investigation of pleiotropic drugs in osteoarthritis (OA) is focused on identifying
agents that simultaneously reduce symptoms and target underlying pathogenic
mechanisms, potentially slowing disease progression (Fazio et al., 2024; Coppola et al.,
2024; Halabitska et al., 2024a). Metformin, a first-line pharmacological agent widely used
for managing type 2 diabetes mellitus (T2DM), has garnered considerable attention for its
effects beyond glycemic control (Baker et al., 2021; Bailey, 2024). As an insulin-sensitizing
agent, metformin is also frequently prescribed for individuals with impaired glucose
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tolerance (IGT), a prediabetic condition characterized by disrupted
glucose homeostasis, systemic inflammation, and metabolic
dysfunction (Ping et al., 2024; Hostalek et al., 2015; Rojas and
Gomes, 2013). While its primary therapeutic role is in improving
insulin sensitivity and reducing hepatic gluconeogenesis, growing
evidence suggests that metformin exerts pleiotropic effects,
including anti-inflammatory, antioxidant, and metabolic
regulatory properties (Dutta et al., 2023; Apostolova et al., 2020;
Drzewoski and Hanefeld, 2021). These attributes position
metformin as a promising candidate for addressing a range of
metabolic and degenerative disorders (Rotermund et al., 2018;
Isop et al., 2023; Petrie, 2024).

OA, a chronic and progressive degenerative joint disease, has
traditionally been associated with mechanical factors such as joint
overload and injury (He et al., 2020; Felson, 2013; Hall et al., 2016;
Halabitska and Babinets, 2021). OA is one of the most prevalent
musculoskeletal disorders worldwide (Allen et al., 2022; Global,
2023). IGT affects a significant portion of the population,
particularly in older adults (Kalyani and Egan, 2013; Fang et al.,
2019; Hermans et al., 2005). Their comorbidity is common and
poses challenges due to overlapping inflammatory and metabolic
pathways (Aziz et al., 2024; Berenbaum and Walker, 2020).
However, emerging evidence highlights the critical role of
metabolic and inflammatory mechanisms in its pathogenesis,
particularly in individuals with metabolic comorbidities such as
obesity, T2DM, and IGT (Chandrasekaran and Weiskirchen, 2024;
Rohm et al., 2022; Ruze et al., 2023; Redkva et al., 2021; Zemlyak
et al., 2023). The comorbidity of osteoarthritis and obesity highlights
a complex interplay of systemic inflammation and metabolic
disturbances, exacerbating the progression of both conditions
(Halabitska et al., 2021; Nedunchezhiyan et al., 2022; Halabitska
et al., 2024b). These comorbidities create a vicious cycle (Li B. et al.,
2024; Swain et al., 2022; Repchuk et al., 2021). This interaction not
only accelerates joint degeneration but also contributes to chronic
low-grade inflammation, insulin resistance, and impaired overall
metabolic homeostasis (Halabitska et al., 2024c; Vinuesa et al., 2021;
Roberts et al., 2013). OA is characterized by cartilage degradation,
subchondral bone remodeling, and synovial inflammation,
processes that are exacerbated by systemic metabolic dysfunction
(He et al., 2020; De Roover et al., 2023; Halabitska et al., 2024d). In
this context, the metabolic and anti-inflammatory actions of
metformin may have a dual benefit: addressing systemic
metabolic derangements and modulating local joint pathology
(Foretz et al., 2023; Domingo et al., 2024; He, 2020).

Preliminary studies have demonstrated that metformin can
mitigate key mechanisms underlying OA progression (Xu et al.,
2024; Anis et al., 2012; Li et al., 2020; Lambova, 2023). These include
reductions in systemic inflammation and oxidative stress,
improvements in lipid metabolism, and direct modulation of
chondrocyte function (Adam et al., 2024; Horváth et al., 2023; Su
et al., 2022). Moreover, metformin has been shown to enhance the
synthesis of extracellular matrix components, promoting cartilage
repair and potentially slowing the degenerative processes associated
with OA (Feng et al., 2020; Yao et al., 2023; Zheng et al., 2021; Song
et al., 2022). Despite these promising findings, the clinical
application of metformin in OA remains underexplored, and
robust evidence from longitudinal studies and clinical trials is
necessary to validate its therapeutic potential.

This article aims to explore the potential role of metformin in
managing OA in patients with IGT. By addressing both systemic and
local pathological mechanisms, metformin may offer a novel
therapeutic approach for patients with these comorbid
conditions. Further elucidation of its disease-modifying properties
could pave the way for integrating metformin into broader
treatment paradigms for OA, particularly in the context of
metabolic health optimization.

2 Materials and methods

2.1 Subjects

The study included 60 patients diagnosed with knee OA and
IGT. Inclusion criteria required participants to have a confirmed
diagnosis of OA based on the American College of Rheumatology
(ACR), EULAR, and National Institute for Health clinical and
radiographic criteria (Peat et al., 2006; Wang et al., 2024), which
include the presence of pain, stiffness, or functional limitation in at
least one joint, along with radiographic evidence of joint space
narrowing, osteophytes, and subchondral sclerosis. Additionally,
participants had to meet the criteria for IGT, defined by a fasting
blood glucose level between 5.6 and 6.9 mmol/L (100–125 mg/dL) or
a 2-h postprandial glucose level between 7.8 and 11.0 mmol/L
(140–199 mg/dL), in accordance with the World Health
Organization (WHO) criteria (Bergman et al., 2024).

Exclusion criteria included the presence of other metabolic or
systemic conditions that could confound the results, such as
uncontrolled diabetes mellitus, cardiovascular disease, or
inflammatory rheumatic diseases. Patients with a history of joint
surgery, joint replacement, or other significant comorbidities such as
malignancies were also excluded from the study.

The study was conducted in accordance with the core
principles outlined in the Council of Europe’s Convention on
Human Rights and Biomedicine, as well as the ethical guidelines
set forth in the World Medical Association’s Declaration of
Helsinki on medical research involving human subjects,
including its subsequent revisions (World Medical Association
Declaration of Helsinki, 2014). Additionally, the research adhered
to the regulations specified in Ministry of Health of Ukraine
Order No. 690, dated 23 September 2009. All participants
provided written informed consent before their participation.
Ethical approval for the study was granted by the Bioethics
Committee of I. Horbachevsky Ternopil National Medical
University, Ministry of Health of Ukraine (Protocol No. 78,
18 August 2024).

The study cohort was divided into two groups: 26 patients in the
Without Metf group and 34 patients in the With Metf group, with
matched characteristics in terms of age, gender, severity, and disease
progression of osteoarthritis (Table 1). The Without Metf group
received OA treatment according to the established protocol, along
with recommendations for improving glucose tolerance, including
dietary modifications (e.g., reducing carbohydrate intake, increasing
dietary fiber, and promoting a balanced nutritional regimen),
regular physical exercise, and other lifestyle interventions. The
With Metf group received OA treatment in accordance with the
protocol, in addition to receiving metformin at a dose of 500 mg
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twice daily for a period of 3 months. All clinical parameters were
assessed before treatment, after 1 month, and after 3 months.

2.2 Laboratory and clinical data

The Western Ontario and McMaster Universities Osteoarthritis
Index (WOMAC) was employed to evaluate pain, stiffness, physical
function, and overall health status in patients with OA. It consists of
three subscales: Pain (P), Stiffness (S), and Function (F). An overall
score (OS) is calculated based on the combined results from these
subscales, offering a holistic assessment of the patient’s condition
(Ebrahimzadeh et al., 2014).

The Lequesne Algofunctional Index (LI) was used to assess pain,
functional impairment, and overall health status in patients with
OA. It consists of two primary components: Pain Assessment (PA)
and Functional Impairment Assessment (FIA). An Overall Score
(OS) is derived from the combined results of both components,
providing a comprehensive evaluation of the patient’s condition
(Faucher et al., 2002).

The Knee injury and Osteoarthritis Outcome Score (KOOS)
scale was utilized to evaluate various aspects of knee health in
patients with osteoarthritis. It includes five subscales: Pain (P),
Other Symptoms (OS), Function in Daily Living (FDL), Function
in Sport/Recreation (FS/R), and Knee-Related Quality of Life
(KRQL). These subscales collectively provide a comprehensive
assessment of pain, functionality, and quality of life related to
knee osteoarthritis (Roos and Lohmander, 2003).

The Visual Analog Scale (VAS) was employed to assess pain
(VAS-P) in patients with osteoarthritis. Additionally, functional
limitations (VAS-FL), stiffness (VAS-S), and physical activity and
mobility (VAS-PAM) were evaluated to gain a more comprehensive
understanding of the impact of osteoarthritis on daily functioning
and quality of life (Delgado et al., 2018).

The Timed Up and Go (TUG) test and the 6-Minute Walk Test
(6MWT) assessed functional mobility and endurance in patients
with OA. The TUGmeasures the time to rise from a chair, walk a set
distance, turn, return, and sit, while the 6MWT evaluates the
distance walked in 6 minutes, indicating physical endurance and
functional capacity (Montgomery et al., 2020; Buisseret et al., 2020).

The SF-36 Health Survey was used to assess health-related
quality of life in patients at three time points: before treatment,
after 1month, and after 3months. The survey included the following
scales: Physical Functioning (SF-36-PF), Role Limitations due to
Physical Health (SF-36-RP), Bodily Pain (SF-36-BP), General
Health (SF-36-GH), Vitality (SF-36-VT), Social Functioning (SF-
36-SF), Role Limitations due to Emotional Health (SF-36-RE), and

Mental Health (SF-36-MH) (Ware and Sherbourne, 1992;
Ware, 2000).

Anthropometric measurements were taken to assess patients’
metabolic health, including Body Mass Index (BMI), calculated as
weight in kilograms divided by height in meters squared (kg/m2);
Waist-to-Hip Ratio (WHR), determined by dividing waist
circumference by hip circumference; and Waist-to-Height Ratio
(WHtR), calculated as the ratio of waist circumference to height.

Fasting plasma glucose (FPG) was measured in mmol/L using an
enzymatic method on the Cobas c311 analyzer (Roche Diagnostics,
Germany); sensitivity: 0.11 mmol/L; measurement range:
0.11–41.7 mmol/L; intra-assay CV <2%; analyzed in duplicate.
Glycated hemoglobin (HbA1c) was determined as a percentage
(%) by high-performance liquid chromatography (HPLC) using
the Tosoh G8 HPLC Analyzer (Tosoh Corporation, Japan);
sensitivity: 0.1%; measurement range: 3.0%–18.0%; intra-assay
CV <2%; analyzed in duplicate. The Homeostasis Model
Assessment of Insulin Resistance (HOMA-IR) was calculated
using the formula: HOMA-IR = (FPG × fasting insulin)/22.5.
C-peptide levels were measured in ng/mL using an immunoassay
method on the Architect i2000SR analyzer (Abbott, USA);
sensitivity: 0.02 ng/mL; measurement range: 0.02–20 ng/mL;
intra-assay CV <5%; analyzed in duplicate.

The Neutrophil-to-Lymphocyte Ratio (NLR) was calculated by
dividing the neutrophil count by the lymphocyte count, bothmeasured
in cells/µL both measured in cells/µL using the Sysmex XN-1000
hematology analyzer (Sysmex Corporation, Japan); sensitivity: 0.01 ×
109/L; measurement range: neutrophils 0.01–100 × 109/L, lymphocytes
0.01–50 × 109/L; intra-assay CV <3%; analyzed in duplicate.
C-Reactive Protein (CRP) was quantified in mg/L using an
immunoturbidimetric assay using an immunoturbidimetric assay on
the Cobas c501 analyzer (Roche Diagnostics, Germany); sensitivity:
0.3 mg/L; measurement range: 0.3–350 mg/L; intra-assay CV <3%;
analyzed in duplicate. Hydroxyproline (HP) levels were determined in
mg/L by colorimetric analysis using the Shimadzu UV-1800
spectrophotometer (Shimadzu, Japan); sensitivity: 0.5 mg/L;
measurement range: 0.5–100 mg/L; intra-assay CV <5%; analyzed
in triplicate. Malondialdehyde (MA) was measured in µmol/L using a
thiobarbituric acid reactive substances assay on the Agilent Cary
60 UV-Vis spectrophotometer (Agilent Technologies,
United States); sensitivity: 0.1 μmol/L; measurement range:
0.1–25 μmol/L; intra-assay CV <5%; analyzed in triplicate.
Superoxide Dismutase (SOD) activity was assessed in U/mL using a
spectrophotometric method on the Beckman Coulter DU 730 analyzer
(Beckman Coulter, United States); sensitivity: 0.05 U/mL;
measurement range: 0.05–25 U/mL; intra-assay CV <5%; analyzed
in triplicate. α1-Antitrypsin (α1-AT) concentrations were measured in

TABLE 1 Demographic and OA duration characteristics.

Indicator Without Metf (n = 26) With Metf (n = 34) p-value

Male 57.69% 55.88% p = 0.432 (MW)

Age 47 (35–52.75) 48 (34–53) p = 0.279 (MW)

Duration of OA 7 (4–9) 7 (4.5–9) p = 0.725 (MW)

Kellgren–Lawrence Grade 2 (2–2) 2 (2–2) p = 0.244 (MW)

Median and interquartile range (IQR) were used to summarize the data, p–Mann-Whitney U-test (MW).
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g/L by nephelometry on the BN ProSpec analyzer (Siemens
Healthineers, Germany); sensitivity: 0.1 g/L; measurement range:
0.1–4.5 g/L; intra-assay CV <3%; analyzed in duplicate.

Total Cholesterol (TC) was measured in mmol/L using a
colorimetric enzymatic method on the Abbott Architect
c8000 analyzer (Abbott, United States); sensitivity: 0.1 mmol/L;
measurement range: 0.1–15.0 mmol/L; intra-assay CV <3%;
analyzed in duplicate. Low-Density Lipoprotein (LDL) cholesterol
was quantified in mmol/L using the direct measurement method on
the Abbott Architect c8000 analyzer (Abbott, United States); sensitivity:
0.2 mmol/L; measurement range: 0.2–10.0 mmol/L; intra-assay
CV <3%; analyzed in duplicate. High-Density Lipoprotein (HDL)
cholesterol levels were determined in mmol/L by a homogeneous
enzymatic assay on the Abbott Architect c8000 analyzer (Abbott,
United States); sensitivity: 0.1 mmol/L; measurement range:
0.1–4.0 mmol/L; intra-assay CV <3%; analyzed in duplicate.
Triglycerides (TG) were assessed in mmol/L using an enzymatic
colorimetric method on the Abbott Architect c8000 analyzer
(Abbott, United States); sensitivity: 0.1 mmol/L; measurement range:
0.1–11.3 mmol/L; intra-assay CV <3%; analyzed in duplicate.

The OA exacerbation characteristics were assessed as follows:
duration of exacerbation (≤7 days or >7 days) (OA exc. dur.),
frequency of exacerbations in the last 3 months (≤2 times
or >2 times) (OA exc. freq.), need for additional medical
interventions during exacerbation (e.g., injections, physiotherapy)
(OA exc. med. int.), requirement for work leave or exemption due to
exacerbation (OA exc. work leave), occurrence of accompanying
symptoms (e.g., swelling, redness) (OA exc. acc. sym.), need for
increasing the dose of NSAIDs (NSAIDs dose), and need for
increasing the duration of NSAID use (NSAID dur.).

2.3 Statistical analysis

Quantitative variables were first tested for normality using the
Shapiro-Wilk test. Variables were described using median (Me) and
lower and upper quartiles (Q1 – Q3). Categorical data were described
with absolute and relative frequencies. TheMann-WhitneyU-test was
used to compare two groups on a quantitative variable. The
comparison of frequencies in the analysis of 2 by 2 contingency
tables was performed using Fisher’s exact test. As a measure of the
effect size when comparing groups regarding binary variables, the
odds ratio (OR) with a 95% confidence interval (95% CI) was
calculated. The Friedman test was used, along with the Conover-
Iman test with Holm correction as a post hoc method. A prognostic
model for the probability of a specific outcome was constructed using
logistic regression. The coefficient of determination, indicating the
portion of variance explained by the logistic regression, was evaluated
using Nagelkerke’s R2. For assessing the discriminatory ability of
quantitative variables in predicting a specific outcome, ROC curve
analysis was performed. The cut-off point for the quantitative variable
was determined by the highest value of the Youden index. Differences
were considered statistically significant at p < 0.05.

Statistical analyses were conducted using commercially available
software packages, including IBM SPSS Statistics (version 25), R
(version 4.0.3), and GraphPad Prism (version 9.3). These programs
were used for data management, statistical testing, and generating
visual representations of the results.

3 Results

3.1 Analysis of clinical outcomes across
treatment groups

In both studied groups, statistically significant differences were
observed. The analysis ofWOMAC index dynamics revealed significant
improvements in the WOMAC-P, WOMAC-S, WOMAC-F, and
WOMAC-OS, with notable changes observed both before treatment
versus after 3 months and after 1 month versus after 3 months across all
scales. However, for theWOMAC-F, a significantly greater difference in
the dynamics of the indicators was found in the With Metf group
compared to the Without Metf group (Table 2).

In both studied groups, significant changes were observed in the
Lequesne Algofunctional Index. In the Without Metf group, the
analysis demonstrated significant changes in the LI-PA, LI-FIA, and
LI-OS scales. Significant differences in the LI-FIA scale were
observed between before treatment and after 1 month.
Additionally, notable changes were identified in the LI-FIA and
LI-OS scales between after 1 month and after 3 months (Table 3).

In the With Metf group, significant changes were observed
across all Lequesne Algofunctional Index scales during treatment.
Notable differences were found in the LI-PA and LI-OS scales
between before treatment and after 1 month, before treatment
and after 3 months, and after 1 month and after 3 months.
Significant changes were also observed in the LI-FIA scale
between before treatment and after 3 months, and between after
1 month and after 3 months (Table 3).

A significantly greater difference in the dynamics of the LI-PA
and LI-FIA scales was found in the With Metf group compared to
the Without Metf group (Table 3).

Significant statistical differences between the groups were
observed in the Lequesne Algofunctional Index scales,
particularly in the LI-FIA and LI-OS, after 3 months (Table 3).

In the Without Metf group, the KOOS scales analysis revealed
significant changes throughout treatment, particularly in the KOOS-FS/
R and KOOS-KRQL scales. Significant changes were observed in the
KOOS-FS/R scale and theKOOS-KRQL scale between before treatment
and after 3 months, and after 1 month and after 3 months (Table 4).

In the With Metf group, significant changes were observed
across the KOOS scales – KOOS-P, KOOS-OS, KOOS-FDL,
KOOS-FS/R, and KOOS- KRQL – during treatment. Notable
changes were found between before treatment and after 1 month
in the KOOS-OS and KOOS-FDL scales, and between before
treatment and after 3 months in the KOOS-OS, KOOS-FDL,
KOOS-FS/R, and KOOS- KRQL scales. Additionally, significant
changes in the KOOS-P, KOOS-OS, and KOOS-FDL scales were
observed between after 1 month and after 3 months (Table 4).

Additionally, a higher statistical significance of changes in the
indicators was observed in the With Metf group for the KOOS-P,
KOOS-OS, KOOS-FDL, and KOOS-FS/R scales, compared to the
Without Metf group (Table 4).

In theWithoutMetf group, significant changes were noted in the
VAS-P, VAS-FL, VAS-S, VAS-PA, and VAS-M scales throughout
treatment. Notable differences were observed in the VAS-FL, VAS-S,
and VAS-PA, and VAS-M scales between after 1 month and after
3 months, as well as in the VAS-PA and VAS-M scales between
between before treatment and after 1 month (Table 5).
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In the With Metf group, significant changes were observed
throughout treatment in the VAS-P, VAS-FL, VAS-S, VAS-PA,
and VAS-M scales. Statistically significant differences were found

between before treatment and after 1 month, before treatment and
after 3 months, as well as between after 1 month and after 3 months
for all these scales (Table 5).

TABLE 2 Dynamics of WOMAC index indicators in the with and without Metf groups.

Indicator Group Before treatment After 1 month After 3 months p-value

Pain Scale (P) Without Metf (n = 26) 7 (5–8) 6 (6–7) 6 (5.25–7) p < 0.001 (F)

With Metf (n = 34) 7 (6–8) 6 (5–7.75) 6 (5–7) p < 0.001 (F)

Stiffness Scale (S) Without Metf (n = 26) 4 (3–4) 4 (3–4) 4 (3–4) p = 0.003 (F)

With Metf (n = 34) 4 (3–4) 4 (3–4) 4 (3–4) p < 0.001 (F)

Function Scale (F) Without Metf (n = 26) 18 (16–19.75) 18 (16–20) 16 (15–18.75) p < 0.001 (F)

With Metf (n = 34) 19 (17–20) 17 (16–20) 17 (15–18) p < 0.001 (F)

Overall Score (OS) Without Metf (n = 26) 28 (28–31.75) 27.5 (25–31) 26 (22.25–28) p < 0.001 (F)

With Metf (n = 34) 29.5 (27–32.75) 28 (24–31) 26 (23.25–28.75) p < 0.001 (F)

Median and interquartile range (IQR) were used to summarize the data.

p - the statistical difference observed within a single group before treatment, after 1 month, and after 3 months [Friedman test (F)].

Statistically significant p-values are highlighted in bold.

TABLE 3 Lequesne algofunctional index dynamics in the with and without Metf groups across treatment periods.

Indicator Group Before treatment After 1 month After 3 months p-value

Pain Assessment (PA) Without Metf (n = 26) 4 (4–4) 4 (4–4) 4 (3–4) p = 0.045 (F)

With Metf (n = 34) 4 (4–5) 4 (3–4) 4 (3–4) p < 0.001 (F)

Functional Impairment Assessment (FIA) Without Metf (n = 26) 4 (4–4) 4 (4–4) 4 (4–4) p = 0.006 (F)

With Metf (n = 34) 4 (3–4) 3 (3–4)* 3 (3–3)*** p < 0.001 (F)

Overall Score (OS) Without Metf (n = 26) 8 (8–8) 8 (7–8.75) 7 (7–8) p < 0.001 (F)

With Metf (n = 34) 8 (7–9) 7 (7–8) 7 (6–7)*** p < 0.001 (F)

Median and interquartile range (IQR) were used to summarize the data.

p - the statistical difference observed within a single group before treatment, after 1 month, and after 3 months [Friedman test (F)].

* (p ≤ 0.05), ** (p ≤ 0.01), *** (p ≤ 0.001) – the statistical difference between the Without Metf and With Metf groups in a single observation period [Mann-Whitney U-test (MW)].

Statistically significant p-values are highlighted in bold.

TABLE 4 KOOS scale dynamics in the with and without Metf groups across treatment periods.

Indicator Group Before treatment After 1 month After 3 months p-value

Pain (P) Without Metf (n = 26) 66 (65–69.75) 67 (64–70) 67 (64–71) p = 0.078 (F)

With Metf (n = 34) 67.5 (63.25–70) 68 (64–70) 68.5 (65.5–72.75) p = 0.002 (F)

Other Symptoms (OS) Without Metf (n = 26) 65 (62.25–68) 65 (63–69) 65 (63–69) p = 0.228 (F)

With Metf (n = 34) 66 (64–68.75) 66 (64–69.75) 68 (65–70.75) p < 0.001 (F)

Function in Daily Living (FDL) Without Metf (n = 26) 71.5 (69.25–74) 72 (70–74) 72 (71–74) p = 0.102 (F)

With Metf (n = 34) 71 (68–74.75) 71 (69–75.75) 74.5 (70.25–78.5) p < 0.001 (F)

Function in Sport/Recreation (FS/R) Without Metf (n = 26) 52 (49.25–54) 52 (49.25–55) 53.5 (50.5–55) p = 0.016 (F)

With Metf (n = 34) 51 (48–53) 52 (48–54.75) 54 (50.25–56.5) p < 0.001 (F)

Knee-Related Quality of Life (KRQL) Without Metf (n = 26) 59.5 (55.25–62) 59.5 (55.5–62) 60.5 (57.25–62.75) p < 0.001 (F)

With Metf (n = 34) 59.5 (57–63) 60.5 (58–64.75) 63 (60–67) p < 0.001 (F)

Median and interquartile range (IQR) were used to summarize the data.

p - the statistical difference observed within a single group before treatment, after 1 month, and after 3 months (Friedman test (F)).

* (p ≤ 0.05), ** (p ≤ 0.01), *** (p ≤ 0.001) – the statistical difference between the Without Metf and With Metf groups in a single observation period (Mann-Whitney U-test (MW)).

Statistically significant p-values are highlighted in bold.
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Furthermore, a greater statistical significance in the changes of
the indicators was found in the With Metf group for your VAS-P,
VAS-FL, and VAS-S scales, compared to the Without Metf
group (Table 5).

Statistical differences between the groups were observed in the
VAS-P and VAS-FL scales after 1 and 3 months. Furthermore, a
significant difference was noted in the VAS-S scale between the
groups after 3 months (Table 5).

In the Without Metf group, significant changes were observed in
the TUG and 6MWT scales throughout the treatment period.
Statistically significant differences were found between before
treatment and after 3 months, as well as between after 1 month and
after 3 months for both scales. Additionally, changes in the TUG scale
were significant between before treatment and after 1 month (Table 6).

In theWithMetf group, significant changes were observed in the
TUG and 6MWT scales throughout the treatment period.
Statistically significant differences were found in all indicators of
both scales between before treatment and after 1 month, before
treatment and after 3 months, as well as between after 1 month and
after 3 months (Table 6).

Between the groups, statistical differences were observed for the
TUG and 6MWT scales after 1 month, with a further significant
difference noted in the 6MWT scale after 3 months (Table 6).

In the Without Metf group, statistically significant changes were
observed across the OKS questionnaire scales during treatment,
including OKS-P (p = 0.005) (Friedman test), OKS-S (p = 0.002)
(Friedman test), and OKS-F (p = 0.001) (Friedman test).

Additionally, significant differences were found in the OKS-F
scale before treatment and after 1 month (p < 0.001) (Conover-
Iman test with Holm correction), in the OKS-S scale before
treatment and after 3 months, and in the OKS-F scale between
after 1 month and after 3 months (p = 0.008) (Conover-Iman test
with Holm correction) (Figure 1).

In the With Metf group, statistically significant changes were
observed across all OKS questionnaire scales throughout treatment
(p < 0.001) (Friedman test). Significant differences were also found
between before treatment and after 1 month for all scales of the
questionnaire (p < 0.001) (Conover-Iman test with Holm
correction). Additionally, statistically significant changes were
noted between after 1 month and after 3 months for all OKS
scales (p < 0.001) (Conover-Iman test with Holm
correction) (Figure 1).

Statistically significant differences between the groups were also
observed in the OKS-F scale after 1 month (p = 0.043) (Mann-
Whitney U-test) and after 3 months (p = 0.032) (Mann-Whitney
U-test) (Figure 1).

In the Without Metf group, statistically significant changes were
observed across several SF-36 scales throughout treatment.
Specifically, SF-36-RP (p = 0.004) (Friedman test) [before
treatment vs. after 1 month: p = 0.035, before treatment vs. after
3 months: p < 0.001, after 1 month vs. after 3 months: p = 0.035
(Conover-Iman test with Holm correction)]. SF-36-GH (p < 0.001)
(Friedman test) [before treatment vs. after 3 months: p < 0.001, after
1 month vs. after 3 months: p < 0.001 (Conover-Iman test with Holm

TABLE 5 Analysis of VAS changes in the with and without Metf groups across treatment periods.

Indicator Group Before treatment After 1 month After 3 months p-value

Pain (P) Without Metf (n = 26) 42.5 (37–46.25) 42.5 (39–45) 43.5 (40–47) p = 0.009 (F)

With Metf (n = 34) 39 (36.25–43.5) 37 (34.25–40)** 35 (31–37.75)*** p < 0.0010 (F)

Functional Limitations (FL) Without Metf (n = 26) 37.5 (32–42.75) 38 (32.25–41) 36.5 (30–40) p = 0.008 (F)

With Metf (n = 34) 34.5 (29–37) 32 (30–35)* 30 (27–35)** p < 0.001 (F)

Stiffness (S) Without Metf (n = 26) 35.5 (34–41) 35 (32–40) 35 (30–39.5) p = 0.01 (F)

With Metf (n = 34) 36.5 (31.25–40.75) 32.5 (30–36.5) 31 (27.75–35) p < 0.001 (F)

Physical Activity and Mobility (PAM) Without Metf (n = 26) 35.5 (29–38.75) 32.5 (25.5–37) 32.5 (25–35) p < 0.001 (F)

With Metf (n = 34) 36 (30.25–40) 33.5 (30–40) 31 (25.5–37) p < 0.001 (F)

Median and interquartile range (IQR) were used to summarize the data.

p - the statistical difference observed within a single group before treatment, after 1 month, and after 3 months [Friedman test (F)].

* (p ≤ 0.05), ** (p ≤ 0.01), *** (p ≤ 0.001) – the statistical difference between the Without Metf and With Metf groups in a single observation period [Mann-Whitney U-test (MW)].

Statistically significant p-values are highlighted in bold.

TABLE 6 Changes in TUG and 6MWT scales across treatment periods in the with and without Metf groups.

Indicator Group Before treatment After 1 month After 3 months p-value

Timed Up and Go (TUG) Without Metf (n = 26) 15.5 (13–19) 14.5 (12–16) 13 (12–15) p < 0.001 (F)

With Metf (n = 34) 14 (12–17) 12 (10–15)* 12 (10–15) p < 0.001 (F)

6-Minute Walk Test (6MWT) Without Metf (n = 26) 345 (335.25–353.75) 345 (335.25–356) 350 (340–358.75) p < 0.001 (F)

With Metf (n = 34) 349.5 (335.25–359.75) 355 (340.5–365)* 355 (346.25–366)* p < 0.001 (F)

Median and interquartile range (IQR) were used to summarize the data.

p - the statistical difference observed within a single group before treatment, after 1 month, and after 3 months [Friedman test (F)].

* (p ≤ 0.05), ** (p ≤ 0.01), *** (p ≤ 0.001) – the statistical difference between the Without Metf and With Metf groups in a single observation period [Mann-Whitney U-test (MW)].

Statistically significant p-values are highlighted in bold.
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correction)], SF-36-VT (p < 0.001) (Friedman test) [before treatment
vs. after 1 month: p < 0.001, before treatment vs. after 3 months: p <
0.001, after 1 month vs. after 3 months: p = 0.014 (Conover-Iman test
with Holm correction)], SF-36-SF (p = 0.015) (Friedman test) [before
treatment vs. after 3 months: p = 0.032, after 1 month vs. after
3 months: p = 0.046 (Conover-Iman test with Holm correction)], SF-
36-RE showed (p < 0.001) (Friedman test) [before treatment vs. after
3 months: p < 0.001, after 1 month vs. after 3 months: p = 0.001
(Conover-Iman test with Holm correction)], and SF-36-MH (p <
0.001) (Friedman test) [before treatment vs. after 3 months: p < 0.001,
after 1 month vs. after 3 months: p < 0.001 (Conover-Iman test with
Holm correction)] (Figure 2).

In the With Metf group, statistically significant changes were
observed across several SF-36 scales throughout treatment.
Specifically, SF-36-PF (p < 0.001) (Friedman test) [before treatment
vs. after 1 month: p = 0.004, before treatment vs. after 3 months: p <
0.001, after 1 month vs. after 3 months: p = 0.039 (Conover-Iman test
with Holm correction)], SF-36-BP (p < 0.001) (Friedman test) [before
treatment vs. after 1 month: p < 0.001, before treatment vs. after
3 months: p < 0.001, after 1 month vs. after 3 months: p = 0.004
(Conover-Iman test with Holm correction)], SF-36-GH (p < 0.001)
(Friedman test) [before treatment vs. after 1 month: p < 0.001, before

treatment vs. after 3 months: p < 0.001, after 1 month vs. after
3 months: p = 0.007 (Conover-Iman test with Holm correction)],
SF-36-VT (p < 0.001) (Friedman test) [before treatment vs. after
1month: p < 0.001, before treatment vs. after 3months: p < 0.001, after
1 month vs. after 3 months: p = 0.012 (Conover-Iman test with Holm
correction)], SF-36-RE (p < 0.001) (Friedman test) [before treatment
vs. after 1 month: p = 0.004, before treatment vs. after 3 months: p <
0.001, after 1 month vs. after 3 months: p = 0.045 (Conover-Iman test
with Holm correction)], and SF-36-MH (p < 0.001) (Friedman test)
[before treatment vs. after 1month: p = 0.003, before treatment vs. after
3 months: p < 0.001, after 1 month vs. after 3 months: p = 0.023
(Conover-Iman test with Holm correction)] (Figure 2).

A statistically significant difference was also found in the
indicators between the groups on the scales SF-36-PF after
1 month (r = 0.002) (Mann-Whitney U-test) and SF-36-SF after
1 month (r = 0.005) (Mann-Whitney U-test), after 3 months (r =
0.020) (Mann-Whitney U-test) (Figure 2).

In the Without Metf group, significant changes in BMI and
WHR were observed over the course of treatment. Furthermore,
statistically significant differences in BMI and WHR were
identified between before treatment and after 1 month of
treatment. Similarly, significant changes in BMI and WHR were

FIGURE 1
Changes in OKS Questionnaire Scales in the With and Without Metf Groups Across Treatment Periods. Statistical analysis was performed using the
Friedman test for differences within groups over time, with post hoc comparisons conducted using the Conover-Iman test with Holm correction.
Differences between groups at each time point were assessed using the Mann-Whitney U-test.
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observed between after 1 month and after 3 months of
treatment (Table 7).

In the With Metf group, significant changes were observed in
BMI, WHR, and WHtR values throughout the course of treatment.
Furthermore, statistically significant differences were identified for
all indicators between before treatment and after 1 month, before
treatment and after 3 months, as well as between after 1 month and
after 3 months within this group (Table 7).

Moreover, a more significant statistical difference in the changes
of the indicators was observed in the With Metf group for the BMI
and WHtR scales, compared to the Without Metf group (Table 7).

Between the groups, significant statistical differences were
observed after 1 month for BMI and WHtR, and after 3 months
for BMI, WHR, and WHtR (Table 7).

In the Without Metf group, significant statistical changes were
observed in FPG level throughout the course of treatment.
Furthermore, notable differences in FPG were found between the
measurements taken at 1 month and 3 months (Table 8).

In the With Metf group, statistically significant changes were
observed throughout the treatment in the levels of FPG, HbA1c,
HOMA-IR, and C-peptide. Additionally, significant changes were
found across all indicators when comparing measurements before

treatment to after 1 month, before treatment to after 3 months, and
between after 1 month and after 3 months (Table 8).

Additionally, the With Metf group showed a more pronounced
statistical difference in the changes of the FPG, HbA1c, HOMA-IR,
and C-peptide indicators compared to the Without Metf
group (Table 8).

Statistically significant differences between the groups were
observed after 1 month for all indicators, with the exception of
C-peptide. After 3 months, significant differences were found across
all studied parameters (Table 8).

In the Without Metf group, statistically significant changes were
observed throughout the treatment in the levels of NLR, CRP, MA,
and SOD. Additionally, significant changes in NLR and SOD were
found between before treatment and after 1 month. Statistically
significant changes in NLR and CRP were observed between before
treatment and after 3 months. Furthermore, significant differences
were noted in NLR, CRP, MA, and SOD between after 1 month and
after 3 months (Table 9).

In the With Metf group, statistically significant changes were
observed during the treatment period in the levels of NLR, CRP,
HP, MA, SOD, and α1-AT. Significant changes in NLR, CRP, MA,
and SOD were found between before treatment and after 1 month.

FIGURE 2
SF-36 Scale Dynamics in theWith andWithout Metf Groups Across Treatment Periods. Statistical analysis was performed using the Friedman test for
differences within groups over time, with post hoc comparisons conducted using the Conover-Iman test with Holm correction. Differences between
groups at each time point were assessed using the Mann-Whitney U-test.
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Additionally, statistically significant changes in NLR, CRP, HP, MA,
and SOD were observed between before treatment and after 3 months.
Furthermore, significant differences in NLR, CRP, HP, MA, SOD, and
α1-AT were noted between after 1 month and after 3 months (Table 9).

Furthermore, a more significant statistical difference in the
changes of the HP, MA, and α1-AT indicators was observed in the
With Metf group compared to the Without Metf group (Table 9).

Statistically significant differences between the groups were
observed in HP levels after 1 month and after 3 months (Table 9).

In the Without Metf group, statistically significant changes were
observed in LDL levels throughout the treatment period.
Additionally, significant changes in LDL levels were found
between before treatment and after 3 months, as well as between
after 1 month and after 3 months (Table 10).

In the Metf group, statistically significant changes were observed
throughout the treatment period in TC, LDL, HDL, and TG levels.
Additionally, significant changes were found in TC and LDL levels
between before treatment and after 1 month. TC and HDL levels
exhibited statistically significant changes between before treatment
and after 3 months. Furthermore, TC, LDL, HDL, and TG levels
showed significant changes between after 1 month and after
3 months (Table 10).

In addition, a more notable statistical difference in the changes
of the TC, LDL, HDL, and TG indicators was found in theWithMetf
group compared to the Without Metf group (Table 10).

Statistically significant differences between the groups were
found in TC and LDL levels after 1 and 3 months (Table 10).

3.2 Assessment of osteoarthritis
exacerbation parameters

Over a 3-month period, various aspects of osteoarthritis (OA)
exacerbations were investigated, including the duration of flare-ups
(OA exc. dur., ≤7 days or >7 days), their frequency (OA exc.
freq., ≤2 times or >2 times), and the need for additional medical
interventions such as injections or physiotherapy (OA exc. med.
int.). Other factors assessed included the requirement for work leave
or exemption due to exacerbations (OA exc. work leave), the
occurrence of accompanying symptoms (OA exc. acc. sym., e.g.,
swelling, redness), and the necessity to adjust NSAID therapy by
increasing either the dose (NSAIDs dose) or duration of use (NSAID
dur.). These parameters provided insight into the severity and
impact of OA exacerbations on patient management (Table 11).

TABLE 8 Changes in glucose tolerance indicators during treatment.

Indicator Group Before treatment After 1 month After 3 months p-value

Fasting plasma glucose, mmol/L (FPG) Without Metf (n = 26) 6.44 (6.32–6.54) 6.38 (6.24–6.51) 6.4 (6.25–6.41) p = 0.006 (F)

With Metf (n = 34) 6.38 (6.18–6.45) 6.01 (5.85–6.04)*** 5.53 (5.49–5.7)*** p < 0.001 (F)

Glycated hemoglobin, % (HbA1c) Without Metf (n = 26) 6 (5.9–6.1) 6 (6–6.1) 6 (5.9–6.1) P = 0.162 (F)

With Metf (n = 34) 6 (5.9–6.1) 5.8 (5.7–6)*** 5.65 (5.5–5.7)*** p < 0.001 (F)

HOMA-IR Without Metf (n = 26) 2.74 (2.68–2.83) 2.75 (2.7–2.85) 2.79 (2.67–2.86) P = 0.542 (F)

With Metf (n = 34) 2.69 (2.62–2.8) 2.62 (2.52–2.71)** 2.49 (2.4-2.59)*** p < 0.001 (F)

C-peptide, ng/mL Without Metf (n = 26) 3.08 (2.96–3.2) 3 (2.9–3.09) 3.02 (2.93–3.18) Pa = 0.211 (F)

With Metf (n = 34) 3.02 (2.94–3.12) 2.94 (2.81–3.01) 2.84 (2.75–2.93)*** p < 0.001 (F)

Median and interquartile range (IQR) were used to summarize the data.

p - the statistical difference observed within a single group before treatment, after 1 month, and after 3 months [Friedman test (F)].

* (p ≤ 0.05), ** (p ≤ 0.01), *** (p ≤ 0.001) – the statistical difference between the Without Metf and With Metf groups in a single observation period [Mann-Whitney U-test (MW)].

Statistically significant p-values are highlighted in bold.

TABLE 7 Changes in BMI, WHR, and WHtR across treatment periods in the with and without Metf groups.

Indicator Group Before treatment After 1 month After 3 months p-value

Body Mass Index, kg/m2 (BMI) Without Metf (n = 26) 29.87 (27.35–31.26) 29.61 (27.15–31.6) 28.99 (26.57–30.51) p = 0.019 (F)

With Metf (n = 34) 28.02 (26.39–30.19) 26.52 (25.26–29.32)* 24.98 (24.68–27.54)** p < 0.001 (F)

Waist-to-Hip Ratio, (WHR) Without Metf (n = 26) 0.96 (0.92–0.99) 0.94 (0.91–0.96) 0.94 (0.88–0.96) p < 0.001 (F)

With Metf (n = 34) 0.99 (0.94–1.03) 0.91 (0.85–0.96) 0.81 (0.75–0.86)*** p < 0.001 (F)

Waist-to-Height Ratio, (WHtR) Without Metf (n = 26) 0.56 (0.51–0.6) 0.55 (0.52–0.59) 0.55 (0.51–0.59) p = 0.762 (F)

With Metf (n = 34) 0.54 (0.48–0.64) 0.5 (0.45–0.56)* 0.5 (0.45–0.52)** p < 0.001 (F)

Median and interquartile range (IQR) were used to summarize the data.

p - the statistical difference observed within a single group before treatment, after 1 month, and after 3 months [Friedman test (F)].

* (p ≤ 0.05), ** (p ≤ 0.01), *** (p ≤ 0.001) – the statistical difference between the Without Metf and With Metf groups in a single observation period [Mann-Whitney U-test (MW)].

Statistically significant p-values are highlighted in bold.

Frontiers in Pharmacology frontiersin.org09

Halabitska et al. 10.3389/fphar.2025.1567544

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1567544


No statistically significant difference was found between these
indicators in the studied groups during the treatment period.
Additionally, an analysis of the interrelationships among the
investigated indicators of Osteoarthritis Exacerbation Characteristics
was conducted, and a prognostic model was developed to predict the
need for increased NSAID doses in patients with osteoarthritis and
impaired glucose tolerance, based on factors such as VAS-P-after
3 months, OKS-F-after 3 months, HbA1c-after 3 months,
C-peptide-after 3 months, CRP-after 3 months, HP-after 3 months,
and α1-AT-after 3 months using binary logistic regression. The model
was constructed using 60 observations, and the relationship between
these variables is described by the following equation:

P � 1 / 1 + e-z( ) × 100%

z � -10, 247 + 0, 346XVAS-P-after 3m

+ 1, 011XOKS-F-after 3m - 13, 099XHbA1c-after 3m

+ 11, 210XC-peptide-after 3m - 3, 489XCRP-after 3m + 1, 807XHP-after 3m

+ 19, 109Xα1-AT-after 3m

where P represents the probability estimate for “yes,” z denotes the
value of the logistic function, XVAS-P-after 3 m refers to VAS-P-after
3 m, XOKS-F-after 3 m refers to OKS-F-after 3 m, Xhba1c-after 3 m refers
to HbA1c-after 3 m, XC-peptide-after 3 m refers to C-peptide-after 3 m,
XCRP-after 3 m refers to CRP-after 3 m, XHP-after 3 m refers to HP-after
3 m, and Xα1-at-after 3 m refers to α1-AT-after 3 months.

The resulting regression model, in terms of the alignment
between the predicted and observed values upon the inclusion of

TABLE 10 Changes in lipid profile parameters throughout the treatment period.

Indicator Group Before treatment After 1 month After 3 months p-value

Total Cholesterol, mmol/L (TC) Without Metf (n = 26) 5.6 (5.39–5.88) 5.59 (5.36–5.91) 5.58 (5.37–5.77) P = 0.205 (F)

With Metf (n = 34) 5.43 (5.32–5.61) 5.34 (5.23–5.53)** 5.27 (5.12–5.48)*** p < 0.001 (F)

Low-Density Lipoprotein, mmol/L (LDL) Without Metf (n = 26) 3.5 (3.19–3.68) 3.49 (3.19–3.76) 3.41 (3.2–3.67) p = 0.006 (F)

With Metf 3.37 (2.98–3.51) 3.15 (2.95–3.39) 3.15 (2.95–3.40)** p < 0.001 (F)

High-Density Lipoprotein, mmol/L (HDL) Without Metf (n = 26) 1.23 (1.1–1.4) 1.23 (1.08–1.39) 1.27 (1.13–1.39) p = 0.218 (F)

With Metf (n = 34) 1.19 (1.12–1.25) 1.27 (1.18–1.33) 1.31 (1.22–1.40) p < 0.001 (F)

Triglycerides, mmol/L (TG) Without Metf (n = 26) 1.94 (1.86–2.02) 1.98 (1.83–2.05) 1.88 (1.78–2) p = 0.575 (F)

With Metf (n = 34) 2 (1.85–2.11) 1.97 (1.83–2.08) 1.98 (1.82–2.08) p < 0.001 (F)

Median and interquartile range (IQR) were used to summarize the data.

p - the statistical difference observed within a single group before treatment, after 1 month, and after 3 months [Friedman test (F)].

* (p ≤ 0.05), ** (p ≤ 0.01), *** (p ≤ 0.001) – the statistical difference between the Without Metf and With Metf groups in a single observation period [Mann-Whitney U-test (MW)].

Statistically significant p-values are highlighted in bold.

TABLE 9 Changes in inflammatory markers and antioxidant Enzyme levels throughout the treatment period.

Indicator Group Before treatment After 1 month After 3 months p-value

Neutrophil-to-Lymphocyte Ratio (NLR) Without Metf (n = 26) 2.48 (2.3–2.62) 2.46 (2.29–2.62) 2.33 (2.21–2.54) p < 0.001 (F)

With Metf (n = 34) 2.47 (2.33–2.71) 2.35 (2.19–2.61) 2.29 (2.15–2.56) p < 0.001 (F)

C-Reactive Protein, mg/L (CRP) Without Metf (n = 26) 4.5 (3.79–5.09) 4.46 (3.71–5.04) 4.35 (3.63–4.91) p < 0.001 (F)

With Metf (n = 34) 4.56 (4.23–5.2) 4.5 (4.19–5.04) 4.2 (4.04–4.57) p < 0.001 (F)

Hydroxyproline, mg/L (HP) Without Metf (n = 26) 7.71 (6.74–8.38) 7.77 (6.56–8.36) 7.71 (6.55–7.96) p = 0.240 (F)

With Metf (n = 34) 7.04 (6.33–7.85) 6.9 (6.29–7.66)* 6.5 (5.9–7.39)* p < 0.001 (F)

Malondialdehyde, µmol/L (MA) Without Metf (n = 26) 7.09 (4.84–8.29) 6.95 (4.73–8.19) 6.86 (4.65–7.81) p = 0.012 (F)

With Metf (n = 34) 6.73 (5.57–8.03) 6 (5.02–7.05) 5.32 (4.63–6.58) p < 0.001 (F)

Superoxide Dismutase, U/mL (SOD) Without Metf (n = 26) 195.02 (189.05–204.3) 197.03 (190.77–208.99) 206 (196.04–209.25) p < 0.001 (F)

With Metf (n = 34) 195.44 (189–210.4) 202.52 (193.98–214.46) 206.87 (201.04–217) p < 0.001 (F)

α1-Antitrypsin, g/L (α1-AT) Without Metf (n = 26) 1.6 (1.52–1.65) 1.61 (1.52–1.65) 1.6 (1.55–1.65) p = 0.228 (F)

With Metf (n = 34) 1.65 (1.52–1.70) 1.64 (1.55–1.7) 1.65 (1.58–1.7) p = 0.013 (F)

Median and interquartile range (IQR) were used to summarize the data.

p - the statistical difference observed within a single group before treatment, after 1 month, and after 3 months [Friedman test (F)].

* (p ≤ 0.05), ** (p ≤ 0.01), *** (p ≤ 0.001) – the statistical difference between the Without Metf and With Metf groups in a single observation period [Mann-Whitney U-test (MW)].

Statistically significant p-values are highlighted in bold.
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predictors compared to the model without predictors, is statistically
significant (p < 0.001). The Nagelkerke pseudo-R2 was
67.9% (Table 12).

An increase of 1 in VAS-P-after 3 months increased the odds
of the need for increased NSAID doses by a factor of 1.414.
An increase of 1 in OKS-F-after 3 months increased the
odds of the need for increased NSAID doses by a factor of
2.748. An increase of 1 in HbA1c-after 3 months decreased the
odds of the need for increased NSAID doses by a factor of
488,307.202. An increase of 1 in C-peptide-after 3 months
increased the odds of the need for increased NSAID doses by a
factor of 73,887.578. An increase of 1 in CRP-after 3 months
decreased the odds of the need for increased NSAID doses by a
factor of 32.756. An increase of 1 in HP-after 3 months increased
the odds of the need for increased NSAID doses by a factor of
6.095. An increase of 1 in α1-AT-after 3 months increased the

odds of the need for increased NSAID doses by a factor of
198,996,938.868 (Figure 3).

The following curve was obtained when assessing the
discriminatory ability of the regression model using ROC analysis
(Figures 4, 5).

The probability estimate P is a statistically significant predictor
of the Need for Increased NSAID Doses (AUC = 0.942; 95% CI:
0.858–1.000, p < 0.001). The threshold value of the probability
estimate P at the cut-off point, corresponding to the highest
Youden’s index, was 0.191. A “yes” was predicted when the
probability estimate P was greater than or equal to this value.
The sensitivity and specificity of the resulting predictive model
were 93.3% and 82.2%, respectively.

A statistical analysis was conducted to evaluate the relationship
between BMI and the duration of osteoarthritis exacerbations (OA
exc. dur.) (Table 13).

TABLE 12 Characteristics of the association between predictors of the model and the odds of the need for increased NSAID doses.

Predictors Unadjusted Adjusted

COR; 95% CI p AOR; 95% CI p

VAS-P-after 3 m 1.079; 1.005–1.158 0.037* 1.414; 1.119–1.788 0.004*

OKS-F-after 3 m 1.308; 0.894–1.914 0.167 2.748; 1.105–6.828 0.030*

HbA1c-after 3 m 1.867; 0.137–25.508 0.640 0.000; 0.000–0.075 0.015*

C-peptideafter 3 m 74.040; 2.754–1990.219 0.010* 73,887.578; 5.382–1,014,843,245.924 0.021*

CRP-after 3 m 0.603; 0.253–1.436 0.253 0.031; 0.003–0.347 0.005*

HP-after 3 m 1.975; 1.139–3.425 0.015* 6.095; 1.626–22.851 0.007*

α1-AT-after 3 m 0.058; 0.000–36.017 0.385 198,996,938.868; 8.406–4,712,523,809,095,451.000 0.027*

* – the effect of the predictor is statistically significant (p < 0.05).

TABLE 11 Indicators of osteoarthritis exacerbation characteristics based on group.

Variable Categories Group p

Without Metf (n = 26) With Metf (n = 34)

OA exc. dur ≤7 days 11 (42.3) 14 (41.2) 0.952

>7 days 15 (57.7) 20 (58.8)

OA exc. freq ≤2 times 13 (50.0) 16 (47.1) 0.834

>2 times 13 (50.0) 18 (52.9)

OA exc. med. int no 15 (57.7) 24 (70.6) 0.414

yes 11 (42.3) 10 (29.4)

OA exc. work leave no 19 (73.1) 27 (79.4) 0.759

yes 7 (26.9) 7 (20.6)

OA exc. acc. sym no 20 (76.9) 29 (85.3) 0.507

yes 6 (23.1) 5 (14.7)

NSAIDs dose no 18 (69.2) 27 (79.4) 0.386

yes 8 (30.8) 7 (20.6)

NSAID dur no 16 (61.5) 27 (79.4) 0.156

yes 10 (38.5) 7 (20.6)

The number of patients (percentage) p–Fisher’s exact test.

Frontiers in Pharmacology frontiersin.org11

Halabitska et al. 10.3389/fphar.2025.1567544

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1567544


According to the presented table, when analyzing BMI
depending on OA exc. dur., statistically significant differences
were found (p = 0.015) (Figure 6).

The discriminatory capacity of >7 days from BMI was evaluated
using ROC analysis, which yielded the following curve (Figures 7, 8).

BMI is a statistically significant predictor of OA exc. dur (AUC =
0.686; 95% CI: 0.553–0.820, p = 0.015). The threshold value of BMI
at the cut-off point, corresponding to the highest Youden index, was

FIGURE 4
ROC curve illustrating the discriminatory ability of the regression
model in predicting NSAIDs dose.

FIGURE 5
Analysis of model sensitivity and specificity depending on the
threshold values of NSAIDs dose probability estimates.

TABLE 13 Analysis of BMI depending on OA exacerbation duration.

Indicator Categories BMI-after 1 m p

Me Q1 – Q3 n

OA exc. dur ≤7 days 27.01 24.84–28.16 25 0.015*

>7 days 29.54 25.81–31.28 35

* – the effect of the predictor is statistically significant (p < 0.05).

FIGURE 6
Analysis of BMI depending on OA exc. dur.

FIGURE 7
ROC curve characterizing the discriminatory ability of BMI-after
1 m in predicting OA exc. dur.

FIGURE 3
Odds ratios with 95% CI estimates for the studied predictors of
the Need for Increased NSAID Doses.

FIGURE 8
Analysis of the sensitivity and specificity of the model depending
on the threshold values of the probability assessments for OA exc. dur.

Frontiers in Pharmacology frontiersin.org12

Halabitska et al. 10.3389/fphar.2025.1567544

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1567544


29.770. >7 days was predicted when BMI was equal to or greater
than this value. The sensitivity and specificity of the obtained
predictive model were 45.7% and 92.0%, respectively.

4 Discussion

The application of metformin in OA has garnered attention for its
metabolic and anti-inflammatory properties, with additional
implications for oxidative stress and lipid profile modulation (Song
et al., 2022; Lai et al., 2022; Chen et al., 2022; Ragab et al., 2024).
Previous studies have demonstrated that metformin exerts a beneficial
effect on oxidative stress, an important factor in OA pathogenesis
(Alimoradi et al., 2025; Zuliani et al., 2020; Arinno et al., 2023).
Oxidative stress plays a significant role in the degeneration of
cartilage and the progression of OA by promoting inflammation
and joint tissue damage (Ansari et al., 2020; Liu et al., 2022). Our
findings support this, as metformin treatment resulted in reduced
levels of markers such as superoxide dismutase, which is associated
with oxidative stress. This is consistent with previous research
indicating that metformin can reduce oxidative stress and protect
against joint degeneration in OA patients, potentially contributing to a
slower progression of the disease (Xu et al., 2024; Ruan et al., 2022;
Barnett et al., 2017; Hyun et al., 2013). Metformin exerts its therapeutic
effects inOA through a combination of systemic and local mechanisms
that address both metabolic and inflammatory pathways contributing
to disease progression (Yao et al., 2023; Song et al., 2021; Wang et al.,
2019). At the systemic level, metformin significantly reduces insulin
resistance and hyperglycemia, which are strongly linked to the chronic
low-grade inflammation characteristic of metabolic disorders,
including IGT (Tsalamandris et al., 2019; Tizazu et al., 2019). By
activating AMP-activated protein kinase (AMPK), metformin plays a
pivotal role in inhibiting the mechanistic target of rapamycin (mTOR)
signaling pathway (Amin et al., 2019; Nair et al., 2014; Putilin et al.,
2020). This inhibition is critical, as mTOR activation is associated with
chondrocyte hypertrophy, extracellular matrix breakdown, and
cartilage degeneration, all of which are hallmark features of OA
pathology (Fazio et al., 2024; Chawla et al., 2022; Dong and Jin, 2025).

Locally, metformin demonstrates potent anti-inflammatory
properties by downregulating the production of pro-inflammatory
cytokines such as interleukin-1β (IL-1β) and tumor necrosis factor-α
(TNF-α) (Jia et al., 2024; Scafidi et al., 2024; Tsuji et al., 2020). These
cytokines are major drivers of synovial inflammation, joint swelling,
and cartilage erosion (Lubberts and van den Berg, 2003; Miller et al.,
2014; Lubberts et al., 2001; Sokolove and Lepus, 2013).

Metformin has also demonstrated antiviral properties,
particularly in inhibiting the replication of several viruses,
including COVID-19 (Halabitska et al., 2024e; Petakh et al., 2022;
Buchynskyi et al., 2023). Its potential to modulate viral infections,
coupled with its anti-inflammatory effects, suggests that metformin
may offer therapeutic benefits beyond metabolic conditions (Petakh
et al., 2023a; Martin et al., 2023; Amengual-Cladera et al., 2024).
Metformin exhibits antimicrobial properties, influencing pathogens
and gut microbiota (Nosulenko et al., 2014; Jauvain et al., 2021; Bilyi
et al., 2015; Garg and Mohajeri, 2024). Metformin affects stress
responses, hormonal balance, and gut microbiota, potentially
reducing inflammation and improving metabolic resilience (Topol
and Kamyshny, 2013; Bilous et al., 2021; Petakh et al., 2023b).

Additionally, metformin’s effects on lipid profile are a notable area
of interest (Gillani et al., 2021; Machado et al., 2012; Garimella et al.,
2016). OA patients often present withmetabolic disturbances, including
dyslipidemia, which can exacerbate joint inflammation and cartilage
degradation (Adam et al., 2024;Wei et al., 2023; Zhu et al., 2022). In our
study, metformin led to significant improvements in lipid markers,
including total cholesterol, LDL, HDL, and triglycerides. This is in line
with other studies that have shownmetformin’s ability to improve lipid
profiles, suggesting that it may not only mitigate inflammation and
oxidative stress but also correct underlying metabolic dysfunctions that
worsen OA symptoms (Xing et al., 2022; Pradas et al., 2019; Zou et al.,
2024). In fact, metformin’s ability to improve lipid metabolism may
offer an additional mechanism for its positive effects in OA, as
dyslipidemia is associated with increased risk of systemic
inflammation and accelerated joint damage (Chen et al., 2022;
Sobieh et al., 2023; Gkretsi et al., 2010; Mocanu et al., 2024).

When comparing our findings to other studies, the reduction in
inflammatorymarkers such as C-reactive protein (CRP) andneutrophil-
to-lymphocyte ratio with metformin use is also well-documented in the
literature (Cameron et al., 2016; Hambly et al., 2023; Pitsavos et al., 2007;
Rahnavard et al., 2022). These results highlight metformin’s dual role in
both controlling blood glucose and exerting anti-inflammatory effects,
which have been linked to improved clinical outcomes in OA patients
(Veronese et al., 2019; Kim et al., 2022; Lin et al., 2023).While our study
demonstrates significant improvements in pain, stiffness, and functional
limitations, differences in patient populations, dosages, or treatment
durations align with the variability observed in the broader literature
(Magni et al., 2021; Ferreira et al., 2024; Nahin et al., 2016). These
discrepancies emphasize the need for further research to determine
optimal dosing regimens and long-term efficacy of metformin in OA
management.

Furthermore, the potential impact of metformin on neuropathic
aspects of OA should not be overlooked (Zhang et al., 2024; Cao
et al., 2024; Pușcașu et al., 2024). As OA can be associated with
peripheral neuropathy, particularly in patients with comorbid
diabetes or metabolic dysfunction, the ability of metformin to
influence glucose metabolism may offer additional therapeutic
benefits (Song et al., 2022; Chen et al., 2022; Kaur et al., 2023; Li
S. et al., 2024). Previous research has indicated that metformin may
reduce nerve damage and improve pain perception in OA patients
with diabetes, providing a rationale for its broader application in OA
management (Alenazi et al., 2023; Alimoradi et al., 2023; Aiad et al.,
2024). Genetic determination plays a crucial role in individual
responses to medications (Sydorchuk et al., 2020; Mroziewicz and
Tyndale, 2010; Chen et al., 2024). Genetic factors influence the
expression and effectiveness of pleiotropic drug effects, including
those of metformin, which are being actively studied by various
researchers (Buchynskyi et al., 2024a; Pawlyk et al., 2014; Froldi,
2024; Buchynskyi et al., 2024b; Lyubomirskaya et al., 2020).

Finally, while metformin has shown promise in improving
metabolic disturbances and reducing inflammation in OA, its
efficacy may be limited in certain patient groups, particularly the
elderly or those with renal impairment (Kulkarni et al., 2020; Ala
and Ala, 2021; Kloppenburg et al., 2025). Our study highlights the
need for careful patient selection and monitoring to avoid potential
risks, such as lactic acidosis, in vulnerable populations. Further
research is needed to investigate the long-term effects of metformin
on joint health, its impact on oxidative stress, lipid metabolism, and
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inflammatory markers, as well as its potential for combination
therapy with other disease-modifying agents for OA.

5 Limitations

This study has several limitations that should be considered when
interpreting the results. First, the relatively small sample size limits the
generalizability of the findings to a broader population of patients with
osteoarthritis (OA) and impaired glucose tolerance (IGT). Larger,
multicenter studies are required to validate these results and confirm
their applicability to different populations. Additionally, the study’s
observational nature and the lack of randomization may introduce
selection bias, and further randomized controlled trials are needed to
better assess the causal effects of metformin on OA symptoms and
metabolic outcomes.

Moreover, the study only focused on a specific cohort of patients
with both OA and IGT, without considering those with OA and
normal glucose tolerance, which limits our understanding of
metformin’s potential effects across different metabolic states.
The absence of long-term follow-up data also prevents us from
fully assessing the sustained impact of metformin on joint health,
pain, and inflammation over time.

Another limitation lies in the lack of detailed mechanistic data
on how metformin influences the molecular pathways underlying
both OA and metabolic dysfunction. Future studies should focus on
elucidating these pathways and assessing the long-term effectiveness
of metformin in modifying OA progression.

Despite these limitations, the findings provide valuable insights
into the potential benefits of metformin for managing OA symptoms
and metabolic dysfunction, and future research is needed to explore
its broader application and long-term impact.

6 Conclusion

Patients receiving metformin showed significantly greater
improvements in both clinical and metabolic outcomes compared
to those not receiving metformin. The metformin group demonstrated
reductions in pain, stiffness, and improved physical function, as
measured by the WOMAC, Lequesne Algofunctional Index, KOOS,
and VAS scales, with notable improvements in quality of life and
mobility. In contrast, the non-metformin group showed less significant
changes. Metformin also led to reduced inflammatory markers,
including C-reactive protein, neutrophil-to-lymphocyte ratio, and
superoxide dismutase, suggesting decreased systemic inflammation.
Additionally, improvements in lipid profiles, such as reductions in total
cholesterol, LDL, HDL, and triglycerides, were observed, highlighting
metformin’s metabolic benefits. Patients on metformin also showed
significant improvements in BMI, waist-to-hip ratio, and waist-to-
height ratio, indicating enhanced metabolic health. The need for
increased NSAID doses in patients with osteoarthritis and impaired
glucose tolerance can be predicted by factors such as pain severity,
functional limitations, and inflammatory markers. Further studies are
needed to confirm these findings and assess the long-term effects of
dose adjustments. BMI has been identified as a potential predictor of
OA exacerbation duration, with a threshold of 29.77. These findings
suggest that metformin is effective in alleviating osteoarthritis

symptoms and improving metabolic health in patients with
osteoarthritis and impaired glucose tolerance. However, further
research is needed to explore its long-term effects on joint health
and inflammatory markers, as well as its potential role in managing
osteoarthritis in patients without impaired glucose tolerance.
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