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Introduction: Protein–protein interactions (PPIs) are critical for understanding
the molecular mechanisms underlying various biological processes, particularly
in microbes associated with cardiovascular disease. Traditional experimental
methods for detecting PPIs are often time-consuming and costly, leading to
an urgent need for reliable computational approaches.

Methods: In this study, we present a novel model, the deep denoising
autoencoder for protein–protein interaction (DAEPPI), which leverages the
denoising autoencoder and the CatBoost algorithm to predict PPIs from the
evolutionary information of protein sequences.

Results:Our extensive experiments demonstrate the effectiveness of the DAEPPI
model, achieving average prediction accuracies of 97.85% and 98.49% on yeast
and human datasets, respectively. Comparative analyses with existing effective
methods further validate the robustness and reliability of our model in
predicting PPIs.

Discussion: Additionally, we explore the application of DAEPPI in the context of
cardiovascular disease, showcasing its potential to uncover significant
interactions that could contribute to the understanding of disease
mechanisms. Our findings indicate that DAEPPI is a powerful tool for
advancing research in proteomics and could play a pivotal role in the
identification of novel therapeutic targets in cardiovascular disease.
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1 Introduction

Cardiovascular diseases (CVDs) are a major global health
challenge, accounting for a significant proportion of morbidity
and mortality. These diseases encompass a range of conditions
affecting the heart and blood vessels, including coronary artery
disease, heart failure, and stroke (Tada et al., 2022; Gaidai et al.,
2023). The multifactorial nature of CVDs is influenced by various
elements, such as genetic predispositions, lifestyle factors, and
environmental exposures (Dale et al., 2023; Ojeda-Granados
et al., 2024). At the molecular level, proteins play a pivotal role
in the pathophysiology of CVDs as they are integral to processes
such as inflammation, lipid metabolism, and vascular function (Frąk
et al., 2022). Understanding the intricate relationships between these
proteins and their interactions is crucial for unraveling the
mechanisms underlying cardiovascular pathologies. Thus, the
study of protein–protein interactions (PPIs) holds significant
promise for advancing our knowledge of CVDs and identifying
potential therapeutic targets (Greenblatt et al., 2024).

The importance of PPIs has garnered increasing attention within
the scientific community, positioning them as a focal point in
biological research. Experimental methods for large-scale PPI
identification, such as yeast two-hybrid screening (Wong et al.,
2017) and affinity purification coupled with mass spectrometry
(Zhong et al., 2023), have been developed to explore these
interactions. However, these biological techniques often suffer
from limitations, including high costs, time demands, and the
potential for false-positive or false-negative results. Consequently,
there has been a growing need for effective computational methods
to predict PPIs, offering a complementary approach that can
enhance the accuracy and efficiency of PPI identification (Xian
and Wang, 2024).

Numerous computational strategies have emerged (Guo et al.,
2024; Wei et al., 2024), leveraging a wide variety of data types to
predict PPIs. For example, You et al. (2013) proposed a PCA-EELM
model, which extracts features from protein sequences by
autocovariance scores, conjoint triad scores, local descriptor
scores, and autocorrelation scores and then combines PCA and
ensemble ELM to predict PPIs. Li et al. (2020) adopted a weighted
ELM integrated with a scale-invariant feature transform algorithm
for accurate prediction. Zhang et al. (2019) implemented an
ensemble deep neural network model that leveraged three
representative protein feature extraction descriptors combined
with a separate deep neural network, achieving high accuracy in
predicting PPIs. Hashemifar et al. (2018) presented a sequence-
based deep learning framework, DPPI, which combines
convolutional and random projection modules in order to
enhance the prediction accuracy. Halder et al. (2020) developed a
new method called JUPPI, which takes the sequence, GO, and
structural domain information of proteins as input features;
constructs a high-quality negative PPI dataset by the proposed
three-stage filtering strategy; and combines it with a random
forest classifier to achieve remarkable results in detecting PPIs of
the human proteome. Ma et al. (2024) employed CollaPPI, a
collaborative learning framework with information sharing, to
predict PPIs, which showed the cross-domain knowledge
complementarity of collaborative learning methods in this task.
Despite the significant advancements in these computational

methods, challenges remain in improving the efficiency and
accuracy of PPI predictions. As the volume of protein sequence
data continues to increase exponentially, there is an increasing need
for effective models that can operate solely on sequence information.
This emphasizes the importance of ongoing research to refine and
develop innovative computational techniques for PPI prediction,
ensuring they can meet the demands of the scientific community.

In this study, we introduce a novel computational model, the
deep denoising autoencoder for protein–protein interaction
(DAEPPI), which is designed to predict PPIs by utilizing
evolutionary information extracted from amino acid sequences.
We provide a detailed breakdown of the model architecture and
its components, highlighting how each aspect contributes to its
predictive capability. Our extensive experimental validation
showcases the model’s effectiveness in predicting PPIs, with
impressive performance results on both yeast and human
datasets. Furthermore, we present comparative experiments that
underscore the reliability of the DAEPPI model. Notably, we explore
its application in the context of cardiovascular diseases,
demonstrating its potential implications for understanding
protein interactions that contribute to these conditions. In
conclusion, through this research, we aim to further elucidate the
role of PPIs in cardiovascular disease mechanisms and their
significance for future therapeutic strategies.

2 Materials and methods

2.1 Data sources

In this study, we constructed two comprehensive PPI datasets
from distinct organisms: Saccharomyces cerevisiae (yeast) and
Homo sapiens (human). The yeast dataset was sourced from the
Database of Interacting Proteins (DIP) (Salwinski et al., 2004),
where we carefully filtered out protein pairs containing fewer
than 50 residues or exhibiting over 40% sequence identity. This
rigorous selection process resulted in a positive dataset
comprising 5,594 interacting protein pairs, complemented by
an equal number of non-interacting pairs derived from proteins
with differing subcellular localizations, culminating in a total of
11,188 protein pairs.

For the human dataset, we utilized the Human Protein
Reference Database (HPRD). After excluding pairs with more
than 25% sequence identity, we identified 3,899 verified
interacting pairs among 2,502 unique human proteins.
Additionally, we created a negative dataset consisting of
4,262 pairs from 661 distinct proteins, ensuring that these non-
interacting proteins were sourced from various subcellular
compartments (You et al., 2014). Ultimately, the human dataset
comprised a total of 8,161 protein pairs. Together, these datasets
provide a robust foundation for evaluating our DAEPPI method in
predicting protein interactions across different biological contexts.

2.2 Position-specific scoring matrix

The position-specific scoring matrix (PSSM) (Liu and
Steinegger, 2023) is a powerful tool widely used for identifying
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distantly homologous proteins, as well as for sequence-level studies
such as sequence alignment and conservation analysis. In our
research, we employed PSSM to enhance the prediction of PPIs.
Each protein sequence was converted into a PSSM using the
position-specific iterated basic local alignment search tool (PSI-
BLAST) (Altschul et al., 1997; Jin et al., 2021). The PSSM is
structured as an L × 20 matrix, where L represents the length of
the protein sequence, and the 20 columns correspond to the
standard amino acids. The PSSM of a protein sequence is defined
as follows:

PPSSM �
x1,1 x1,2 / x1,20

x2,1 x2,2 / x2,20

..

. ..
. ..

. ..
.

xL,1 xL,2 / xL,20

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (1)

where each element xi,j in the matrix provides a score for the j-th
amino acid at the i-th position, which is calculated based on the
frequency of amino acids at that position and their evolutionary
substitutions. To construct this matrix effectively, we configured
PSI-BLAST with an e-value threshold of 0.001 and conducted three
iterations to ensure a comprehensive collection of homologous
sequences. By utilizing PSSM, we can not only capture the
conserved patterns within protein sequences but also utilize the
evolutionary information encoded within protein sequences to
improve the accuracy of the PPI prediction task.

2.3 Deep denoising autoencoder

After obtaining the PSSM of a protein sequence, we need to perform
feature extraction on it to represent each protein effectively. However,
since the length of protein sequences is not fixed, the size of the
constructed PSSM matrices will be different, which makes it
impossible to directly input them into the deep learning model. To
solve this problem,we adopt a uniform-sized PSSMmatrix P̂PSSM, i.e., by
introducing transposed PSSMs and thus transforming each PSSM into a
20 × 20 matrix of fixed size. This process can be formulated as follows:

P̂PSSM � PT
PSSM × PPSSM (2)

Next, in this study, we employed the denoising autoencoder
(DAE) algorithm (Vincent et al., 2008; Peng et al., 2023) to extract
deeper feature representations of protein sequences from the
generated P̂PSSM matrix.

From a mathematical point of view, the process of encoding can
be defined as follows:

h � f Wx + b( ) (3)
Here, f denotes the non-linear activation function, x denotes the
original input, W denotes the weight of the encoder, and b denotes
the bias of the encoder. Similarly, the output of the decoder can be
defined as follows:

x̂ � f Ŵh + b̂( ) (4)

where the encoder compresses the input x into a potential space h
corresponding to the feature we want to learn, and then the latent
structure is reinstated in the decoded output x̂ via the decoder. Here,

b̂ denotes the bias of the decoder, and Ŵ denotes the weight of the
decoder. For an original training dataset xi{ }Ni�1, the entire training
phase of the encoder–decoder framework can be described
as follows:

x̂i � f Ŵ Wxi + b( ) + b̂( ) (5)

The DAE model is particularly effective for this purpose as it
enhances the robustness of the feature representation by
reconstructing inputs that have been intentionally corrupted with
noise. This process also involves two primary phases: encoding and
decoding. Formally, the DAE first adds noise to the original data x to
form the corrupted input ~x. This process can be realized using a
stochastic mapping ~x~ qD(~x | x), which can be expressed as follows:

~x � x + α (6)
Then, as in the case of the autoencoder, the corrupted input ~x is

mapped to the hidden representation y through the encoder fϑ,
which is denoted as follows:

y � fϑ ~x( ) � s W~x + b( ) (7)

Consequently, we use the decoder gϑ′ in the decoding process to
reconstruct the uncorrupted z by mapping to the learned y, which is
denoted as follows:

z � gϑ′ y( ) � s W′y + b′( ) (8)
where s is the sigmoid nonlinear activation function of the decoder,
denoted as follows:

s x( ) � 1
1 + e−x

(9)

After obtaining the uncorrupted input z, the DAE determines
the reconstruction data loss and continuously optimizes the model
parameters by calculating the minimized squared error between the
original input x and z, as follows:

L x, z( )�‖x − z‖2 (10)

θ*, θ′* � argmin
1
n
∑n
i�1
L x i( ), z i( )( ) (11)

Ultimately, by taking the PSSM of protein sequences as input
and then performing encoding–decoding operations, DAE ensures
that the learned features are not only lower-dimensional but also
more representative of the underlying biological information. Thus,
we can enhance our DAEPPI computational model to fully utilize
the evolutionary insights embedded within the PSSM.

2.4 Categorical boosting (CatBoost)

In our classification task for predicting protein interactions, we
used the CatBoost algorithm, a powerful gradient-boosting
framework that excels in handling categorical features. CatBoost
builds on the traditional gradient boosting decision tree (GBDT)
method, employing oblivious trees as base learners to enhance the
accuracy and generalization while effectively addressing issues such
as gradient bias and prediction shift (Dorogush et al., 2018; Zhang
et al., 2023). CatBoost handles categorical features well and allows
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training on the entire original dataset. The CatBoost algorithm
computes the categorical features by first randomly permuting
the given raw data into σ � (σ1, σ2, . . . , σn) and then substituting
it with the following numerical features:

x̂i
k �

∑p−1
j�1

xσj ,k � xσp,k[ ] · Yσj + α · p

∑p−1
j�1

xσj,k � xσp,k[ ] + α

(12)

where p denotes the a priori value, α> 0 denotes the weight of the
a priori value, xσj,k represents the category features, and Yσj

represents the label of the corresponding feature.
To classify the features extracted from the DAE, we first

prepared our dataset by combining the DAE-derived feature
representations with the corresponding labels. These features,
which capture the essential characteristics of the proteins, were
then input into the CatBoost classifier. The model was trained
several times to learn the relationship between features and their
labels to further optimize the hyperparameters of the task. One of
the significant advantages of CatBoost is its ability to process
categorical variables directly during the training phase, which
eliminates the need for extensive preprocessing. By employing
target statistics and ordered boosting, CatBoost minimizes
information loss, while enriching the feature space, allowing for a
more nuanced understanding of the data. This robust classification
strategy enabled us to accurately predict protein interactions based
on the rich feature representations learned from the DAE, ultimately
improving the reliability of our PPI predictions.

2.5 Evaluation measures

To verify the validity of the constructed DAEPPI model, we used
four classical evaluation criteria for measurement (Liang et al.,
2025). They are accuracy (ACC), precision (PE), sensitivity (SN),
and Matthews correlation coefficient (MCC), which are defined
as follows:

ACC � TN + TP

TN + TP + FN + FP
(13)

PE � TP

FP + TP
(14)

SN � TP

TP + FN
(15)

MCC � TP × TN( ) − FP × FN( )��������������������������������������������
TP + FP( ) × TN + FN( ) × TN + FP( ) × TP + FN( )√

(16)
Here, TP (true positive) refers to true interacting pairs that are predicted
to interact by the DAEPPI model, TN (true negative) refers to true non-
interacting pairs that are predicted to have no interaction by theDAEPPI
model, FP (false positive) refers to pairs that are predicted to interact by
the DAEPPI model but do not actually have an interaction, and FN
(false negative) refers to pairs that are predicted to be non-interacting by
the DAEPPI model but are actually interacting pairs. Furthermore, we
calculated the receiver operating characteristic (ROC) curve and the area
under the ROC curve (AUC) (Li et al., 2022a) of DAEPPI on two
benchmark PPI datasets to further evaluate the stability of DAEPPI. The
flowchart of the DAEPPI model is shown in Figure 1.

FIGURE 1
Flowchart of the DAEPPI algorithm.
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3 Results and discussion

3.1 Assessment of prediction

To evaluate the predictive performance of our proposed
DAEPPI model, which integrates PSSM, DAE, and CatBoost,
we conducted extensive assessments on the Yeast and Human
datasets using five-fold cross-validation. This method allowed us
to partition each dataset into five distinct subsets, ensuring that
our model was tested across multiple scenarios for robustness.
The results demonstrated that the DAEPPI model achieved
impressive performance metrics, as shown in Tables 1–3. For
the yeast dataset, we recorded an average ACC of 0.9785, along
with PE and SN values of 0.9707 and 0.9870, respectively. The
AUC reached 0.9985, indicating a strong predictive capability.
Similarly, on the Human dataset, the model maintained high
performance, achieving an average ACC of 0.9849, a PE of
0.9929, and an AUC of 0.9989. The standard deviations for
these metrics were notably low, reflecting the stability and
reliability of our model across different training and testing
folds, which further confirms the model’s effectiveness in
distinguishing between positive and negative PPIs. The ROC

curves of the DAEPPI model on the Yeast and Human datasets
are shown in Figures 2, 3. Overall, these results underscore the
robustness and accuracy of the DAEPPI model, attributing its

TABLE 1 Performance of DAEPPI on the Yeast dataset.

Testing set ACC PE SN MCC AUC

1 0.9759 0.9708 0.9812 0.9518 0.9982

2 0.9777 0.9668 0.9893 0.9556 0.9982

3 0.9794 0.9669 0.9929 0.9592 0.9988

4 0.9759 0.9692 0.9830 0.9518 0.9984

5 0.9839 0.9796 0.9884 0.9679 0.9989

Average 0.9785 ± 0.0030 0.9707 ± 0.0047 0.9870 ± 0.0043 0.9573 ± 0.0060 0.9985 ± 0.0003

TABLE 2 Performance of DAEPPI on the Human dataset.

Testing set ACC PE SN MCC AUC

1 0.9859 0.9922 0.9782 0.9718 0.9993

2 0.9816 0.9921 0.9692 0.9634 0.9988

3 0.9859 0.9935 0.9769 0.9719 0.9987

4 0.9871 0.9948 0.9782 0.9743 0.9988

5 0.9841 0.9922 0.9743 0.9682 0.9987

Average 0.9849 ± 0.0019 0.9929 ± 0.0011 0.9754 ± 0.0034 0.9699 ± 0.0038 0.9989 ± 0.0002

TABLE 3 Performance comparison of DAEPPI with different PSSM conversion methods.

Datasets Method ACC (%) PE (%) SN (%) MCC (%) AUC (%)

Yeast Zero padding 78.16 ± 0.38 78.06 ± 0.41 78.35 ± 1.07 56.34 ± 0.77 86.36 ± 0.39

DAEPPI 97.85 ± 0.30 97.07 ± 0.47 98.70 ± 0.43 95.73 ± 0.60 99.85 ± 0.03

Human Zero padding 79.99 ± 0.90 80.74 ± 0.92 76.33 ± 1.53 59.90 ± 1.80 88.65 ± 1.02

DAEPPI 98.49 ± 0.19 99.29 ± 0.11 97.54 ± 0.34 96.99 ± 0.38 99.89 ± 0.02

FIGURE 2
ROC curves of DAEPPI performed on the Yeast dataset.
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success to the effective feature extraction capabilities of the DAE
and the powerful classification strength of CatBoost. The
integration of evolutionary information through PSSM,
combined with advanced machine learning techniques,
positions our model as a valuable tool for predicting protein
interactions.

3.2 Comparison with different PSSM
transformations

In our study, the DAEPPI model employs an equal-sized PSSM
transformation, specifically the transposition of PSSM against itself.
This approach has demonstrated robust predictive performance on
both the yeast and human datasets. To further validate the effectiveness
of this equal-sized PSSM transformation, we conducted a comparative
analysis with a padded PSSM transformation method. Specifically, we
adopt the zero padding method (He andWang, 2022) to transform the
PSSM, i.e., when the length of the protein sequence exceeds the number
of amino acids, i.e., 20, we truncate the PSSM to construct a 20 × 20

PSSM matrix; otherwise, when the length of the protein sequence is
lower than the number of amino acids 20, i.e., we need to fill it with
zeros. The comparison results are presented in Table 3. The ROC curves
of the zero padding method adopted by the model on the Yeast and
Human datasets are shown in Figures 4, 5. The experimental results
revealed that the equal-size PSSM transformation strategy employed in
our model consistently outperforms the zero-padding PSSM
transformation method on the two benchmark datasets. Thus, this
equal-size transformation enhances the model’s ability to capture the
essential features of the protein sequence, leading to improved accuracy
and reliability.

3.3 Comparison with different feature
extraction

In this experiment, the DAEPPI model utilizes a DAE for in-depth
feature extraction from equal-sized PSSM transforms. This approach
has shown impressive predictive performance on both yeast and human
datasets. To assess the effectiveness of DAE in feature extraction, we
compared our model with different feature extraction methods on the
same datasets. Specifically, we employed histogram of oriented gradient
(HOG) (Admass et al., 2024) for feature extraction from the equal-sized
PSSM, while still utilizing CatBoost for predicting PPIs. HOG is a
feature descriptor that captures the distribution of gradients in localized
portions of an image, making it effective for edge detection and object
recognition. The prediction performance of the HOG-based feature
extraction model on the benchmark dataset is shown in Table 4. It
achieves an average ACC and AUC of 89.22% and 95.87%, respectively,
on the Yeast dataset, while attaining 95.31% and 98.87% on the Human
dataset, respectively. The ROC curves of the HOG-based feature
extraction method on the Yeast and Human datasets are shown in
Figures 6, 7. These comparisons suggest that the HOG-based feature
extraction model’s performance in capturing intricate evolutionary
information in biological data is notably inferior to that of the DAE
approach employed in the model. In conclusion, the comparative
analysis highlights the superior effectiveness of the DAE-based
feature extraction approach in our DAEPPI model. This reinforces

FIGURE 3
ROC curves of DAEPPI performed on the Human dataset.

FIGURE 4
ROC curves performed using the zero padding method on the
Yeast dataset.

FIGURE 5
ROC curves performed using the zero padding method on the
Human dataset.
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the importance of selecting appropriate feature extraction techniques in
enhancing the model performance for predicting protein interactions.

3.4 Comparison with different classifiers

In our DAEPPI model, we have leveraged CatBoost to predict the
intricate features extracted by the DAE, resulting in enhanced

performance in predicting PPIs on two benchmark datasets. To
validate the effectiveness of CatBoost as our chosen classifier, we
conducted comparative experiments on the Yeast dataset,
substituting CatBoost with several other classification algorithms.
Specifically, we replaced CatBoost with naive Bayes (NB), linear
discriminant analysis (LDA), support vector machine (SVM),
decision tree (DT), and k-nearest neighbors (KNN), while
maintaining all other parameters constant. Our comparison results
are shown in Table 5. As can be seen, the DAEPPImodel with CatBoost
outperformed all other classifiers on the Yeast dataset, demonstrating
superior predictive accuracy and reliability for PPIs. This highlights the
significant advantage of using CatBoost within our framework,
reinforcing its effectiveness over traditional classifiers such as NB,
LDA, SVM, DT, and KNN in the context of PPI prediction. In
summary, the findings from this analysis validate the choice of
CatBoost as a classifier in the DAEPPI model, showcasing its
capability to yield better performance in predicting protein
interactions compared to other established algorithms.

3.5 Comparison with other methods

The DAEPPI model leverages a DAE to extract evolutionary
features from the PSSM of protein sequences, combined with
CatBoost to enhance the prediction of PPIs. To validate the
effectiveness of our model, we conducted a comparative analysis
with existing methods on both the Yeast and Human datasets,
employing five-fold cross-validation for consistency. Numerous
computational methods have been developed for PPI detection,
particularly utilizing machine learning algorithms that have garnered
significant attention. In this section, we present a comparison between
our proposed method and several established models to assess their
predictive capabilities. Tables 6, 7 summarize the results obtained from
different methods on the Yeast and Human datasets, respectively. From
Table 6, it is evident that the accuracy of the existing methods ranges
from 90.07% to 96.03%, with sensitivity values between 88.82% and
93.51%, and MCC spanning from 82.10% to 91.83%. In contrast, our
DAEPPI model achieved impressive metrics, with an average accuracy
of 97.85%, an average sensitivity of 98.70%, and an average MCC of
95.73% on the Yeast dataset. Similarly, the results on the Human
dataset, detailed in Table 7, reflect the superiority of our method. The
DAEPPI model attained an average accuracy of 98.49%, a precision of
99.29%, and an MCC of 96.99%. This indicates a significant
improvement over the existing models. In conclusion, the
comparative analysis demonstrates that the DAEPPI model is a
robust and reliable approach for predicting PPIs. Its ability to
effectively capture evolutionary features through DAE and utilize

TABLE 4 Performance comparison of DAEPPI with different feature extraction methods.

Datasets Method ACC (%) PE (%) SN (%) MCC (%) AUC (%)

Yeast HOG feature 89.22 ± 0.68 90.68 ± 0.82 87.43 ± 1.02 78.50 ± 1.36 95.87 ± 0.23

DAEPPI 97.85 ± 0.30 97.07 ± 0.47 98.70 ± 0.43 95.73 ± 0.60 99.85 ± 0.03

Human HOG feature 95.31 ± 0.56 97.95 ± 0.44 92.10 ± 0.85 90.72 ± 1.12 98.87 ± 0.28

DAEPPI 98.49 ± 0.19 99.29 ± 0.11 97.54 ± 0.34 96.99 ± 0.38 99.89 ± 0.02

FIGURE 6
ROC curves performed using the HOG feature extraction
method on the Yeast dataset.

FIGURE 7
ROC curves performed using the HOG feature extraction
method on the Human dataset.
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CatBoost for prediction contributes to its outstanding performance on
both datasets, establishing it as a leading method in the field of
PPI detection.

3.6 Case studies

CVDs are a leading cause of morbidity and mortality
worldwide, characterized by a range of disorders affecting the

heart and blood vessels. The complexity of these diseases
necessitates a deeper understanding of the molecular
interactions that underpin their development and progression
(Nasirian and Menichetti, 2023). Previous studies have
increasingly highlighted the critical role of PPIs in
cardiovascular health, showcasing how alterations in these
interactions can contribute to various cardiovascular
conditions (Singh et al., 2019). Numerous studies have
identified various molecules associated with diseases, including

TABLE 5 Performance comparison of DAEPPI with different classifiers on the Yeast dataset.

Models ACC PE SN MCC AUC

NB 0.8737 ± 0.0011 0.9913 ± 0.0195 0.7566 ± 0.1368 0.7754 ± 0.1013 0.9946 ± 0.0011

LDA 0.7641 ± 0.0042 0.7256 ± 0.0042 0.8495 ± 0.0066 0.5361 ± 0.0085 0.8309 ± 0.0055

SVM 0.9573 ± 0.0064 0.9385 ± 0.0319 0.9807 ± 0.0372 0.9174 ± 0.0119 0.9984 ± 0.0003

DT 0.9649 ± 0.0039 0.9583 ± 0.0056 0.9721 ± 0.0083 0.9299 ± 0.0078 0.9875 ± 0.0046

KNN 0.9663 ± 0.0038 0.9708 ± 0.0069 0.9616 ± 0.0038 0.9327 ± 0.0076 0.9970 ± 0.0004

CatBoost 0.9785 ± 0.0030 0.9707 ± 0.0047 0.9870 ± 0.0043 0.9573 ± 0.0060 0.9985 ± 0.0003

TABLE 6 Comparative results of other methods on the Yeast dataset.

Models ACC PE SN MCC

OLPP-RoF (Li et al., 2021b) 0.9007 ± 0.0060 0.9024 ± 0.0056 0.8983 ± 0.0141 0.8210 ± 0.0097

DeepFE-PPI (Yao et al., 2019) 0.9478 ± 0.0061 0.9645 ± 0.0087 0.9299 ± 0.0066 0.8962 ± 0.0123

WSRC (Huang et al., 2016) 0.9250 ± 0.0059 0.9587 ± 0.0089 0.8882 ± 0.0098 0.8609 ± 0.0102

DeepPPI (Du et al., 2017) 0.9443 ± 0.0030 0.9665 ± 0.0059 0.9206 ± 0.0036 0.8897 ± 0.0062

MatFLDA_RFs (Li et al., 2022b) 0.9503 ± 0.0025 0.9914 ± 0.0026 0.9084 ± 0.0047 0.9052 ± 0.0045

MARPPI (Li et al., 2023) 0.9603 ± 0.0076 0.9812 ± 0.0098 0.9351 ± 0.0122 0.9183 ± 0.0132

DAEPPI 0.9785 ± 0.0030 0.9707 ± 0.0047 0.9870 ± 0.0043 0.9573 ± 0.0060

TABLE 7 Comparative results of other methods on the Human dataset.

Models ACC PE SN MCC

OLPP-RoF (Li et al., 2021b) 0.9609 ± 0.0024 0.9656 ± 0.0036 0.9520 ± 0.0034 0.9247 ± 0.0046

WSRC (Huang et al., 2016) 0.9554 ± 0.0032 0.9895 ± 0.0025 0.9165 ± 0.0074 0.9141 ± 0.0058

RPEC (Song et al., 2018) 0.9659 ± 0.0124 0.9618 ± 0.0117 0.9672 ± 0.0141 0.9318 ± 0.0249

LPQ-RoF (Wong et al., 2015) 0.9796 ± 0.0022 0.9835 ± 0.0061 0.9732 ± 0.0073 0.9600 ± 0.0040

GWORVM (An et al., 2019) 0.9456 ± 0.0052 0.9308 ± 0.0109 0.9555 ± 0.0091 0.8951 ± 0.0114

GSRVM (An et al., 2019) 0.9215 ± 0.0120 0.9108 ± 0.0079 0.9178 ± 0.0152 0.8545 ± 0.0235

GARVM (An et al., 2019) 0.9303 ± 0.0088 0.9473 ± 0.0213 0.9059 ± 0.0120 0.8612 ± 0.0145

PSORVM (An et al., 2019) 0.9350 ± 0.0090 0.9640 ± 0.0138 0.9191 ± 0.0112 0.8802 ± 0.0103

SIFT-WELM (Li et al., 2020) 0.9760 ± 0.0057 0.9622 ± 0.0106 0.9894 ± 0.0029 0.9523 ± 0.0112

DAEPPI 0.9849 ± 0.0019 0.9929 ± 0.0011 0.9754 ± 0.0034 0.9699 ± 0.0038
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non-coding RNAs (Wang et al., 2023) and protein molecules. In
particular, these studies have revealed a strong connection
between specific PPIs and cardiovascular disease. For example,
interactions involving proteins such as VEGF and its receptors
have been implicated in angiogenesis (Li Q. et al., 2021), while
proteins involved in lipid metabolism, such as apolipoproteins,
are crucial for maintaining vascular health (Mehta and Shapiro,
2022). These insights underscore the importance of exploring the
intricate network of PPIs to identify potential biomarkers and
therapeutic targets for CVDs.

To further investigate the relevance of the DAEPPI model’s
predictions in the context of CVDs, we conducted case study
experiments in this section. Our approach involved training
the DAEPPI model on the Yeast dataset and subsequently utilizing
it to predict PPIs within the Human dataset. The results of the case
studies are shown in Table 8, where it can be observed that 11 of the top
15 PPIs predicted by DAEPPI to be associated with CVD have been
confirmed by biological experiments. The results revealed several
significant PPIs that are closely associated with CVDs, indicating a
promising avenue for further research. Through this case study, we aim
to demonstrate not only the predictive power of the DAEPPImodel but
also its potential utility in uncovering critical biological insights that
may lead to advancements in CVD prevention and treatment.

4 Conclusion

Machine learning algorithms have become indispensable in
the field of proteomics, particularly for predicting PPIs. These

computational methods not only enhance accuracy but also
streamline the analysis process, saving both time and
resources. In this study, we have introduced the DAEPPI
model, which leverages a DAE to learn deep evolutionary
features from protein sequences represented in PSSM. By
integrating these features with the CatBoost algorithm, our
model significantly improves the prediction of PPIs. Our
extensive experiments demonstrated the effectiveness of the
DAEPPI model, showing robust predictive performance on
both Yeast and Human datasets. The results indicate that our
method consistently outperforms existing techniques,
confirming its reliability and accuracy in PPI prediction.
Additionally, we conducted comparative experiments and case
studies that further validated the DAEPPI model’s effectiveness.
Notably, our analysis identified several human PPIs that are
closely associated with CVDs, suggesting that the DAEPPI
model can not only predict interactions but also uncover
potential links to significant health conditions. In conclusion,
the DAEPPI model combines deep learning with effective
classification techniques to achieve reliable results. We believe
that this model will serve as a valuable tool for researchers aiming
to explore the intricate networks of protein interactions and their
implications in various biological processes.

Data availability statement

The datasets can be obtained from the corresponding author
upon reasonable request.

TABLE 8 Top 15 PPIs predicted by DAEPPI to be related to cardiovascular diseases.

Rank Protein a Protein B Related cardiovascular disease Evidence

1 NP_612384.1 NP_055105.2 Cardiac hypertrophy 28,746,924

2 NP_002855.1 AAA50404.1 Cardiovascular risk 37,762,835

3 NP_004636.1 NP_004851.1 Cardiac arrhythmogenesis 29,101,288

4 NP_478126.1 NP_002784.1 Cardiovascular disease 28,245,982

5 NP_066921.2 NP_001014797.1 Coronary arterial smooth muscle cells 32,147,517

6 NP_001886.1 NP_932070.1 Cardiac hypertrophy 34,211,403

7 NP_892117.1 NP_006618.1 Chronic vascular inflammation 33,178,683

8 NP_006752.1 NP_068660.1 Cardiovascular disease Unconfirmed

9 NP_005569.1 NP_542159.2 Heart disease 23,650,592

10 NP_001005.1 NP_008998.1 Cardiovascular disease Unconfirmed

11 AAH32474.1 NP_055109.1 Cardiovascular disease Unconfirmed

12 NP_003173.1 NP_060541.3 Plasma levels 10.22391/fppc.779,394

13 NP_006592.3 NP_001017963.1 Cardiovascular disease Unconfirmed

14 NP_000466.2 NP_004227.1 Cardiovascular disease 31,195,722

15 NP_060848.2 NP_733779.1 Post-myocardial infarction cardiac fibrosis 38,615,011
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