REVIEW article

Front. Pharmacol.

Sec. Pharmacology of Ion Channels and Channelopathies

Volume 16 - 2025 | doi: 10.3389/fphar.2025.1561956

This article is part of the Research TopicNew Insights into Ionotropic Glutamate Receptor Structure and Function in Health and DiseaseView all articles

Inhibition of NMDA receptors and other ion channel types by membrane-associated drugs

Provisionally accepted
  • University of Pittsburgh, Pittsburgh, United States

The final, formatted version of the article will be published soon.

N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ion channels present at most excitatory synapses in the brain that play essential roles in cognitive functions including learning and memory consolidation. However, NMDAR dysregulation is implicated in many nervous system disorders. Diseases that involve pathological hyperactivity of NMDARs can be treated clinically through inhibition by channel blocking drugs. NMDAR channel block can occur via two known mechanisms. First, in traditional block, charged drug molecules can enter the channel directly from the extracellular solution after NMDAR activation and channel opening. Second, uncharged molecules of channel blocking drug can enter the hydrophobic plasma membrane, and upon NMDAR activation the membrane-associated drug can transit into the channel through a fenestration within the NMDAR. This membrane-associated mechanism of action is called membrane to channel inhibition (MCI) and is not well understood despite the clinical importance of NMDAR channel blocking drugs. Intriguingly, a hydrophobic route of access for drugs is not unique to NMDARs. Our review will address inhibition of NMDARs and other ion channels by membrane-associated drugs and consider how the path of access may affect a drug’s therapeutic potential.

Keywords: NMDAR1, MCI2, ketamine3, membrane4, memantine5, hydrophobic6, channel block7

Received: 16 Jan 2025; Accepted: 15 Apr 2025.

Copyright: © 2025 Neureiter, Erickson-Oberg, Nigam and Johnson. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Jon W Johnson, University of Pittsburgh, Pittsburgh, United States

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Research integrity at Frontiers

94% of researchers rate our articles as excellent or good

Learn more about the work of our research integrity team to safeguard the quality of each article we publish.


Find out more