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Epilepsy is a prevalent chronic neurological disorder characterised by recurrent
seizures caused by excessive neuronal discharge. Disruptions in chloride ion
homeostasis significantly affect neuronal excitability, and play a crucial role in the
pathophysiology of this disorder. This review highlights the emerging importance
of chloride voltage-gated channels in epilepsy, which has been largely
underappreciated compared to cation channels. Recent studies have
suggested that genetic alterations in chloride channels, such as CLCN1,
CLCN2, CLCN3, CLCN4, and CLCN6, contribute to neuronal excitability and
seizure susceptibility, with variations in these channels acting more as
susceptibility factors than direct causes. However, there is a significant gap in
the research on other chloride channels, particularly ClC-Ka, ClC-Kb, ClC-5, and
ClC-7, whose roles in epilepsy remain underexplored. Future research should
focus on these channels to better understand their contribution to the
pathophysiology of epilepsy. The incorporation of genetic tests for chloride
channel variants in clinical practice could provide valuable insight into the
aetiology of epilepsy, leading to improved diagnostic and therapeutic
strategies for affected individuals.
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1 Introduction

Epilepsy is one of the most prevalent chronic neurological disorders, affecting
approximately 0.4%–1.0% of the global population (Chen et al., 2023), with an
estimated 50 million individuals affected worldwide. It is characterised by recurrent
paroxysmal disruptions of brain function resulting from excessive neuronal discharge,
with various aetiologies within the central nervous system (Collaborators, 2019). An
imbalance in the distribution of the main ions inside and outside neuronal cells,
sodium (Na+), potassium (K+), calcium (Ca2+), and chloride (Cl−), constitutes the basis
for the formation of neuronal resting and action potentials (Oyrer et al., 2018). Neuronal
activity, which manifests as action potentials, relies on the coordinated flow of charged ions
through ion channels to modulate neuronal excitability. Ion channel genes are among the
most studied in epilepsy research, with approximately 25% of monogenic inherited
epilepsies being associated with variants in ion channel genes (Gao et al., 2022).

Cl− is the second most abundant ion in the human body after Na+, constituting
approximately 70% of the total anionic content in the extracellular fluid (Berend et al.,
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2012). This high chloride concentration is essential for various
physiological processes, including regulation of osmotic balance,
maintenance of acid-base homeostasis, and modulation of neuronal
excitability (Berend et al., 2012; Raut et al., 2024). In particular, Cl−

plays a critical role in the central nervous system, where it is essential
to maintain the delicate balance of neuronal excitability (Fernandez-
Abascal et al., 2021). Chloride voltage-gated chloride channels
(ClCs), encoded by the evolutionarily conserved CLCN gene
family, are critical for modulating chloride concentration
gradients and membrane potentials (Jentsch, 2015). Structural or
functional abnormalities in chloride channels can alter this delicate
balance, leading to altered neuronal excitability (Fahlke, 2001). Such
disruptions are of particular concern in epilepsy, in which an
imbalance between excitatory and inhibitory signals in the brain
can increase the susceptibility to seizures.

While extensive research exists on cation channels like sodium,
potassium, and calcium in epilepsy, the role of ClCs is an emerging
area of interest, with growing recognition of their importance in this
disorder (Oyrer et al., 2018; Reid, 2024). Previous studies have
focused on epilepsy involving these cation channels because of their
direct roles in action potential generation and neuronal firing. This
review highlights the evolving understanding of the contribution of
chloride channels to epilepsy, highlighting their underappreciated
but significant role in modulating neuronal excitability and
susceptibility to seizures.

2 The ClC family of chloride channels

ClC proteins were first reported in electric fish, which express a
large number of voltage-gated chloride channels in the cells of an
electric organ originating from the skeletal muscle tissue (White and
Miller, 1979). The molecular identification of these channels
remained challenging until the 1990s because of the absence of
specific inhibitors and difficulties in biochemical purification
techniques. A breakthrough came with the cloning of a chloride
channel from Torpedo marmorata, which was later identified as
ClC-0 by Jentsch et al., in 1990 and marked the inception of the ClC
family of anion transport proteins (Jentsch et al., 1990; Imbrici
et al., 2015).

Recent studies have elucidated the prevalence of ClC-type
chloride channels across a wide range of organisms, with nine
distinct ClC sequences identified in mammalian and human
cellular environments. The ClC family of chloride ion channels
can be categorised into three functional groups according to their
amino acid homology (Chen et al., 2023): ClC-1, ClC-2, ClC-Ka, and
ClC-Kb (Collaborators, 2019); ClC-3, ClC-4, and ClC-5; and (Oyrer
et al., 2018) ClC-6 and ClC-7. Among these, the ClC-1, ClC-2, ClC-
Ka, and ClC-Kb channels facilitate the passive flow of chloride ions
across cell membranes, while ClC-3 to ClC-7 function as chloride-
proton exchangers, transporting both chloride ions and protons in a

2Cl−/H+ stoichiometry (Sahly et al., 2024; Graves et al., 2008; Ludwig
et al., 2013). These channels are crucial for signal transduction, ion
homeostasis, intracellular transport, and lysosomal protein
degradation, making them key players in epilepsy pathophysiology.

ClCs exhibit features of molecular architecture and gating
mechanisms that are unprecedented in other types of ion
channels (Jentsch and Pusch, 2018; Jentsch et al., 2005a). ClC
proteins form two-pore homodimers, with each subunit
comprising 18 alpha helices, followed by a cytosolic carboxy-
terminus that contains two conserved cystathionine-β-synthase
(CBS) domains. A distinguishing feature of ClC proteins is the
presence of an independent pore within each subunit, indicating that
their gating mechanisms are autonomous and do not depend on
neighbouring subunits. The gating of ClC channels involves a fast
gate that operates separately in each pore of the dimer, and a
common gate that coordinates the opening and closing of both
subunits simultaneously. The fast gate is regulated by a critical
glutamate residue, whereas the specific location of the common gate,
which potentially involves the CBS domains at the dimer interface,
remains less clearly defined. Moreover, the voltage dependence
arises not from charged residues in the protein, but rather from
the coupling of gating to the movement of chloride ions within the
pore. These distinct gating mechanisms and structural features
contribute to the unique functions and regulation of ClC ion
channels (Jentsch, 2015; Jentsch and Pusch, 2018; Stolting et al.,
2014). Currently, mutations in the CLCN1, CLCN2, CLCN3,
CLCN4, and CLCN6 genes have been reported to be associated
with various forms of epilepsy (Table 1).

3 The emerging role of ClCs in epilepsy

3.1 CLCN1 gene and epilepsy

The CLCN1 gene is located on chromosome 7q35 and encodes
the ClC-1 protein, a plasma membrane-bound chloride channel
known for its high Cl− conductance (Jentsch, 2008). ClC-1 is
primarily expressed in the muscle tissue, where it contributes
significantly to resting chloride conductance across the muscle
membrane. Mutations in the CLCN1 gene can lead to partial or
complete loss of ClC-1 channel function, a well-known cause of
myotonia congenita, thus designating ClC-1 as the skeletal muscle
chloride channel (Steinmeyer et al., 1991). Notably, the presence of
polymorphic alleles in the CLCN1 gene among patients with
idiopathic epilepsy indicates the potential involvement of ClC-1
chloride channels in neurological disorders (Chen et al., 2013). Chen
et al. analysed a cohort of patients with idiopathic epilepsy and
reported a three-fold increase in nonsynonymous single nucleotide
polymorphisms (SNPs) in the CLCN1 gene compared to control
individuals. Among these, a heterozygous nonsense mutation was
identified. Arg976Ter in the CLCN1 gene in a patient with myotonic
dystrophy and generalised epilepsy, resulting in a truncation of the
distal C-terminus of the protein. In particular, the functional
implications of p. Arg976Ter mutation, which deletes the last
12 amino acids of the ClC-1 protein, a shorter segment than the
well-characterise myotonia-associated p. Arg894Ter mutation
(Chen et al., 2013), were not functionally assessed. Although the
precise pathophysiological mechanisms of ClC-1 channel mutations

Abbreviations: Cl−, Chloride ions; ClCs, Chloride voltage-gated channels;
SNPs, Single nucleotide polymorphisms; GABA, Hyperpolarising γ-
aminobutyric acid; HFOs, High-frequency oscillations; TLE, Temporal lobe
epilepsy; IGE, Idiopathic generalised epilepsy; NKCC1, Na-K-2Cl
cotransporter isoform 1; KCC2, K-Cl cotransporter isoform 2.
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TABLE 1 Genetic variants in chloride channels associated with epilepsy.

Gene Nucleotide
change

Protein
change

Molecular
consequence

Inheritance Functional
category

Country of
origin

Study

CLCN1 c.2926C>T p. Arg976Ter Nonsense De novo NA Caucasian Chen et al. (2013)

c.870C>G p. Ile290Met Missense De novo NA Italian Licchetta et al. (2014)

c.501C>G p. Phe167Leu Missense Inherited NA American Peddareddygari et al.
(2016)

CLCN2 c.704G>A p. Arg235Gln Missense Inherited Loss of function Tunisian Saint-Martin et al.
(2009)

c.1730G>A p. Arg577Gln Missense Inherited Loss of function German Saint-Martin et al.
(2009)

c.481G>A p. Gly161Ser Missense De novo NA Chinese Xie et al. (2019)

CLCN4 c.1630G>C or G>A p. Gly544Arg Missense De novo Loss of function American Veeramah et al., (2013),
Palmer et al., (2018)

c.43_55del p. Asp15Serfs*18 Frameshift Inherited Loss of function Belgian Hu et al. (2016), Palmer
et al. (2018)

c.1606G>A p. Val536Met Missense Inherited Loss of function Anglo-
Australian

Hu et al. (2016), Palmer
et al. (2018)

c.661C>G p. Leu221Val Missense Inherited Loss of function Anglo-
Australian

Hu et al. (2016), Palmer
et al. (2018)

c.1876dup p. Ile626Asnfs*135 Frameshift Inherited NA Kurdish Palmer et al. (2018)

c.823G>A p. Val275Met Missense De novo Loss of function Anglo-
American

Palmer et al. (2018)

c.2152C>T p. Arg718Trp Missense De novo Loss of function Anglo-
American

Palmer et al. (2018),
Zhou et al. (2018), He

et al. (2021a)

c.1601C>T p. Ser534Leu Missense De novo Loss of function Northern
European

Palmer et al. (2018)

Delete maternal NA Intragenic copy
number deletion

Inherited Loss of function Hispanic Palmer et al. (2018)

c.1363G>A p. Val455Ile Missense Inherited Loss of function Chinese He et al. (2021a)

c.1595C>A p. Thr532Lys Missense De novo Loss of function Chinese He et al. (2021a)

c.1873C>T p. Leu625Phe Missense Inherited Loss of function Chinese He et al. (2021a)

c.2167C>T p. Arg723Trp Missense Inherited Loss of function Pakistani Abdulkareem et al.
(2023)

c.2044G>A p. Glu682Lys Missense Inherited NA Chinese Lin et al., (2024)

c.1597G>A p. Val533Met Missense Inherited NA Turkey Sager et al. (2023)

c.1645 A>C p. Ile549Leu Missense Inherited Loss of function French-
Canadian

Sahly et al. (2024)

c.265G>A p. Asp89Asn Missense Inherited Gain-of-function Lebanese Sahly et al. (2024)

c.1024G>A p. Gly342Arg Missense Inherited Loss of function South-Asian Sahly et al. (2024)

CLCN6 c.956G>A p. Arg319Gln Missense Inherited NA Japanese Yamamoto et al. (2015)

c.1159G>A p. Val387Met Missense Inherited NA Japanese Yamamoto et al. (2015)

c.748G>A p. Gly250Ser Missense Inherited NA Japanese Yamamoto et al. (2015)

c.533A>C p. Glu178Ala Missense De novo NA Chinese Wang et al. (2017a),
Peng et al. (2018)

c.599A>C p. Glu200Ala Missense De novo NA Chinese He et al. (2021a)

Frontiers in Pharmacology frontiersin.org03

Ni et al. 10.3389/fphar.2025.1560392

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1560392


in epilepsy remain unclear, studies have shown that overexpression
of ClC-1 in inhibitory Purkinje cells hyperpolarises their resting
membrane potential and reduces excitability (Lorenzetto et al.,
2009). This alteration in excitability can lead to disinhibition of
cerebellar nuclei, which could influence epileptogenesis (Kros et al.,
2015). This study also showed the presence of ClC-1 mRNA
transcripts and ClC-1 protein bands in various regions of the
human brain, including the hippocampus, cerebellar Purkinje cell
layer, brainstem nuclei, frontal neocortex, and thalamic nuclei. This
novel localisation of ClC-1 may provide new perspectives on the role
of ClC channels in the central nervous system (Chen et al., 2013).
Furthermore, ClC-1 has also been detected in subcortical structures,
such as the basal ganglia and subthalamus, raising the possibility that
dysfunction of brain ClC-1 may contribute to the dystonia
phenotype in individuals with CLCN1 mutations, which have
traditionally been considered exclusively muscular in origin.

Despite these findings, patients with myotonia congenita and
related animal models do not typically show central neurological
symptoms and very few cases of CLCN1 mutations associated with
seizures have been reported. Licchetta et al. were the first to describe
a case of epilepsy and limbic encephalitis in a family with ClC-1-
linked myotonia caused by p. Ile290Met mutation. Epilepsy in this
patient was most likely attributable to limbic encephalitis associated
with antibodies against glutamate decarboxylase (Licchetta et al.,
2014). Similarly, Peddareddygari et al. reported the case of a 57-year-
old American male with clinical features indicative of myotonic
dystrophy type II accompanied by focal seizures. Genetic analysis
revealed a mutation in the CCHC-type zinc finger nucleic acid
binding protein (CNBP) gene associated with myotonic dystrophy,
along with a heterozygous CLCN1 mutation p. Phe167Leu
(Peddareddygari et al., 2016).

Mutations in the CNBP or CLCN1 genes, individually or in
combination, contribute to the pathophysiology of seizures. Overall,
although several studies have suggested a possible association
between CLCN1 mutations and epilepsy, particularly through the
presence of ClC-1 in the brain tissue, the current understanding
remains limited. The rarity of seizures in patients with myotonia
congenita and the low incidence of CLCN1 mutations linked to
epilepsy indicate that a direct role of ClC-1 in epilepsy is unlikely.
Additional research is required to elucidate the functional
implications of CLCN1 mutations and their potential
involvement in neurological conditions, particularly dystonia and
other movement disorders.

3.2 CLCN2 gene and epilepsy

The CLCN2 gene is located on chromosome 3q27 and encodes
the CLC-2 protein, which is ubiquitously expressed in the central
nervous system in comparison to ClC-1. In the brain, ClC-2 is found
in pyramidal neurons of the hippocampus, interneurons, as well as
in astrocytes in the end feet surrounding blood vessels and in
oligodendrocytes (Elorza-Vidal et al., 2019). A direct role of ClC-
2 in the regulation of neuronal excitability has been proposed, where
ClC-2 facilitates the compensatory efflux of chloride, maintaining
low intracellular chloride concentrations during chloride loading
caused by repetitive activation of hyperpolarizing γ-aminobutyric
acid (GABA) receptors. This mechanism provides a plausible

biological basis for how the loss of CLCN2 function could result
in increased excitability in certain neurons (Ge et al., 2011). In
oligodendrocytes, dysregulated ClC-2 may cause demyelination and
disrupted ion balance, impairing axonal conduction and increasing
neuronal excitability (Hou et al., 2018). The combination of
demyelination and ion imbalance can enhance neuronal
excitability and synchronize firing, thus facilitating the
development of seizures. In addition, aged ClC-2 knockout mice
exhibit altered neurotransmission patterns and heightened neuronal
excitation, which are linked to astrocyte activation and neuronal
degeneration (Cortez et al., 2010). Furthermore, linkage analysis
identified a locus for IGE at 3q26, the chromosomal region
harbouring CLCN2 (Sander et al., 2000). Research has indicated
that the expression of CLCN2 in epilepsy-associated brain tissue is
approximately 50% lower than that of controls, indicating a
significant loss of functional ClC-2 channels (Bertelli et al., 2007).
CLCN2 knockout mice were expected to exhibit an epileptic
phenotype, as ClC-2 is believed to be essential to maintain low
cytoplasmic chloride levels in GABAergic neurones. However,
CLCN2 knockout mice do not exhibit spontaneous epilepsy or
reduced seizure thresholds (Blanz et al., 2007; Rinke et al., 2010).
One potential explanation for this phenomenon is that the
hyperexcitability of some neurones is balanced by the increased
excitability of local inhibitory interneurons (Rinke et al., 2010).
Alternatively, the upregulation or downregulation of other Cl−

channels, such as ClC-1, might compensate for the deletion of
ClC-2 (Rahmati et al., 2018). These adaptive mechanisms could
help maintain the balance between excitatory and inhibitory activity
within neural circuits, effectively counteracting the expected
increase in neuronal excitability resulting from the absence of
ClC-2.

The role of CLCN2 mutations in epilepsy remains controversial,
with conflicting data complicating the interpretation of their
functions. Previous studies in humans have suggested a potential
link between CLCN2mutations and epilepsy, particularly idiopathic
generalised epilepsy (IGE) and focal epilepsy. An original study by
Haug et al. reported heterozygous nonsense and missense mutations
associated with IGE in three families (Haug et al., 2003). However,
subsequent research, including that by Niemeyer et al., raised
concerns about the pathogenicity of these mutations, as they did
not alter ClC-2 function in vitro (Niemeyer et al., 2004). The study
was retracted in 2009, with findings suggesting that these mutations
were not pathogenic and were present in asymptomatic relatives.
Additionally, it has been proposed that these mutations may serve as
susceptibility factors rather than direct causes of epilepsy (Kleefuss-
Lie et al., 2009). Further research identified additional variants, such
as the intronic variant IVS17-3C>T and two missense variants
(p. Arg688Gly and p. Glu718Asp) in patients with IGE
(D’Agostino et al., 2004). However, these coding sequence
abnormalities were also found in the control patients, suggesting
that they are not exclusive to patients with epilepsy. Additionally,
several large-scale studies have failed to detect significant
CLCN2 mutations in cohorts of patients with IGE or other
epilepsy syndromes (Blanz et al., 2007; Everett et al., 2007;
Stogmann et al., 2006), and the causal role of CLCN2 mutations
has been questioned by several authors, further complicating our
understanding of the role of the gene in epilepsy. One argument
against the direct link between CLCN2 mutations and epilepsy is
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that these mutations do not follow a Mendelian inheritance pattern.
Many of these sequence variations exhibit incomplete co-
segregation, appearing not only in affected individuals but also in
unaffected members of the same family. In particular, a recent study
by Saint-Martin et al. identified two novel missense mutations,
p. Arg235Gln and p. Arg577Gln, in the CLCN2 gene in
individuals with IGE. Although these variants did not completely
co-segregate with epileptic phenotypes, their absence in controls and
their functional implications suggest that they may contribute to
epilepsy susceptibility in conjunction with other unidentified genetic
factors (Saint-Martin et al., 2009). Similarly, the recent identification
of p. Gly161Ser variant by Xie et al. highlighted the potential impact
of specific mutations on the selectivity filter motif of the ClC-2
channel, which could alter its function and implicate CLCN2 more
directly in the pathophysiology of IGE (Xie et al., 2019). This
complexity suggests that epilepsy is not only the result of a single
disease-causing mutation but also arises from the co-existence of
multiple sequence variations across distinct genes. A polygenic
heterogeneity model posits that although CLCN2 mutations can
influence neuronal excitability, these changes likely lead to epilepsy
only in conjunction with mutations in other genes (Klassen et al.,
2011). The role of CLCN2 mutations in epilepsy appears to be
nuanced, with these mutations possibly acting as susceptibility
factors rather than direct causes.

3.3 CLCN3 gene and epilepsy

The CLCN3 gene is located on chromosome 4q33 and encodes
the CIC-3 protein, which is widely expressed in various tissues and
organs, with particularly high levels in the brain, especially in the
hippocampus, a region known for its significant involvement in
memory and learning, as well as its status as one of the most
epileptogenic structures (Duran et al., 2010; Verkman and
Galietta, 2009). ClC-3 is primarily localized to the membranes of
endosomal and lysosomal vesicles, where it functions as a 2Cl-/H+

exchanger, playing a crucial role in vesicular acidification. Mutations
in ClC-3 disrupt this acidification process, leading to the
accumulation of chloride within the vesicles. This disturbance
impairs the function of the proton pump, weakening the acidic
environment and consequently affecting critical processes such as
lysosomal protein degradation, vesicle fusion, and neurotransmitter
trafficking, including GABA receptors. The resulting impairment of
GABAergic signalling contributes to an imbalance between
excitation and inhibition, which may increase susceptibility to
seizures (Jentsch et al., 2005a; Dickerson et al., 2002). Research
has indicated that elevated expression of CLC-3 has been observed in
the hippocampus of both animal models and patients with temporal
lobe epilepsy (TLE), suggesting a potential link between increased
CIC-3 channel expression and epileptic conditions (Shen et al.,
2021). Shen et al. highlighted this association, noting that higher
levels of hippocampal CLC-3 expression correlated positively with
the average absolute power of high-frequency oscillations (HFOs),
which are electrophysiological markers often associated with
epileptic activity. A correlation was also observed between CLC-3
expression and the number of ictal HFOs recorded during seizures
in patients with TLE (48). In animal studies, CLC-3 knockout mice
demonstrated reduced susceptibility to seizures induced by

pentylenetetrazole, a chemical that can provoke seizure activity,
and showed prolonged sedation in response to benzodiazepines,
which enhances GABAergic signalling (Dickerson et al., 2002).
Further investigation of neonatal neurones from CLC-3 knockout
mice revealed lack of outwards-rectifying chloride currents and
decreased epileptiform activity after stimulation. This reduction
may be attributed to the blockade of CLC-3 chloride channels,
which stabilise intracellular chloride homeostasis and alter GABA
excitatory activity (Wu et al., 2019). It can be hypothesised that the
CLCN3 gene may serve as a susceptibility factor or pathogenic gene
in epilepsy. However, to date, no pathogenic mutations have been
reported in the CLCN3 gene in patients with epilepsy.

3.4 CLCN4 gene and epilepsy

The CLCN4 gene, located on chromosome Xp22.2, encodes the
CIC-4 protein, which is predominantly expressed in brain tissues
(He et al., 2021a), particularly in the pyramidal cells of the cortex
(the dentate gyrus of the hippocampus) and the Purkinje cell layer
(Jentsch and Pusch, 2018; Park et al., 2017). Although the precise
function of this gene remains unclear, it is believed to act as an
electrogenic 2Cl-/H+ exchanger, and may play a role in the
development of neurological disorders. CLCN4 mutations impair
2Cl-/H+ transport, disrupting ion homeostasis and normal cellular
processes. This affects protein function, disrupts vesicular
trafficking, and hinders neuronal differentiation, potentially
contributing to neuronal excitability and epilepsy (Jentsch and
Pusch, 2018; Hu et al., 2016). Moreover, CLCN4 has been
implicated in X-linked intellectual disabilities and epilepsy, with
prominent focal seizures observed in some cases. In 2013, a de novo
loss of functionmutation, p. Gly544Arg, in the CLCN4 gene was first
reported to cause early-onset epileptic encephalopathy accompanied
by severe developmental delays (Veeramah et al., 2013).
Subsequently, five additional CLCN4 variants were identified,
among which p. Asp15Serfs*18, p. Val536met, and p. Leu221Val
were associated with seizures (Hu et al., 2016). Furthermore, the
genotypic findings of Palmer et al. are consistent with, and extend
beyond, those of previous studies, identifying an additional novel
CLCN4 frameshift variant, p. Ile626Asnfs135 and three novel
missense variants (p. Val275Met, p. Arg718Trp, and
p. Ser534Leu) along with a novel intragenic microdeletion
involving exon 12 (Palmer et al., 2018).

In particular, the p. Arg718Trp variant associated with epilepsy
has also been reported in two additional studies (He et al., 2021a;
Zhou et al., 2018). With advances in large-scale parallel sequencing,
an increasing number of variants associated with various phenotypic
features and degrees of disease severity have been reported. He et al.
subsequently reported three novel variants (p. Val455Ile,
p. Thr532Lys, and p. Leu625Phe) (He et al., 2021a), followed by
several other mutations, including p. Arg723Trp (Abdulkareem
et al., 2023), p. Glu682Lys (Lin et al., 2024), p. Val533Met (Sager
et al., 2023), p. Ile549Leu, and p. Asp89Asn (Sahly et al., 2024). The
phenotypic spectrum of CLCN4-related epilepsy includes
medication-resistant seizures, intellectual disabilities, behavioural
disorders, and congenital anomalies. In particular, patients with
multiple seizure types or those with missense or de novo variants
typically exhibit more severe phenotypes, whereas individuals with a
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single seizure type, frameshift or intragenic deletions, or inherited
variants often present with milder symptoms. Electrophysiological
studies have revealed that most of these missense variants reduce or
abolish ClC-4 currents, which is consistent with the loss of function
that underlies epilepsy and cognitive defects associated with these
genetic alterations (He et al., 2021a). This dysfunction likely disrupts
the normal electrochemical gradients and excitability of the
neurones, contributing to the development of seizures and other
neurological symptoms.

3.5 CLCN6 gene and epilepsy

The CLCN6 gene is located on chromosome 1p36 and encodes
the CLC-6 protein, which is predominantly expressed in the brain.
This protein functions as a 2Cl−/H+ exchanger and is primarily
localized in late endosomes, playing a critical role in maintaining ion
homeostasis within these cellular compartments. While disruption
of CLCN6 in mice results in mild lysosomal storage, particularly in
the axon initial segments, no definitive link between
CLCN6 mutations and human disease has been established to
date (Polovitskaya et al., 2020). Recent massive parallel
sequencing studies in patients with sporadic epilepsy of unknown
aetiology have identified several SNPs in chloride channel genes,
including CLCN6 variants, which were absent in control subjects
(Chen et al., 2013). Yamamoto et al. have reported three nucleotide
variants in the CLCN6 gene (p. Arg319Gln, p. V387M, and
p. Gly250Ser), which were believed to be associated with epilepsy
and febrile seizures (Yamamoto et al., 2015). However, subsequent
in vitro analyses assessing the functional relevance of these SNPs did
not indicate significant differences in the activity of cells expressing
the wild-type and mutant variants (Yamamoto et al., 2015).
Furthermore, both studies reported that the de novo heterozygous
mutation p. Glu178Ala in the CLCN6 gene is associated with West
Syndrome, a severe form of epilepsy that typically presents in
infancy and is characterised by developmental regression and
specific seizure patterns known as infantile spasms (Peng et al.,
2018; Wang Y. et al., 2017). In particular, He et al. were the first to
identify the CLCN6 variant p. Glu200Ala as a pathogenic mutation
associated with West Syndrome. Missense mutations can contribute
to this condition by preventing the fusion of autophagosomes with
lysosomes, thereby disrupting critical cellular degradation processes
(He et al., 2021b). Overall, these studies suggest a potential
association between the CLCN6 gene and epilepsy; however,
observations from ClCN6 knockout mice indicate that these
animals do not exhibit epilepsy or severe neurological defects
(Poet et al., 2006). However, compensation by other chloride
channels cannot be ruled out as a possible explanation for the
moderate phenotypes observed in these knockout models. This
highlights the complexity of the genetic contributions to epilepsy
and the need for more research to fully elucidate the role of
CLCN6 in neurological disorders.

4 Conclusion and future perspectives

There is a notable lack of genetic studies identifying mutations in
ClC-Ka, ClC-Kb, ClC-5, and ClC-7 in patients with epilepsy,

highlighting the significant gap in our understanding of the
specific roles of these chloride channels in the mechanisms of
epilepsy. ClC-Ka and ClC-Kb are primarily responsible for the
regulation of chloride transport across various tissues,
particularly in the kidneys, where they are essential for
maintaining cellular ion balance and fluid homeostasis (Coppola
et al., 2023). However, their direct roles in brain function and
epilepsy have not been well characterised. Similarly, ClC-5 and
ClC-7 contribute to endosomal chloride transport and are
associated with various renal and skeletal pathologies (Zifarelli,
2015). Therefore, in future studies using targeted genetic
screening and functional analyses, researchers can establish
potential associations between mutations in ClC-Ka, ClC-Kb,
ClC-5, and ClC-7, and susceptibility to epilepsy. Such
investigations could significantly improve our understanding of
the genetic foundations of seizure disorders, and inform the
development of targeted therapeutic strategies.

The Na-K-2Cl cotransporter isoform 1 (NKCC1) and the K-Cl
cotransporter isoform 2 (KCC2) are two key cation-chloride
cotransporters implicated in human epilepsy, responsible for
regulating chloride homeostasis by accumulating and extruding
Cl− (Liu et al., 2019). Dysfunction of ClCs, such as ClC-2, may
indirectly affect the activity of NKCC1 and KCC2 by disrupting this
delicate chloride balance. Impaired chloride channels lead to
chloride accumulation within the cell, disrupting the chloride
gradient. This disturbance impairs KCC2’s ability to effectively
export chloride and exacerbates chloride accumulation through
NKCC1. As a result, this imbalance can reverse the polarity of
GABAergic signalling, shifting it from inhibitory to excitatory. The
ensuing increase in neuronal excitability may contribute to the onset
of seizures, particularly in epilepsy with developmental origins, as
the reversion of NKCC1 and KCC2 expression to an immature state
may be one of the key mechanisms underlying epileptogenesis
(Blaesse et al., 2009). In addition to their role in chloride
homeostasis, ClC channels, particularly ClC-2 and ClC-3, are
involved in cell volume regulation by facilitating chloride and
water transport (Duran et al., 2010; Wang H. et al., 2017).
Neurons are particularly sensitive to changes in cell volume, and
abnormal swelling can significantly impair their function. Swollen
neurons may experience compression of synaptic components,
altered ion gradients, and disruption of membrane potential, all
of which enhance neuronal excitability. This increase in excitability
can cause abnormal neuronal firing, thus heightening the likelihood
of seizure generation (Wilson and Mongin, 2018). The dysfunction
of ClC channels disrupts chloride transport, leading to an osmotic
imbalance that promotes cell swelling, shifts inhibitory signalling to
excitatory, and enhances neuronal hyperexcitability, ultimately
contributing to the initiation and propagation of seizures. The
intricate relationship between chloride channels and epilepsy has
become increasingly apparent. Various chloride channel genes,
including CLCN1, CLCN2, CLCN3, CLCN4, and CLCN6, are
associated with epilepsy and other neurological disorders,
indicating that disruption in chloride homeostasis can
significantly affect neuronal excitability and susceptibility to
seizures. Despite the emerging evidence linking specific
mutations in these genes with epilepsy, the functional
implications of many of these mutations remain unclear. For
example, while some CLCN6 variants have been identified in
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patients, in vitro studies have not demonstrated significant
functional differences compared to wild-type channels. This
raises critical questions about how these mutations can
contribute to the epileptic phenotype, and emphasises the need
for further investigation to clarify the precise roles of these channels
in neuronal function.

Compensatory mechanisms involving chloride channels suggest
a complex interplay that mitigates the effects of specific mutations.
Future research should focus on understanding these compensatory
pathways and their effects on the clinical manifestations of epilepsy.
Furthermore, phenotypic variability observed in patients with
chloride channel gene mutations emphasises the need for
comprehensive genetic testing and personalised treatment
approaches. As the genetic landscape of epilepsy evolves, it will
be vital to include chloride channel genes in the genetic testing
panels for patients with undiagnosed epilepsy. Identifying mutations
in these genes can provide valuable insights into the aetiology of
epilepsy, guide management strategies, and improve
patient outcomes.

Compared to voltage-gated cation channels, targeting ClCs for
anti-epileptic therapies presents several unique challenges. Voltage-
gated cation channels, such as Na+ or Ca2+ channels, are well-
established therapeutic targets with a relatively clearer
understanding of their mechanisms of action. In contrast, ClCs
are involved in various cellular processes beyond just chloride
homeostasis, such as volume regulation and neurotransmitter
trafficking, making their manipulation more complex. A major
concern is side effects, as ClCs are ubiquitously expressed in
tissues like the brain, kidneys, and heart. Altering their function
could lead to unintended consequences such as renal dysfunction,
fluid balance disturbances, or cardiovascular issues (Jentsch et al.,
2005b; Piwon et al., 2000; Duan, 2011), emphasizing the need for
highly selective approaches that target brain-expressed ClC
isoforms. Drug delivery is another significant challenge, as ClC
channels are often localized in specific intracellular compartments,
such as endosomes and synaptic vesicles. Effectively targeting these
compartments requires advanced drug delivery methods, such as
nanoparticle-based or lipid-based carriers, which must be capable of
crossing the blood-brain barrier while maintaining efficiency and
safety. Additionally, ClCs have multiple isoforms with overlapping
roles in both neuronal and non-neuronal cells, making precise
isoform-specific targeting more complex than with cation
channels. Although significant progress has been made in
understanding the role of chloride channels in epilepsy, ongoing
research is essential to uncover the underlying mechanisms, explore
potential therapeutic targets, and enhance the diagnosis and
treatment of this complex disorder.
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