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Background: Esophageal squamous cell carcinoma (ESCC) is closely linked to
aberrant glycolytic metabolism, a hallmark of cancer progression, immune
evasion, and therapy resistance. This study employs single-cell transcriptomics
and multi-omics approaches to unravel glycolysis-mediated mechanisms in
ESCC, with a focus on risk stratification and therapeutic opportunities.

Methods: Data from TCGA and GEO databases were integrated with single-cell
RNA sequencing, bulk RNA sequencing, as well as clinical datasets to investigate
glycolysis-associated cell subtypes and their clinical implications in ESCC.
Analytical approaches encompassed cell subtype annotation, cell-cell
communication network analysis, and gene regulatory network modeling. A
glycolysis-related risk score model was built via non-negative matrix
factorization (NMF) and Cox regression, and then experimentally verified
through Western blotting. Drug sensitivity analyses were carried out to explore
potential therapeutic strategies.

Results: Single-cell analysis identified epithelial cells as the dominant glycolysis-
active subtype, and tumor tissues showed significantly higher glycolytic activity
than adjacent normal tissues. Among malignant epithelial subpopulations,
IGFBP3+Epi (IGFBP3-expressing epithelial cells) and LHX9+Epi (LHX9-
expressing epithelial cells) had elevated glycolysis levels, which correlated with
poor prognosis, immune suppression, and changes in the tumor
microenvironment. The seven-gene glycolysis-based risk score model divided
patients into high- and low-risk groups, demonstrating strong prognostic
performance. Drug sensitivity analysis showed high-risk patients were more
responsive to Navitoclax as well as Rapamycin, but low-risk ones were more
sensitive to Afatinib and Erlotinib, highlighting the model’s usefulness in guiding
personalized treatment.

Conclusion: This research emphasizes the crucial role of glycolysis in ESCC
progression a well as immune modulation, offering a novel glycolysis-related risk
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score model with significant prognostic and therapeutic implications. These
findings provide a basis for risk-based stratification and tailored therapeutic
strategies, advancing precision medicine in ESCC.
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1 Introduction

Esophageal cancer (EC) is the sixth most prevalent cause of
cancer-related deaths worldwide and the eighth most common type
of cancer overall (Uhlenhopp et al., 2020). Projections show by 2040,
the number of global EC cases will increase to 913,300, with
867,400 deaths. The incidence and histological characteristics of
EC vary significantly across different regions. In the US, the
diagnosis rate of esophageal cancer is relatively low, with an
estimated 21,560 new cases as well as 16,120 deaths expected in
2023 (Siegel et al., 2023). In contrast, China reported 224,000 new
cases of esophageal cancer and 187,500 deaths in 2022, accounting
for 4.64% and 7.28% of all malignant tumors, respectively (The
Medical Emergency Division of the National Health Commission,
2024). Esophageal cancer mainly consists of two histological
categories, namely squamous cell carcinoma (SCC) as well as
adenocarcinoma (AC). Among them, esophageal squamous cell
carcinoma (ESCC) is the most prevalent subtype, making up
around 90% of all cases (Song et al., 2014). Approximately
500,000 new cases of ESCC are diagnosed annually, with a high
mortality rate of 90% (Sung et al., 2021). More than half of ESCC
cases occur in China, where it is the sixth most common cause of
death due to cancer worldwide (Chen et al., 2017). Despite
advancements in diagnostic as well as treatment technologies in
th past years s, the 5-year survival rate for ESCC patients remains
only 12%–20% (Napier et al., 2014). The high incidence and poor
prognosis of ESCC highlight the urgent need to improve diagnostic
and therapeutic strategies. Currently, the main treatments for ESCC
include surgery, chemotherapy, as well as radiation therapy.
However, due to the highly invasive nature of ESCC, many
individuals are diagnosedwhen they are at advanced stages,
limiting the effectiveness of these treatments (Shimizu et al.,
2023). Therefore, in-depth research into the biological
mechanisms of ESCC, particularly the molecular mechanisms
related to metabolic pathways, is important for comprehending
disease progression as well as improving patient prognosis.

The occurrence, development, and metastasis of tumors have a
close bearing on metabolic pathways, with metabolic
reprogramming playing a key role in these processes (Martínez-
Reyes and Chandel, 2021; Pavlova and Thompson, 2016). Recent
studies have shown that ESCC patients often exhibit significant
disruptions in circulating metabolites (Tao et al., 2021; Chen et al.,
2020). In the metabolic processes of ESCC, the distribution of
certain key metabolites undergoes significant changes, and these
metabolites are widely involved in important metabolic pathways
such as glycolysis, anaerobic respiration, the tricarboxylic acid
(TCA) cycle, as well as protein and lipid metabolism (Huang
et al., 2020). Research by Yang et al. has shown that knocking
out the Sirt1 gene can regulate the glycolytic pathway, thereby

enhancing the sensitivity of ESCC to chemotherapy (Yang X.
et al., 2024). Han et al. further discovered that peripheral
coumarin (PPM) can simultaneously regulate glycolysis and
mitochondrial oxidative phosphorylation (OXPHOS), inhibiting
the proliferation of ESCC cells in vitro, inducing apoptosis, and
causing cell cycle arrest at the G2/M phase (Han et al., 2024).
Additionally, research shows inhibiting glycolysis and
mitochondrial oxidative phosphorylation at the same time results
in fatal energy depletion, which effectively stops tumor growth.
(Dong et al., 2022). Moreover, key glycolytic enzymes are commonly
overexpressed in ESCC. For example, hexokinase 2 (HK2), pyruvate
kinase M2 (PKM2), and lactate dehydrogenase A (LDHA) are
remarkably improved in ESCC patients. The abnormal expression
of these enzymes not only promotes glycolytic activity but is also
closely associated with poor clinical prognosis (Yang et al., 2021).
Thus, glycolysis has a profound impact on the tumor biology of
ESCC, making it a current hot research topic. Research into the
molecular mechanisms of the glycolytic pathway provides fresh
insights into the pathogenesis of ESCC and lays an important
foundation for developing precise and effective therapeutic
strategies.

Glycolytic reprogramming is one of the most important
metabolic reprogramming processes in tumor cells and is
irreplaceable in tumor initiation as well as progression. Glycolytic
reprogramming gives tumor cells the energy they need to proliferate
quickly, but it also aids in the tumor cells’ adaptation to hypoxic
conditions, which increases their chances of surviving and
metastasis. As early as the 1920s, Otto Warburg discovered that
tumor cells preferentially use glycolysis as their primary energy
metabolism pathway, even in the presence of sufficient oxygen,
rather than the more efficient oxidative phosphorylation
(Thompson et al., 2023; Warburg, 1956). This abnormal
glycolytic pathway is known as the “Warburg effect,” which
provides tumor cells with macromolecular precursors and an
optimal redox environment, meeting the energy demands for
growth and division. This process is regarded an adaptive
mechanism of tumor cells (Fukushi et al., 2022; Madhukar et al.,
2015; Vander Heiden et al., 2009). To enhance antioxidant capacity,
various signaling pathways are involved in the glycolysis regulation
in tumor cells. For instance, during glycolysis, the tumor suppressor
gene p53 can reverse the Warburg effect by inhibiting pro-apoptotic
factors, thereby reducing the accumulation of fructose-1,6-
bisphosphate (F16BP). Additionally, p53 can upregulate the
activity of hexokinase (HK) and phosphoglycerate mutase
(PGAM), further enhancing glycolysis under certain conditions
(Li et al., 2021). Another example is the IL-17A-HIF1α signaling
axis, which can guide the metabolic reprogramming of damaged
epithelial cells towards glycolysis, promoting cell migration and
tumor metastasis (Konieczny et al., 2022). Moreover, glycolytic
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reprogramming has a close bearng on the tumor
microenvironment (TME). In the low-glucose environment
created by tumor cells consuming glucose, regulatory T cells
(Tregs) actively absorb lactate (LA) through monocarboxylate
transporter 1 (MCT1), promoting the translocation of nuclear
factor of activated T-cells 1 into the nucleus and enhancing the
expression of programmed cell death protein 1 (PD-1).
Conversely, PD-1 expression in effector T cells is suppressed.
Blockade of PD-1 may activate Tregs expressing PD-1, thus
reducing therapeutic efficacy. It is hypothesized that in a highly
glycolytic tumor microenvironment, lactate may be a key regulator
of Treg function, upregulating PD-1 expression and forming an
active immune checkpoint that suppresses the immune response
(Kumagai et al., 2022). Furthermore, glycolytic reprogramming
not only affects the metabolism of tumor cells but also weakens the
function of immune cells through metabolic competition. For
instance, tumor cells can competitively uptake glucose,
inhibiting the glycolytic activity of effector T cells as well as NK
cells, thereby significantly impairing their anti-tumor capabilities
(Chang et al., 2015). In summary, glycolytic reprogramming plays
a central part in tumor cell energy supply, biosynthesis, and
regulation of the tumor microenvironment. In-depth
investigation of its molecular mechanisms and signaling
networks will not only reveal the intrinsic nature of tumor
metabolic adaptation but also provide new insights and
potential targets for cancer therapy.

Single-cell sequencing is a high-resolution analytical technique
allowing for the precise analysis of the genome, transcriptome, or
epigenome of individual cells, offering significant advantages over
traditional bulk sequencing. First, it overcomes the issue of masking
individual differences caused by cellular heterogeneity in bulk
sequencing, enabling a precise understanding of intercellular
heterogeneity and the characteristics of rare cell populations.
Second, single-cell sequencing captures the dynamic changes of
cells, providing insights into cellular state transitions during
development, differentiation, and disease progression, particularly
in areas such as tumor evolution, immune responses, and tissue
regeneration. Furthermore, this technology enables cell lineage
tracing and the construction of cellular maps of complex tissues
or organs, allowing for an in-depth analysis of their spatial structure
and function. By integrating multi-omics technologies, such as
combining single-cell transcriptomics with epigenomics, single-
cell sequencing can explore the biological properties of cells from
multiple dimensions, providing powerful tools for both basic
research and precision medicine.

In this study, single-cell sequencing technology precisely
captured the glycolytic characteristics of different cell subtypes
within the tumor microenvironment, revealing the metabolic
differences between ESCC cell subpopulations and their role in
tumor progression. Additionally, a glycolysis-related risk scoring
model was constructed through multi-omics analysis, systematically
evaluating the association between glycolytic metabolism, patient
prognosis, as well as the immune microenvironment. The mode
effectively predicts patient survival rates and provides potential
strategies for targeting glycolytic metabolism and improving the
tumor immune microenvironment. Finally, drug sensitivity analysis
was performed, enabling the risk scoring model to guide the
selection of chemotherapy drugs, thereby playing a crucial role in

precision diagnosis and treatment. Through the integration of
single-cell sequencing and multi-omics analysis, this research lays
a solid foundation for an in-depth understanding of the metabolic
mechanisms of ESCC as well as for personalized treatment
approaches.

2 Method

2.1 Data collection and organization

The single-cell RNA sequencing (scRNA-seq) dataset
GSE188900 was downloaded from the GEO database (http://
www.ncbi.nlm.nih.gov/geo), including 8 ESCC tissue samples as
well as 1 adjacent non-cancerous tissue sample. Additionally, bulk
RNA-seq data as well as clinical information from ESCC patients
were downloaded from the GEO database (GSE23400, GSE53624,
GSE53625). A set of 50 signature gene sets, including the glycolysis-
related dataset (HALLMARK_GLYCOLYSIS), was downloaded
from the Molecular Signatures Database (MSigDB, http://
software.broadinstitute.org/gsea/msigdb/).

2.2 Visualization of cell types and subtypes
in ESCC

We used the Seurat package (v5.0.1) in R to create a Seurat
object. Next, quality control (QC) was performed on the Seurat
object with the following filtering criteria: mitochondrial gene
percentage below 25%, ribosomal gene percentage above 3%,
and red blood cell gene percentage below 5%. After quality
control, the functions NormalizeData, FindVariableFeatures,
ScaleData, and RunPCA were sequentially applied to compute
and obtain the principal components based on the Seurat object.
Subsequently, the t-SNE (t-distributed stochastic neighbor
embedding) approach was leveraged for dimensionality
reduction to better visualize the main principal components.
Finally, cell types and their subtypes were annotated and
visualized based on the SingleR algorithm and the classic
marker genes expressed by each subset.

2.3 Cell-cell communication analysis
between cell subtypes/clusters

CellChat (PMID: 33597522) is an R package designed to analyse
cell-cell communication networks in scRNA-seq data, where
different cell populations are labeled. It includes ligand-receptor
interaction databases for both humans and mice. First, we used
CellChatDB.human to evaluate the major incoming and outgoing
signals for each cell subtype/cluster. Then, using the netVisual_circle
function, we visualized the cell-cell communication network
between cell subtypes/clusters, reflecting the communication
intensity from target cell subtypes/clusters to different cell
subtypes/clusters. Lastly, using the netVisual_bubble function, we
generated a bubble plot to highlight key ligand-receptor interactions
between the target cell subtype/cluster and other cell
subtypes/clusters.
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2.4 Single-sample gene set enrichment
analysis (ssGSEA) and gene set enrichment
analysis (GSEA)

The ssGSEA score for each sample mirrors the extent to which
specific gene sets are systematically upregulated or downregulated in that
sample. This research used the ssGSEA method from the R package
“GSVA” (PMID: 23323831) to obtain glycolysis scores for each sample.
To identify pathways related with the characteristics, this research
computed the GSVA scores for 50 signature pathways and used the
“limma” package to analyze pathways that displayed remarkable
variations between the high-risk and low-risk groups. And to uncover
biological processes, cellular components, as well as molecular functions
involved in various risk subgroups, GSEA analysis was carried out on the
GOgene sets (c5. go.v7.5.1. symbols.gmt) between the two risk groups via
the “clusterProfiler” R package, applying the recommended thresholds of
FDR < 0.25 and |NES| > 1.

2.5 Non-negative matrix factorization (NMF)
of cell subpopulations with high glycolysis
scores in ESCC

To explore the effect of glycolysis on cells within the ESCC
tumor microenvironment, we applied the Non-negative Matrix
Factorization (NMF) algorithm to perform dimensionality
reduction on the expression data of key regulatory factors in
immune cells. Next, based on the scRNA-seq expression matrix,
this research identified different cell subtypes within these cell
populations. All of these analytical steps followed the methods
outlined in previous research (PMID: 32686767).

2.6 KEGG enrichment and metabolic activity
analysis of glycolysis-related cell subtypes
in ESCC

To identify biological pathways specific to glycolysis-related cell
subtypes in ESCC, this research first employed the FindAllMarkers
function to identify differentially expressed genes from the single-
cell data, setting the log fold change threshold (logfc.threshold) to
0.25 and the minimum percentage (min.pct) to 0.25. Based on the
differentially expressed genes for each cell subtype, we performed
KEGG enrichment analysis for each subtype independently and
visualized the top three significantly enriched KEGG pathways using
heatmaps created with the ggplot2 package. The assessment of
metabolic activity was performed using the scMetabolism
package (PMID: 34417225). During the analysis, we specifically
focused on KEGG metabolic pathways, obtaining activity scores for
each metabolic pathway in the cells.

2.7 SCENIC analysis

In this study, we used the SCENICmethod (PMID: 28991892) to
explore single-cell transcriptional regulatory networks. We
identified transcription start sites and constructed gene regulatory
networks in the ESCC single-cell RNA-seq data based on two gene

loci rankings from the RcisTarget database (hg19-tss-centered-10 kb
as well a hg19-500 bp-upstream). This approach was used to reveal
changes in cell states and transcriptional regulatory mechanisms.

2.8 Cox regression analysis of glycolysis-
related cell subtype features in ESCC

This research employed the FindAllMarkers function from the
Seurat R package to generate gene features for different glycolysis-
related cell subtypes in ESCC. These gene features were then used to
calculate enrichment scores across all publicly available ESCC
datasets using the GSVA function. A Cox regression analysis was
carried out to investigate the connection between glycolysis-related
cell subtypes in ESCC and patient overall survival (OS).

2.9 Identification of glycolysis-related
prognostic feature genes in ESCC
epithelial cells

The TCGA-ESCC cohort was split into a training cohort as well
as a validation cohort at a 7:3 ratio, with the GSE53624 cohort used
as an external validation dataset. LASSO Cox analysis was
performed via the R packages “glmnet” as well as “survival” to
identify prognostic-related glycolysis genes in epithelial cells and to
construct a risk score model: Risk score = Σβi αi, where αi and βi
denote the expression levels as well as coefficients of the glycolysis
genes in the prognostic model. Based on the optimal cutoff from the
survival curves, the training, validation cohorts, and
GSE53624 cohort were split into high-risk as well as low-risk
groups. GSE53624 acted as the external validation dataset. Then,
Kaplan-Meier survival curve analysis as well as ROC curve analysis
were performed on the training, validation cohorts, and
GSE53624 cohort to evaluate the predictive performance of the
prognostic glycolysis feature genes in epithelial cells. The R package
“timeROC” was employed to plot ROC curves for 1-year, 3-year, as
well as 5-year survival. K-M survival curves were plotted via the
“survival” as well as “survminer” R packages.

2.10 Construction of the nomogram

Combining clinical characteristic data and RiskScore, univariate
and multivariate Cox regression analyses were performed to identify
prognostic factors, which were subsequently used to construct a
Nomogram. The analysis and plotting were conducted using the
“rms” package, resulting in a Nomogram to predict the 1-year, 3-
year, and 5-year overall survival (OS) rates of patients with early-
stage lung adenocarcinoma. The predictive capability of the model
was validated using calibration curves and time-dependent
ROC curves.

2.11 Immune microenvironment analysis

This research employed the R package “IOBR” (PMID:
34276676) to calculate immune cell infiltration scores for
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8 immune cell types and analyse the variations in immune-related
feature sets between high and low expression groups. Additionally,
based on the cell infiltration scores obtained from the CIBERSORT
algorithm, we evaluated the impact of various cell gene states on the
overall survival (OS) of ESCC patients.

2.12 Western blot analysis

HET-1A (ATCC® CRL-2692™, an SV40 T-antigen-
immortalized human epithelial cell line originally reported to be
derived from normal human esophageal squamous epithelium),
KYSE30, and KYSE450 (esophageal cancer cell lines) were
purchased from Fuheng Biotechnology (Shanghai, China). HET-
1A, KYSE30 and KYSE450 cells were cultured in RPMI-1640 with
10% fetal bovine serum as well as 1% penicillin/streptomycin. All
cells were maintained at 37°C with 5% CO2. Total protein was
extracted using RIPA buffer (50 mM Tris-HCl, pH 7.4, 150 mM
NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS, and
1 mM EDTA) supplemented with protease and phosphatase
inhibitors. Protein concentration was determined using the BCA
assay (Thermo Fisher, United States). Equal amounts of protein
(30 µg) were separated by 12% SDS-PAGE and transferred to PVDF
membranes. Membranes were blocked with 5% non-fat milk and
incubated overnight at 4°C with primary antibodies (NFKBIZ,
SAB4301779, SAB Biotech, United States; ATF3, ab207434,
Abcam, UK; BTG2, ab85051, Abcam; BIK, ab52182, Abcam;
IGFBP2, ab109284, Abcam; LY6K, ab246486, Abcam; GAPDH,
ab8245, Abcam) diluted 1:1,000. After washing, HRP-conjugated
secondary antibody was applied, and protein bands were visualized
using ECL substrate (Thermo Fisher). Image analysis was performed
using the Chemidoc XRS+ system (Bio-Rad, United States).
GAPDH was employed as a loading control.

2.13 Statistical analysis

All statistical analyses in this study were carrried out using R
4.3.2. The t-test, Wilcoxon rank-sum test, chi-square test, and
Kruskal-Wallis test were leveraged to assess differences in
continuous or categorical variables between different cell groups.
A p-value < 0.05 was regarded statistically significant.

3 Result

3.1 Overview of Glycolysis in ESCC single-
cell data

We used the GSE188900 scRNA-seq dataset to study the
glycolytic state of major cell subtypes in ESCC. This dataset
includes 8 ESCC tissue samples and 1 adjacent non-cancerous
tissue sample. The major cell subpopulations, like T cells, B cells,
epithelial cells, endothelial cells, monocytes, smooth muscle cells,
as well as tissue stem cells, were annotated using SingleR
(Figure 1A). Additionally, the accuracy of the annotations was
confirmed based on the expression of typical marker genes, and a
bubble plot was used to display the expression levels and

proportions of specific markers for each cell type (Figure 1B).
Furthermore, the GSVA scores for 50 hallmark gene sets
(HALLMARK) for each cell subtype were also presented in a
bubble plot (Figure 1F). As shown in Figure 1E, glycolysis gene
expression varies across different cell subtypes, with epithelial cells
showing elevated glycolytic activity compared to other cell types.
To explore the glycolytic state of different cell types, this research
employed the ssGSEA algorithm to assess the glycolysis score for
each cell in the samples, and the results were mapped onto a t-SNE
plot. The plot shows that epithelial cells have significantly higher
glycolysis scores compared to other cell types (Figures 1C, G).
Notably, glycolysis scores were higher in cancer tissues compared
to adjacent normal tissues (Figures 1H, I). Moreover, epithelial
cells, monocytes, smooth muscle cells, and tissue stem cells in
cancer tissues exhibited higher glycolysis scores (Figure 1D).

3.2 Features of ESCC epithelial cells and
glycolysis-mediated characteristics of
related epithelial cell subtypes

There may be differences between malignant epithelial cells
from different sample sources. To assess these differences, we
calculated the differential genes in epithelial cells from various
samples and plotted a heatmap. As shown in Figure 2A,
malignant epithelial cells from different sample sources indeed
exhibit distinct features. To identify consistent genes between
malignant cells across different samples, we carried out NMF
dimensionality reduction analysis on glycolysis genes to identify
core genes that are preferentially co-expressed in malignant cell
subpopulations across different tumors. These core genes were then
characterized as gene expression features through hierarchical
clustering, with 7 features showing high consistency (Figure 2B).
Malignant feature scores for malignant cells from different tumors
varied (Figure 2E), but univariate Cox analysis based on the TCGA-
ESCA cohort indicated that among these 7 malignant features,
Epi4 may serve as a risk factor influencing patient prognosis in
ESCC (Figure 2C). The Kaplan-Meier (KM) curve results were
consistent with the Cox regression results (Figure 2D). To further
investigate the impact of glycolysis on malignant epithelial cells, we
mapped the NMF clustering results onto a UMAP plot, identifying
5 glycolysis-related malignant cell subpopulations (Figure 2F).
Among these newly defined subpopulations, the IGFBP3+Epi and
LHX9+Epi subpopulations showed significantly higher glycolysis
scores than the other subpopulations (Figure 2G). KEGG
enrichment results revealed that these subpopulations were
mainly associated with ribosome, lysosome, and p53 pathways
(Figure 2H). The metabolic activity of different subpopulations
was assessed, as shown in Figure 2I, where the metabolic
characteristics of glycolysis-related epithelial cell subpopulations
were analyzed.

3.3 Analysis of ESCC T cell features based on
glycolysis-related regulatory factors

Based on the classical markers of T cells, we identified
three T cell subtypes in this dataset: CD8+ T cells,
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FIGURE 1
Overview of Glycolysis in ESCC Single-Cell Data. (A) t-SNE plot of cell subpopulation classification; (B) Bubble plot of classical marker gene
expression for each cell subpopulation; (C) t-SNE plot of glycolysis scores for each cell subtype; (D) Glycolysis scores for each cell subtype between
cancer and adjacent non-cancerous tissues; (E) Heatmap of glycolysis gene expression across cell subtypes; (F) GSVA scores for 50 hallmark gene sets
across each cell subtype; (G) Quantitative violin plot of glycolysis scores for each cell subtype; (H) Glycolysis scores for cancer and adjacent non-
cancerous tissues in the TCGA-ESCA cohort; (I) Glycolysis scores for cancer and adjacent non-cancerous tissues in the GSE23400 cohort.
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FIGURE 2
Features of ESCC Epithelial Cells and Glycolysis-Mediated Characteristics of Related Epithelial Cell Subpopulations. (A) Heatmap of epithelial cell
marker genes across different samples; (B)NMF clustering correlation heatmap; (C) Univariate Cox regression forest plot for epithelial cell features in the
TCGA-ESCA cohort; (D) Survival curve for high and low Epi4 feature scores in the TCGA-ESCA cohort; (E) GSVA scores for epithelial cell features across
different samples; (F) NMF cell clustering plot; (G) Glycolysis scores of newly defined glycolysis-related cell subpopulations; (H) KEGG enrichment
result plot; (I) Metabolic activity analysis result plot.
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Th17 cells, as well as Naïve T cells (Figure 3A). Using NMF
clustering, we defined new T cell subtypes, including
CXCR4+CD8, LDHC+CD8, Unclear-Gly-CD8, NOL3+Th17,
CXCR4+Th17, DDIT4+Naïve, KIF20A+Naïve, and Unclear-
Gly-Naïve (Figures 3B–D). To explore the impact of these
subpopulations on malignant epithelial cells, we carried out
cell-cell communication analysis. The findings showed the
IGFBP3+Epi (IGFBP3-expressing epithelial cells) and
LHX9+Epi (LHX9-expressing epithelial cells) subpopulations,
with the highest glycolysis scores, showed communication with
all newly defined T cell subpopulations compared to other
malignant subpopulations (Figure 3E). And to assess the
overall effect of glycolysis-related T cell subpopulations, this
research found significant variations in the average expression
of immune genes associated with co-stimulation, co-inhibition,
as well as functional markers (Figure 3F). To further understand
the intercellular regulatory network, this research carried out
SCENIC analysis to examine the activity of transcription
factors. The results suggested the transcription factor activity
in CXCR4+CD8, DDIT4+Naïve, and CXCR4+Th17 T cell
subtypes was significantly higher than in other cell
types (Figure 3G).

3.4 Analysis of ESCC smooth muscle cells
and tissue stem cell features based on
glycolysis-related regulatory Factors

Based on NMF clustering, we defined new glycolysis-related
smooth muscle cell (SMC) and tissue stem cell (MSC) subtypes,
including IER3+SMC, Unclear-Gly-SMC, ME1+MSC, and
DDIT4+MSC (Figure 4A). KEGG enrichment analysis revealed
that these newly defined subpopulations were mainly related with
the TNF signaling pathway and IL-17 signaling pathway (Figure 4B).
Metabolic activity analysis showed that IER3+SMC and ME1+MSC
cells exhibited higher metabolic activity compared to other cells
(Figure 4C). SCENIC analysis revealed that the transcription factor
activity of these cells varied, potentially participating in different
biological functions (Figure 4D). To explore the impact of these
subpopulations on malignant epithelial cells, this research
conducted cell communication analysis. The findings showed that
the glycolysis-high IGFBP3+Epi and LHX9+Epi subpopulations
communicated with all newly defined T cell subpopulations,
compared to other malignant subpopulations (Figure 4E). By
analyzing the ligand-receptor pairs involved in intercellular
signaling, we observed significant differences in the

FIGURE 3
Analysis of ESCC T Cell Features Based on Glycolysis-Related Regulatory Factors. (A) Bubble plot of classical marker gene expression for T cell
subpopulations; (B) NMF clustering plot of CD8+ T cells; (C) NMF clustering plot of Th17 cells; (D) NMF clustering plot of Naïve T cells; (E) Cell
communication between various T cell subpopulations and newly defined glycolysis-mediated epithelial cells; (F) Heatmap showing the expression of
immune stimulatory factors, inhibitory factors, as well as T cell functional marker genes in CD8+, Th17, and Naïve cells; (G)Heatmap of transcription
factor activity in CD8+, Th17, and Naïve T cells.
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communication probabilities and significance between various cell
types. In the same cell type, there were more ligand-receptor pairs
with higher activity. We also identified specific ligand-receptor
complexes that regulate various immune-modulatory pathways
coordinated by different immune cell subtypes. PPIA-BSG was
the most active ligand-receptor pair. The interaction between
PPIA and BSG not only promotes tumor cell invasion as well as
metastasis but may also optimize the TME by impacting
extracellular matrix remodeling, thus creating conditions for
immune escape (Figures 4F–J).

3.5 Construction of a prognostic model
based on high glycolysis epithelial cell
subpopulation characteristic genes

To investigate the impact of glycolysis on patient prognosis, we
calculated the glycolysis scores of the IGFBP3+Epi subpopulation
with the highest glycolysis scores and used the LASSO regression
model to select prognostic feature genes. First, the TCGA-ESCA
cohort was split into training as well as testing cohorts in a 7:3 ratio.
A univariate Cox regression model was employed to analyse the

prognostic value of each IGFBP3+Epi subpopulation feature gene,
resulting in 18 prognostic-related genes (P < 0.05) for further
analysis: LAD1, ALDH3A1, DDR1, BTG2, EFNA1, IGFBP2,
PPP1R15A, TNFAIP3, ATF3, KDM6B, IER5, NFKBIZ, BIK,
DYRK2, SCML1, BBC3, PIGZ, and LY6K. Based on LASSO as
well as multivariate Cox regression analysis, 7 risk genes were
further chosen to build a risk model (Figures 5A, B). The risk
score formula is: Risk score = (−0.5240 * IGFBP2(exp)) + 0.3094 *
NFKBIZ(exp) + 0.2209 * ATF3(exp) + (−0.4890 * BIK(exp)) +
0.5311 * BTG2(exp) + 0.2400 * SCML1(exp) + (−0.1919 *
LY6K(exp)). According to the optimal cutoff point from the
survival curve, patients were split into high-risk as well a low-risk
groups for survival analysis. This research carried out univariate Cox
regression analysis on 18 genes and identified 7 hub genes with a
remarkable impact on patient prognosis (Figure 5C).

The results showed that in the training (Figure 5D), testing
(Figure 5E), and external validation GSE53624 (Figure 5F) cohorts,
the OS of the low-risk group was remarkably better than that of the
high-risk one. ROC curves indicated that the model’s risk score had
good predictive ability for 1, 3, and 5-year OS in ESCC patients
(Figures 5G–I). With the rise of risk score, the mortality rate of
ESCC patients also elevated (Figures 5J–L). To further assess the

FIGURE 4
Analysis of ESCC Smooth Muscle Cells and Tissue Stem Cell Features Based on Glycolysis-Related Regulatory Factors. (A) NMF clustering results of
SMC and MSC cells; (B) KEGG enrichment result plot; (C) Metabolic activity analysis result plot; (D) Transcription factor activity heatmap; (E) Cell
communication between various SMC, MSC cells and newly defined glycolysis-mediated epithelial cells; (F) Ligand-receptor interactions between SMC,
MSC cells and IGFBP3+Epi cells; (G) Ligand-receptor interactions between SMC, MSC cells and SPAG4+Epi cells; (H) Ligand-receptor interactions
between SMC, MSC cells and LHX9+Epi cells; (I) Ligand-receptor interactions between SMC, MSC cells and DPYSL4+Epi cells; (J) Ligand-receptor
interactions between SMC, MSC cells and TFF3+Epi cells.
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FIGURE 5
Construction of a Prognostic Model Based on Glycolysis-Related Feature Genes in the Epithelial Cell Subpopulation. (A). Univariate Cox regression
analysis of 18 genes to identify 7 hub genes with significant prognostic impact. (B). Feature gene selection using LASSO regression model. (C). Univariate
Cox forest plot showing the hazard ratios of 7 hub genes. (D–F). Kaplan-Meier survival curves for the training, test, as well as GSE53624 cohorts. (G–I).
ROC curves for the training, test, and GSE53624 cohorts. (J–L) Survival status of patients in the training, test, and GSE53624 cohorts. (M) Univariate
Cox forest plot. (N)Multivariate Cox forest plot. (O)Nomograms based on patients’ clinical characteristics and risk scores. (P)Calibration curves provided
validation of the model predictions for 1-, 3-, and 5-year survival predictions. (Q) Nomogram ROC Curve assesses the diagnostic performance of
the nomogram.
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predictive capacity of the model for ESCC patient prognosis, this
research carried out univariate and multivariate Cox regression
analyses combined with clinical data, finding that the risk score
was an independent risk factor influencing patient prognosis
(Figures 5M, N).

Based on these prognostic factors, we developed a Nomogram-
based prognostic risk model (Figure 5O). This model accurately
predicts 1-year, 3-year, and 5-year OS (Figure 5P), with
corresponding AUC values of 0.756, 0.753, and 0.705,
respectively (Figure 5Q).

3.6 Detection of the expression of proteins
encoded by the genes in ESCC

Western blot analysis revealed differential expression of target
proteins in HET-1A, KYSE30, and KYSE450 cells: ATF3 protein was
significantly upregulated in cancer cells; BIK expression was elevated

in KYSE30 and KYSE450 cancer cells; IGFBP2 expression was lower
in cancer cells compared to HET-1A cells, and LY6K expression was
reduced in cancer cells; BTG2 protein did not show significant
differences between normal and cancer cells (Figure 6).

3.7 Transcriptomic features of patients with
different risk scores

To explore the molecular mechanisms underlying the
correlation between risk scores and ESCC prognosis, this
research carried out functional enrichment analysis. In the GSEA
analysis based on HALL_MARKER, this research observed the low-
risk group was enriched in early and late estrogen response, as well
as p53 and KRAS signaling pathways (Figure 7A), while the high-
risk one was enriched in epithelial-mesenchymal transition,
inflammatory response, as well as TNF signaling pathways
(Figure 7B). GSVA analysis showed that the high-risk group

FIGURE 6
Expression of prognostic genes. The expression of NFKBIZ, ATF3, BTC2, BIK, CEBPB2, and LY6K proteins in normal esophageal epithelial cells (HET-
1A) and esophageal cancer cells (KYSE30 and KYSE450). (*P < 0.05).
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FIGURE 7
Transcriptomic Features of Patients with Various Risk Scores. (A) Ridge plot displaying HALL_MARKER enrichment in the low-risk group. (B) GSEA
analysis displaying HALL_MARKER enrichment in the high-risk group. (C) Variations in hallmark pathway activity between the high-risk and low-risk
groups as assessed via GSVA scores. (D)Correlation between risk scores and hallmark pathway activity evaluated via GSVA. (E) Kaplan-Meier survival curve
displaying the remarkable correlation between OS and IL2_STAT5 GSVA scores.
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FIGURE 8
Immune landscape between high-risk and low-risk groups. (A) Immune infiltration abundance between high-risk and low-risk groups evaluated
using eight immune infiltration assessment methods. (B) Distribution of immune suppression features between high-risk and low-risk patients. (C)
Distribution of immunotherapy biomarkers between high-risk and low-risk patients. (D) Distribution of immune suppression features between high-risk
and low-risk patients. (E) Survival curve based on CD8 T cell infiltration scores. (F) Survival curve based on helper T cell infiltration scores. (G) Boxplot
of immune checkpoint expression.
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exhibited stronger activity in pathways related to TL2_STAT5_
SIGNALING, angiogenesis, as well as IL6_JAK_STAT3_
SIGNALING, whereas the low-risk group showed stronger
activity in pathways related to ESTROGEN_RESPONSE_EARLY
as well as ESTROGEN_RESPONSE_LATE (Figure 7C). Correlation
analysis between risk scores and pathway scores further confirmed
these findings (Figure 7D), indicating that risk scores have a close
bearing on cancer-related biological processes and estrogen-
related pathways.

We found pathways positively correlated with risk scores, like
IL2_STAT5_SIGNALING, were associated with poor prognosis
(Figure 7E). These findings imply the varying prognostic
outcomes seen in the risk subgroups may be influenced by the
activation or inhibition of these pathways.

3.8 Immune landscape between high-risk
and low-risk groups

Based on eight immune infiltration evaluation methods
(CIBERSORT, ESTIMATE, quanTIseq, TIMER, IPS,
MCPCounter, xCell, EPIC), this research analysed the variations
in immune cell infiltration between high-risk and low-risk groups,
and showed the findings in a heatmap (Figure 8A). Subsequently,
through the IOBR package, we also presented the variations between
high-risk and low-risk groups in immune suppression,
immunotherapy, and immunotherapy biomarkers. The results
suggested many immune-related feature scores were higher in the
high-risk group (Figures 8B–D). For example, in the Fibroblasts
MCPcounter and Tregs_quantised groups, there was a statistically
significant difference between the high-risk and low-risk groups (P <
0.05), indicating that the high-risk group might lead to stronger
immune suppression. In the immunotherapy biomarkers feature
scores, significant differences were observed for certain markers
(e.g., T cell inflamed GEP, CD8_T_effector) between the high-risk
and low-risk groups, suggesting these markers may be associated
with group differences or immune status. Regarding immune
exclusion feature scores, most feature modules showed no
remarkable variations between the two groups. However, stronger
immune exclusion was observed in the high-risk group in the
Fibroblasts MCPcounter, EMT1, and TGFb Family Member
Receptor Li groups. To study the effect of immune cell
infiltration on OS in ESCC patients, this research spilt patients
into high and low immune infiltration groups built upon the median
immune cell infiltration score derived from CIBERSORT. We found
that low infiltration of CD8+ T cells significantly affected OS in
ESCC patients, while high infiltration of T helper cell subsets
involved in humoral immunity significantly influenced OS
(Figures 8E, F). Furthermore, immune checkpoint analysis
revealed that most immune checkpoints were expressed at higher
levels in the high-risk group (Figure 8G).

3.9 Drug sensitivity analysis of high-risk and
low-risk patients

We investigated the sensitivity of ESCC patients in different risk
groups to drugs such as Afatinib, Lapatinib, Erlotinib, Ibrutinib,

Navitoclax, and Rapamycin. The findings suggested the high-risk
group had remarkably higher IC50 values for Afatinib, Lapatinib,
Erlotinib, as well as Ibrutinib compared to the low-risk one (P <
0.05). In contrast, the IC50 values for Navitoclax and Rapamycin
were remarkably lower in the high-risk one compared to the low-risk
one (P < 0.05). This indicates high-risk patients are more sensitive to
Navitoclax as well as Rapamycin, while low-risk ones are more
sensitive to Afatinib, Lapatinib, Erlotinib, and Ibrutinib (Figure 9).

4 Discussion

ESCC remains a remarkable global health challenge, especially
in advanced stages, where treatment options are limited and
prognosis is poor. Current therapeutic strategies often fail to fully
consider the metabolic heterogeneity of tumors, especially the
crucial role of glycolysis in tumor progression. This study
highlights the importance of integrating metabolic profiling,
particularly glycolytic activity, into clinical decision-making for
ESCC, as it may help improve patient outcomes.

This study is based on single-cell transcriptomics from samples
of 8 ESCC and 1 adjacent normal tissue, utilizing single-cell
sequencing to analyze the glycolysis-related cell populations in
ESCC. The results show that the glycolysis score in tumor tissues
is remarkably higher than that in adjacent normal tissues. Within
the tumor tissues, epithelial cells, monocytes, smooth muscle cells,
and tissue stem cells exhibit higher glycolysis scores, with epithelial
cells showing the most prominent increase, significantly higher than
other cell types. The pathogenesis of ESCC typically involves a
progression from normal epithelium to epithelial dysplasia,
ultimately developing into invasive cancer. Based on the
thickness of the atypical squamous cell replacement in the
epithelium, epithelial dysplasia can be categorized into low-grade
intraepithelial neoplasia as well as high-grade intraepithelial
neoplasia (Nagtegaal et al., 2020). When the lesion further
invades the lamina propria, it progresses into invasive cancer
(Shimizu et al., 2009). Furthermore, the development of ESCC is
associated with various risk factors. Garavello’s study found that in
Italy and Switzerland, after adjusting for smoking and alcohol
consumption, individuals with a family history of esophageal
cancer among first-degree relatives had a 3.2 times higher
likelihood of developing the disease compared to the general
population (Garavello et al., 2005). Research has shown that
long-term exposure of non-malignant esophageal epithelial cells
to mainstream smoke extract or side-stream smoke extract induces
phenotypic changes, gradually acquiring tumorigenic characteristics
(Kim et al., 2010). Stromal fibroblasts is also crucial in the
occurrence as well as progression of ESCC. Fibroblasts are the
main components of the tissue stroma and have a key part in
maintaining the balance of normal epithelial cells (Kalluri, 2016).
Yamei Chen et al. carried out scRNA-seq and spatial transcriptomics
on 79 samples from 29 ESCC patients, including tumor and adjacent
normal (NOR), LGIN, and HGIN samples. They found ANXA1 is
the ligand for fibroblast formyl peptide receptor 2 (FPR2), which
helps maintain the balance of fibroblasts (Chen et al., 2023). Loss of
ANXA1 causes uncontrolled transformation of normal fibroblasts
into cancer-associated fibroblasts, with TGF-β secreted bymalignant
epithelial cells accelerating this transformation process. This
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mechanism suggests that esophageal malignant epithelial cells not
only enhance their proliferative capacity through their own
glycolytic activity but also promote cancer progression through
interactions with fibroblasts. Therefore, the glycolytic activity of
epithelial cells may be one of the key driving forces in the
development of ESCC, providing new insights for further
research and treatment.

To further investigate the prognostic role of glycolysis in ESCC,
this study identified seven risk genes based on the characteristic
genes of the high-glycolysis epithelial cell subpopulation and
constructed a risk score model. The formula for the model is:
Risk score = (−0.5240 * IGFBP2(exp))+ 0.3094 * NFKBIZ(exp) +
0.2209 * ATF3(exp) + (−0.4890 * BIK(exp)) + 0.5311 * BTG2(exp) +
0.2400 * SCML1(exp) + (−0.1919 * LY6K(exp)). The predictive
results of this model showed patients in the high-risk group had
remarkably poorer OS compared to those in the low-risk one, and
the model showed strong predictive performance across multiple
cohorts. With the rise in the risk score, the mortality rate of ESCC
patients also elevated.

In current clinical practice, prognosis evaluation of ESCC
primarily depends on TNM staging, which has limitations in
accurately reflecting tumor metabolic heterogeneity and
individual patient outcomes. Our study constructed a prognostic
Nomogram integrating TNM staging, age, and glycolysis-related
molecular features, significantly improving the precision of

individualized survival prediction. Time-dependent ROC curves
demonstrated that the Nomogram model exhibited robust
predictive performance for 1-year, 3-year, and 5-year survival
outcomes. Calibration curves further indicated strong
concordance between predicted and observed survival rates,
validating the model’s reliability. This comprehensive model
enables clinicians to more accurately assess patient-specific
survival risk, facilitating tailored therapeutic strategies and
optimized clinical decision-making in ESCC management.

Additionally, Gene Set Variation Analysis (GSVA) revealed the
high-risk group displayed stronger activation of pathways such as
IL2_STAT5 signaling, angiogenesis, and IL6_JAK_STAT3 signaling,
while the low-risk one suggested increased activation of pathways
like estrogen response early and late. These findings suggest a close
connection between the glycolysis risk score and TME. Further
analysis in this study revealed differential glycolytic characteristics
across various cell subpopulations. Glycolysis provides critical
energy for the rapid proliferation of tumor cells and generates
key metabolic intermediates, which are essential for the synthesis
of nucleotides, lipids, as well as amino acids. These metabolic
products, such as lactate, can accumulate and alter the tumor
microenvironment, contributing to immune evasion and invasive
behavior of the tumor. Furthermore, the accumulation of glycolytic
products, such as lactate, can alter the tumor microenvironment,
thereby promoting immune evasion and invasive behaviors of the

FIGURE 9
Drug Sensitivity Analysis Between High- and Low-Risk Patient Groups. The IC50 values of Afatinib, Lapatinib, Erlotinib, Ibrutinib, Navitoclax, and
Rapamycin in high-risk and low-risk patient groups.
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tumor. Through the application of Non-negative Matrix
Factorization (NMF) dimensionality reduction and KEGG
pathway enrichment analysis, we identified five malignant
epithelial cell subpopulations associated with glycolysis. Among
these subpopulations, IGFBP3+Epi and LHX9+Epi cells exhibited
higher glycolytic and metabolic activities. KEGG enrichment
analysis further revealed the primary pathways in these
subpopulations are closely associated with the ribosome,
lysosome, and p53 signaling pathways. In the T-cell
subpopulations, the transcription factor activity in CXCR4+CD8,
DDIT4+Naïve, and CXCR4+Th17 subgroups was remarkably
higher than in other cell groups. Additionally, the metabolic
activity in smooth muscle cells and tissue stem cells, specifically
in the IER3+SMC and ME1+MSC subpopulations, was also notably
elevated. These findings deliver new insights into the part glycolysis
plays in different cell subpopulations within esophageal squamous
cell carcinoma and offer a strong theoretical foundation for future
targeted therapeutic strategies. Furthermore, the accumulation of
glycolytic products, such as lactate, can alter the tumor
microenvironment (Chen et al., 2022; Lin et al., 2024), thereby
promoting immune evasion and invasive behaviors of the tumor
(Reuss et al., 2021; Lin et al., 2023; Qian et al., 2021). Through the
application of Non-negative Matrix Factorization (NMF)
dimensionality reduction and KEGG pathway enrichment
analysis, we identified five malignant epithelial cell
subpopulations associated with glycolysis. Among these
subpopulations, IGFBP3+Epi and LHX9+Epi cells exhibited
higher glycolytic and metabolic activities. KEGG enrichment
analysis further showed the primary pathways in these
subpopulations are closely associated with the ribosome,
lysosome, and p53 signaling pathways. In the T-cell
subpopulations, the transcription factor activity in CXCR4+CD8,
DDIT4+Naïve, and CXCR4+Th17 subgroups was remarkably
higher than in other cell groups. Additionally, the metabolic
activity in smooth muscle cells and tissue stem cells, specifically
in the IER3+SMC and ME1+MSC subpopulations, was also notably
elevated. These findings provide new insights into the role of
glycolysis in different cell subpopulations within esophageal
squamous cell carcinoma and offer a strong theoretical
foundation for future targeted therapeutic strategies.

In recent years, immune cells within the TME have been
recognized as playing a crucial part in tumor biology and the
sensitivity to anti-cancer therapies. Immune checkpoint blockade-
based immunotherapy has emerged as a promising new adjuvant
strategy for the treatment of esophageal squamous cell carcinoma
(ESCC) (Liu et al., 2023). In certain cancer types, tumor cells evade
immune detection by binding to the PD-L1 ligand, thereby
inhibiting the activation of CD8+ T cells, which is a typical
immune evasion mechanism. Furthermore, when CD8+ T cells
enter a state of exhaustion, tumor malignancy progression is also
aggravated (Iwai et al., 2002). This study further reveals that low
infiltration of CD8+ T cells significantly impacts the OS of ESCC
patients, while high infiltration of helper T cell subpopulations
involved in humoral immune responses (such as Th1 and
Th17 cells) also significantly affects patient prognosis. CD8+
T cells, as the main effector T cells, have a key part in anti-
tumor immunity. However, the tumor microenvironment (TME)
of ESCC often exhibits an immunosuppressive state, primarily due

to the extensive infiltration of exhausted CD8+ T cells (Dinh et al.,
2021; Chen et al., 2021). These exhausted CD8+ T cells are critical in
tumor immune evasion and progression, leading to the failure of
immune surveillance and allowing the tumor to escape immune
system clearance. Therefore, a glycolysis-related immune risk score
not only reflects the metabolic status of ESCC patients but also
reveals the state of immune cells in their TME, further guiding the
selection of clinical immunotherapies. By optimizing
immunotherapy strategies, particularly through the combination
of immune checkpoint inhibitors and glycolysis modulation
therapies, it is hoped that the prognosis and survival rates of
ESCC patients can be improved.

Using Western blot (WB) technology, this study validated the
expression of the 7 key genes in the risk model in ESCC tissues. It
was found that ATF3, and BIK were significantly overexpressed in
tumor tissues, suggesting that these proteins may be involved in
tumorigenesis and progression, particularly related to tumor cell
proliferation, apoptosis inhibition, or microenvironment regulation.
ATF3, a member of the ATF/CREB transcription factor family, is an
important transcription factor induced by endoplasmic reticulum
stress (ERS) responses. It is also involved in glucose and lipid
metabolism and have a key part in tumor initiation and
progression. Recent studies show that overexpression of
ATF3 can counteract the effects of bortezomib on ESCC cell
proliferation, apoptosis, as well as metabolic reprogramming.
And ATF3 specifically binds to lactate dehydrogenase A (LDHA),
inhibiting LDHA-mediated metabolic reprogramming and
enhancing cellular response to bortezomib treatment (Chen et al.,
2024). RT-qPCR analysis further demonstrated that ATF3 is highly
expressed in ESCC cell lines, and knockdown of ATF3 significantly
inhibits the migration capacity of TE-1 cells (Yang J. et al., 2024).
Furthermore, ATF3, as a tumor suppressor gene, is underexpressed
in ESCC tissues and negatively correlates with tumor cell
proliferation, migration, and invasion (Xie et al., 2014). Its
underlying mechanisms involve suppressing MMP-2 expression
via the MDM2-mediated degradation pathway, reducing tumor
vascular invasion, and enhancing cisplatin chemotherapy
sensitivity. BIK is a pro-apoptotic protein belonging to the Bcl-2
family and plays an important role in regulating the mitochondrial-
mediated intrinsic apoptosis pathway (Mebratu et al., 2023).
Although studies on BIK in ESCC are limited, one study
reported that a 16-gene signature, including BIK, generated using
the Lasso model, could accurately predict the prognosis of ESCC
(Ma and Luo, 2022). Additionally, LY6K and IGFBP2 have been
implicated in ESCC progression. LY6K, a cancer-testis antigen,
undergoes epigenetic activation in ESCC tissues and is proven to
facilitate immune evasion (Guo et al., 2022). A peptide vaccine
derived from LY6K (LY6K-177) exhibited favorable
immunogenicity in a Phase I clinical trial, inducing CD8+ T cell-
specific cytotoxicity against LY6K-expressing ESCC cells (Ishikawa
et al., 2014). LY6K may represent a novel target for ESCC
immunotherapy, particularly in combination with immune
checkpoint inhibitors (e.g., PD-1/PD-L1 inhibitors). IGFBP2 has
also attracted attention as a prognostic marker in ESCC. Elevated
serum IGFBP2 levels correlate with poor prognosis in ESCC patients
(Chengyun et al., 2022). IGFBP2 may promote tumor progression
via the insulin-like growth factor (IGF) signaling pathway, although
the precise molecular mechanisms warrant further exploration.
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Collectively, ATF3, BIK, LY6K, and IGFBP2 not only serve as key
drivers in ESCC initiation and progression but also represent
promising biomarkers and therapeutic targets. Their roles in
tumor metabolism, apoptosis regulation, immune evasion, and
treatment response merit further investigation. Future
personalized therapeutic strategies targeting these molecules
could potentially improve the prognosis of ESCC patients.

Finally, through drug sensitivity analysis, the research found high-
risk group patients were more sensitive to chemotherapy drugs like
Navitoclax as well as Rapamycin, while low-risk one patients
displayed higher sensitivity to Afatinib, Lapatinib, Erlotinib, and
Ibrutinib. This finding suggests that the glycolysis-related risk score
not only predicts patient prognosis but may also deliver guidance for
developing personalized treatment plans. Furthermore, this result
indicates remarkable variations in chemotherapy drug sensitivity
between different risk groups, which may be closely related to
their molecular characteristics and metabolic states. In the high-
risk group, glycolysis levels are typically elevated, a metabolic state
that may promote the expression of anti-apoptotic proteins like Bcl-2.
Navitoclax, by inhibiting these anti-apoptotic proteins (Harrison et al.,
2022), can disrupt the metabolic advantage and survival dependency
of tumor cells, significantly enhancing its cytotoxic effect on cancer
cells. Rapamycin, an mTOR signaling pathway inhibitor, and other
rapalogs can directly target precancerous cells and delay organismal
aging, thus slowing cancer development (Blagosklonny, 2023). In the
high-risk group, glycolysis levels are abnormally elevated, and mTOR
signaling is a key regulatory factor in glycolytic metabolism. By
inhibiting mTOR, Rapamycin can effectively block tumor cell
dependence on glycolysis in the high-risk group, inducing
metabolic inhibition as well as cell death. This research
hypothesize, when used in combination, these two drugs may have
a synergistic effect, especially in high-risk patients with aberrantly
active glycolysis and enhanced anti-apoptotic signaling, thereby
significantly improving treatment outcomes. On the other hand,
the increased sensitivity of low-risk group patients to Afatinib,
Lapatinib, Erlotinib, and Ibrutinib may be associated with the
inhibition of the EGFR and BTK signaling pathways by these
drugs. These results not only confirm the important value of
glycolysis-related risk scores in predicting patient prognosis but
also provide potential reference points for personalized treatment
of patients in various risk groups. In the future, further clinical studies
can verify the efficacy of these drugs in patients of different risk groups
and optimize treatment strategies in combination with risk scores,
thereby guiding more precise stratified treatment for ESCC patients
and improving therapeutic outcomes.

Glycolysis inhibition has emerged as a promising therapeutic
approach in cancer treatment. Studies have demonstrated that the
combined inhibition of glycolysis and mitochondrial oxidative
phosphorylation can trigger catastrophic energy depletion,
thereby significantly suppressing tumor progression (Dong et al.,
2022). As a pivotal pathway in cellular energy metabolism, glycolysis
is closely associated with cancer cell drug sensitivity. Beyond serving
as an energy source, glycolysis generates crucial metabolic
intermediates, including lactate, ATP, NADH, and 2-
phosphoglycerate. These intermediates modulate several
intracellular signaling pathways, such as HIF-1α, mTOR, and
PI3K/Akt, ultimately influencing tumor cell responses to
chemotherapy and targeted therapies. Consequently, glycolysis

plays a crucial role in regulating drug resistance mechanisms
(Hayashi et al., 2019; Marcucci and Rumio, 2021; Zhou et al.,
2012). In our glycolysis-associated risk model, the seven signature
genes influence drug sensitivity through distinct signaling pathways.
For instance, DDR1 is involved in the regulation of the Raf/MEK/
ERK and PI3K/Akt pathways, thereby enhancing cellular sensitivity
to chemotherapeutic agents (Chappell et al., 2020). Similarly,
ATF3 is implicated in ferroptosis induction via inhibition of the
Nrf2/Keap1/xCT pathway, which enhances cisplatin sensitivity in
gastric cancer cells (Fu et al., 2021). Moreover, the metabolic state of
the tumor microenvironment (TME), encompassing immune cells,
stromal components, and vasculature, can affect therapeutic efficacy
through glycolytic reprogramming (Liu et al., 2024). Thus, glycolysis
not only provides energy and biosynthetic intermediates to support
tumor cell proliferation but also exerts multifaceted effects on drug
response by modulating signaling pathways, altering drug target
expression, and reshaping the TME. Targeting glycolytic pathways
holds significant potential as a strategy to enhance the efficacy of
anticancer therapies. Moving forward, we aim to further investigate
the mechanistic differences in chemotherapy sensitivity between
different risk groups stratified by our model, ultimately facilitating
the development of more precise, individualized treatment regimens
for clinical application.

5 Conclusion

In conclusion, this research reveals the remarkable role of
glycolysis-related cell subtypes in ESCC and establishes a
glycolysis-related risk score model, providing a deep analysis of
its substantial impact on patient prognosis. These findings not only
offer new directions for future therapeutic interventions but also
deepen our understanding of tumor metabolism and its
microenvironment. However, there are certain limitations to this
research, such as the need for further validation of these results in
larger patient cohorts and a more detailed exploration of the specific
functional mechanisms underlying these metabolic alterations.
Further mechanistic studies focusing on the specific molecules
incorporated in the model are needed to clarify their causal
relationships with ESCC. Additionally, in vitro drug response
experiments are warranted to elucidate the molecular basis
underlying drug sensitivity differences between risk groups. The
results of this research deliver a novel supplement to the existing
ESCC research framework and lay the foundation for developing
innovative therapeutic strategies targeting the metabolic
vulnerabilities of the tumor microenvironment. Looking ahead,
integrating single-cell transcriptomic data with clinical outcomes
will not only optimize the selection of therapeutic targets but also
open new pathways for improving the treatment and management
of ESCC patients, while further advancing the development of
precision medicine.
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