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Introduction: Sarcopenia is a condition characterized by the loss of muscle fibers
and excessive deposition of extracellular matrix proteins. The interplay between
muscle atrophy and fibrosis is a central feature of sarcopenia. While the
mechanisms underlying skeletal muscle aging and fibrosis remain
incompletely understood, cellular senescence has emerged as a key
contributor. This study investigates the role of D-galactose (D-gal) in inducing
fibroblasts senescence and skeletal muscle fibrosis, and aims to find the key
regulator of the process to serve as a therapeutical target.

Methods: To discover the role of D-gal in inducing cellular senescence and
fibrosis, the senescence markers and the expression of fibrosis-related proteins
were assessed after introducing D-gal among fibroblasts, and muscle strength
and mass. The severity of muscle atrophy and fibrosis were also verified by using
H&E staining and Masson trichrome staining after D-gal treatment via
subcutaneous injection among mice. Subsequently, mRNA sequencing (RNA-
seq) was performed and the differential expressed genes were identified between
under D-gal or control treatment, to discover the key regulator of D-GAL-driven
fibroblasts senescence and fibrosis. The role of the key regulator IGFBP5 were
then validated in D-GAL treated IGFBP5-knockdown fibroblasts in vitro by
analyzing the level of senescence and fibrosis-related markers. And the results
were further confirmed in vivo in IGFBP5-knockdown SAMP8 mice with
histological examinations.

Results: D-gal treatment effectively induced cellular senescence and fibrosis in
fibroblasts, as well as skeletalmuscle atrophy, fibrosis and loss inmusclemass and
function in mice. IGFBP5 was identified as a key regulator of D-GAL induced
senescence and fibrosis among fibroblasts using RNA-seq. And further validation
tests showed that IGFBP5-knockdown could alleviate D-GAL-induced fibroblast
cellular senescence and fibrosis, as well as the severity of muscle atrophy and
fibrosis in SAMP8 mice.

Discussion: IGFBP5 emerging as a key regulator of D-GAL-induced fibroblast
cellular senescence and fibrosis. The findings provide new insights into the
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molecular mechanisms underlying age-related skeletal muscle fibrosis and
highlight IGFBP5 as a potential therapeutic target. Further research is needed to
validate these findings and explore related clinical applications.
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skeletal muscle fibroblasts, skeletal muscle fibrosis, skeletal muscle aging, fibrosis,
sarcopenia

Introduction

Sarcopenia, characterized by the loss of muscle mass and
strength, and fibrosis, is a common health issues among the
elderly, significantly impacting their mobility and overall health
(Di Iorio et al., 2006; Tournadre et al., 2019). With the advent of the
aging society, these concerns have garnered widespread attention.
Skeletal muscle plays a crucial role in movement, metabolic balance,
and heat generation (Argilés et al., 2016). Nevertheless, a range of
abnormal health states, including long-term illnesses, malignancies,
protracted infections, and the aging process, have the potential to
upset the equilibrium between the synthesis and breakdown of
muscle proteins. This disruption can subsequently result in the
occurrence of muscle atrophy and fibrosis (Kirkendall and Garrett,
1998; Argilés et al., 2016). In the context of sarcopenia, fibrosis poses
substantial detrimental effects on patients by escalating muscle
stiffness and curtailing their physical activity levels (Argilés et al.,
2016; Antar et al., 2023). The excessive accumulation of fibrous
tissue can also interfere with the communication between muscle
satellite cells and the surrounding cellular milieu, leading to a decline
in their myogenic capabilities (Murphy et al., 2011; Serrano et al.,
2011; Antar et al., 2023). Therefore, unveiling the mechanisms of
fibrosis in aged muscle is fundamental for skeletal muscle health
(Serrano et al., 2011; Liu et al., 2018).

Skeletal muscle fibroblasts and Fibro-Adipogenic Progenitors
(FAPs) are both important for muscle repair and maintenance but
have distinct roles(Molina et al., 2021; Chen et al., 2022; Chapman
et al., 2016). Skeletal muscle fibroblasts primarily produce and
remodel the extracellular matrix (ECM), supporting tissue
structure and wound healing(Chapman et al., 2016; DeLeon-
Pennell et al., 2020). In contrast, FAPs are specialized cells within
skeletal muscle that aid regeneration by differentiating into
adipocytes and fibroblasts in response to injury or
disease(Molina, Fabre, and Dumont, 2021). FAPs secrete factors
like IL-6 and WNT, which promote muscle repair and create a
supportive environment for muscle stem cells (MuSCs) (Madaro
et al., 2018; Riparini et al., 2022; Parker and Hamrick, 2021). Skeletal
muscle fibroblasts maintain ECM and provide structural
support(Gillies and Lieber, 2011), whereas FAPs have a dual role:
they aid regeneration by supporting MuSCs but can also contribute
to fibrosis or fat buildup in diseases like Duchenne Muscular
Dystrophy (DMD) (Chen et al., 2022; Parker and Hamrick,
2021). Additionally, FAPs have broader differentiation potential,
allowing them to become adipocytes or fibroblasts, influencing the
balance between repair and fibrosis(Judson et al., 2017; Molina et al.,
2021). Both cells contribute to muscle health and repair.

Regarding the various pathways involved in muscle fibrosis,
oxidative stress and inflammation are significant for muscle atrophy
and extracellular matrix (ECM) deposition, capable of activating

numerous signal pathways, including the ubiquitin-proteasome
system, autophagy-lysosome system, and mTOR (Nishikawa
et al., 2021; Gambini and Stromsnes, 2022; Antar et al., 2023).
The IGF (insulin-like growth factor) signaling pathway plays a
crucial role in skeletal muscle fibrosis and sarcopenia
(Clemmons, 2009; Ye et al., 2013; Frost and Lang, 2012; Forbes,
Blyth, and Wit, 2020). Among them, IGF-1 is a key factor in this
pathway (Hayashi et al., 2004). IGF-1 inhibits inflammation through
the Ras/PI3K/IKK/NF-κB pathway, reducing pro-inflammatory
cytokine production and promoting tissue repair 6. Chronic
inflammation often leads to tissue atrophy due to prolonged
cytokine exposure (e.g., TNF-α, IL-6), which disrupts cellular
homeostasis. By suppressing NF-κB activation, IGF-1 mitigates
inflammatory damage, indirectly preventing muscle or atrophy
caused by persistent inflammation (Zhang et al., 2024; Feng
et al., 2022; Stitt et al., 2004). Besides, IGF promotes muscle cell
growth and differentiation by binding to the IGF-1 receptor and
activating the downstream PI3K/Akt/mTOR signaling pathway,
thus combating muscle atrophy (Yoshida and Delafontaine,
2020). There may also be an interaction between IGF-1 and
TGF-β1, which together influence the process of skeletal muscle
fibrosis (Danielpour and Song, 2006; Kjaer et al., 2006).

Insulin-like growth factor binding proteins (IGFBPs) are a
group of proteins that bind to insulin-like growth factors (IGFs),
finely regulating their biological activity, distribution, and mode of
action (Kelley et al., 1996; Baxter, 2023). The IGFBP family includes
at least seven different proteins (IGFBP-1 to IGFBP-7), which share
similarities in structure and function but also possess some unique
characteristics and roles (Kelley et al., 1996; Hwa et al., 1999; Allard
and Duan, 2018). IGF binding protein 5 (IGFBP5), as a regulator of
IGF-1, can influence the biological activity of IGF-1 and,
consequently, the regenerative capacity of muscles (Hwa et al.,
1999; Beattie et al., 2006). The biological functions of
IGFBP5 remain a subject of debate in scientific research (Duan
and Allard, 2020;Waters et al., 2022). Certain investigations propose
that IGFBP5 could trigger senescence via the STAT3 pathway or
pathways associated with P53. In contrast, other studies observe an
increase in IGFBP5 levels in cells that have undergone senescence
due to radiation or kinase inhibitor treatment (Alessio et al., 2024).
Additionally, some reports associate reduced IGFBP5 expression
with senescence (Nojima et al., 2022). The varied and sometimes
conflicting biological functions ascribed to IGFBP5 might be due to
its participation in multiple signaling pathways (Duan and Allard,
2020). However, the role of IGFBP5 in sarcopenia remains to be
elucidated.

In the current study, a series of experiments were conducted
in vitro and in vivo to undermine the mechanisms of skeletal muscle
fibrosis under sarcopenic condition (Park et al., 2017; Lim and
Frontera, 2023; Nojima et al., 2022). Relying on sequencing and
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verifications, IGFBP5 was noticed to be significantly upregulated in
aged fibroblasts. Subsequently, we found that reducing the
expression of IGFBP5 partially alleviated fibrosis in sarcopenic
muscle by moderately potentiating the effects of IGF-1, providing
clue to the development of novel anti-fibrosis therapies in
sarcopenia.

Materials and methods

Cell culture and induction

Mouse skeletal muscle fibroblast cells (NOR-10) were purchased
from the Shanghai Zhong Qiao Xin Zhou Biotechnology Co., Cells
were cultured in Dulbecco’s modified Eagle medium supplemented
with 10% fetal bovine serum and 1% penicillin/streptomycin. Cells
were maintained in a humidified incubator at 37°C and 5%
CO2 atmosphere. FAPs were isolated from skeletal muscle tissues
according to the previous study and cultured inDMEMsupplemented
with 10% FBS, 1% penicillin-streptomycin, and 1% L-glutamine
(Kang et al., 2024). For the induction of senescence from fibroblast
and FAPs, cells were incubated in a D-gal concentration of 20 mg/mL
for 3 days, while the negative control (NC) group was treated with an
equal amount of PBS.

siRNA structure and design and transfection

Small interfering RNA (siRNA) molecules were designed to
specifically target the mRNA of the gene, IGFBP5, to induce
RNA interference (RNAi) and achieve gene silencing.
The sequences of the siRNA were designed based on the
mRNA sequence of IGFBP5 (GenBank Accession No. NM_
010518). Cells were seeded in 24-well plates. When cells
reached 30%–50% confluence, siRNA was transfected using
Lipofectamine 2000. siRNA and Lipofectamine 2000 were
diluted in Opti-MEM I, mixed, and incubated for 20 min at
room temperature. The complex was added to the cells,
incubated at 37°C in 5% CO2, and after 4–6 h, replaced with
complete medium containing 10% FBS. Cells were harvested
48 h later for analysis.

Senescence-associated β-galactosidase(SA-
β-gal) staining

The protocol was consistent with the previous study (Shahini
et al., 2021), that n = 3 biological replicates were used. Digital camera
was used to capture images of the stained cells. ImageJ (Version
1.54 m) was used to count the number of blue-stained senescent cells
and the total number of cells in each image.

Transcriptome sequencing (RNA
sequencing) and bioinformatic analysis

Raw data was obtained with Feature Extraction software
10.7 and normalized (GSE277119). For fibroblasts induced by

D-gal and control group samples (n = 3 in each group),
sequencing libraries were generated using NEBNext®

Multiplex Small RNA Library Prep Set for Illumina® (NEB,
USA). Raw sequencing reads were processed using FastQC
(version 0.11.9) to assess the quality of the sequencing data.
Low-quality reads (Phred score <20) were trimmed using
Trimmomatic (version 0.39). High-quality reads were
retained for further analysis. Genes were considered
differentially expressed if they met the following criteria: an
adjusted p-value (FDR) < 0.05 and a log2 fold change (log2FC) ≥
1 or ≤ −1. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia
of Genes and Genomes) pathway enrichment analysis were
performed as the protocol according to the previous study
(Sun et al., 2018).

Animals

Healthy male C57BL/6 mice, 10 in total, 6–8 weeks old, with
body weights ranging from 20 to 24 g, purchased from Cyagen
Biosciences. Mice was randomly divided into experimental and
control groups (n = 5), with the experimental group mice
receiving D-gal via subcutaneous injection at a dose of
200 mg/kg/d for 8 consecutive weeks. The control group is
injected with an equivalent amount of normal saline. The
SAMP8 (senescence-accelerated mouse-prone 8) model was
chosen for its accelerated aging phenotype, which mimics
age-related fibrogenic processes in skeletal muscle. SAMR1
(senescence-accelerated mouse-resistant 1) was used as a
control. Healthy male SAMP8, 10 in total, and SAMR1, 5 in
total, 24 weeks old, with body weights ranging from 42 to 45 g,
purchased from Hangzhou Ziyuan Experimental Anmial
Technology Co. Mice was randomly divided into
experimental and control groups (n = 5), with the
experimental group mice receiving siRNA dissolved in
normal saline via tail vein injection at a dose of 100 umol/ml
twice a week for 4 consecutive weeks. The control group and the
SAMR1 group are injected with an equivalent amount of normal
saline. The mice were housed separately, and had sufficient
space to meet the growth and behavioral needs of the animals,
provided with feed and distilled water. Bedding was kept clean
with good air circulation. 1 day after the last injection, mice were
placed sacrificed with carbon dioxide,and the CO2 flow was 30%
vessel volume per minute to ensure that the animal gradually
became consciousness and eventually died before reaching a
concentration that could cause pain. The lower limbs of the
mouse were carefully amputated, and the muscles
(gastrocnemius, tibialis anterior, quadriceps) were dissected
away from the bone and surrounding tissues. Department of
Shanghai Chedun Experimental Animal Ethics Committee
provided full approval for this research (AD2024092).

Western blot

Western blot (WB) was performed following the procedures in a
previous publication(n = 3) (Zhang et al., 2023), with primary
antibodies identified by the following catalog numbers:
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P16(10883-1-AP), P53(10442-1-AP), IGFBP5(55205-1-AP), COL-
1(14695-1-AP), α-SMA(14395-1-AP).

PCR

The PCR was performed according to the protocols established
in a previous study (Mollica, 2010).

HE, MASSON and immunofluorescence
staining

All staining protocols were adhered to as described in
previous studies(n = 3) (Wang et al., 2017; Van De Vlekkert
et al., 2020; Esper et al., 2023), with primary antibodies identified
by the following catalog numbers: IGFBP5(55205-1-AP), α-
SMA(14395-1-AP), IGF-1(28530-1-AP), TGF-β(26155-1-AP).
Fluorescence intensity was measured using a fluorescence
microscope and normalized to control.

Statistical analysis

All data are presented as mean ± standard deviation (SD).
GraphPad Prism 9.4.1 software (GraphPad, CA, USA) was used
for statistical analysis and image construction. For comparisons
between two groups, Student’s t-test and Paired Samples t-test was
used. For comparisons among multiple groups, one-way ANOVA
was employed, followed by post hoc Tukey’s test for pairwise
comparisons. All statistical tests were two-tailed, and p-values
less than 0.05 were considered statistically significant.

Results

D-gal-induced skeletal muscle fibrosis
characteristics

D-gal is a chemical that commonly induces cellular senescence
(Azman and Zakaria, 2019). It leads to mitochondrial damage and a
decline in energy metabolism, which are associated with aging

FIGURE 1
(A) SA-β-gal staining of NOR-10 (CONTROL vs. D-GAL) and the statistical analysis (B) Western blot of senescence markers (P16, P53) and the
statistical analysis (C) Western blot of fibrosis-related markers (α-SMA, COL-1) and the statistical analysis (compared to control group, *p < 0.05, **p <
0.01, ***p < 0.001).
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(Parameshwaran et al., 2010). The first, NOR-10 fibroblasts were
treated with D-gal, resulting in significant increases in the protein
levels of senescence markers p16 and p53, and SA-β-gal staining
confirmed cellular aging (Figures 1A, B). This confirms the
successful establishment of an aging model in mouse skeletal
muscle fibroblasts post D-gal induction. Western blot of fibrosis-
related markers (α-SMA, COL-1) were then detected (Figure 1C).
Not surprisingly, a significant elevation was observed after
D-gal induction.

According to the research methods in previous articles, D-gal is
also widely used to induce skeletal muscle aging (Tian et al., 2022).
After 8 weeks of D-gal injection, comparisons were made in terms of
body weight, muscle strength, and the weight of lower limb muscles
(gastrocnemius, tibialis anterior, quadriceps) and their percentage of
the body weight (Figure 2A). The results demonstrated that the
D-gal induced group had a significant decrease in muscle strength
and slight decline in the weight of individual lower limbmuscles. HE
and Masson showed a significant reduction in fiber cross-sectional

area with, on the other hand, a noticeable increase in ECM in the
D-gal induced group (Figures 2B, C).

Identifying IGFBP5 in D-gal-induced skeletal
muscle sequencing analysis

To explore the mechanisms underlying the fibrosis of skeletal
muscle during its aging process, we performed sequencing on
skeletal muscle fibroblasts that had been induced to aging.
Compared to the sequencing results of the control group, there
were significant differences in mRNA expression (Figures 3A, B).
Enrichment analysis was conducted using Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and
pathways related to skeletal muscle fibrosis were identified as being
of particular interest in cellular processes, regulation of biological
processes, and metabolism, such as transporter activity, translation
regulator activity, ECM-receptor interactions and cell growth and

FIGURE 2
(A) Bodyweight,muscle strength, and theweight of lower limb skeletal muscles (gastrocnemius, tibialis anterior, quadriceps) and their percentage of
the body weight of C57BL/6 mice(CONTROL vs. D-GAL) (B) The HE and Masson staining of limb skeletal muscle(CONTROL vs. D-GAL) (C) the statistical
analysis of, myofiber cross sectional area (CSA) and collagen volume fraction (CVF) (compared to control group, *p < 0.05, **p < 0.01, ***p < 0.001, **** p
< 0.0001).
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death (Figures 3C, D). Differential gene expression was selected by
data processing, including both upregulated and downregulated
genes (Supplementary Figures 1A–D). By further analyzing the
gene enrichment results from KEGG and GO, and conducting a
search and study of relevant literature and currently published
research articles, the IGFBP5 gene has been identified.
IGFBP5 was identified as a key candidate gene of differentially
expressed genes (DEGs) and the expression of it was significantly
upregulated compared to controls (log2 fold change > 2, p < 0.01).

IGFBP5 is highly expressed in the
senescence

The protein level in cells induced by D-gal of insulin-like growth
factor binding protein 5 (IGFBP5) has also exhibited a noticeable
elevation, suggesting its potential role in the fibrotic process
(Supplementary Figure 2). Additionally, we performed PCR
validation using FAPs cells. In FAPs induced by D-gal, the markers
of senescence, fibrosis, and adipogenesis were all increased, along with
an elevation in IGFBP5 (Supplementary Figure 3). This indicates that
within the skeletal muscle aging model, the skeletal muscle not only
shows characteristics of fibrosis but also an upregulation in the

expression of IGFBP5, aligning with the sequencing results.
Immunofluorescence staining in the D-gal-induced aging animal
model has revealed a significant increase in the expression of α-
SMA. Furthermore, IGFBP5 has shown a more pronounced and
widespread distribution in skeletal muscle compared to the control
group, indicating a possible association between IGFBP5 expression
and the aging process in skeletal muscle (Supplementary Figure 4).
These findings suggest that the D-gal-induced agingmodel is associated
with a notable increase in skeletal muscle fibrosis and a high expression
of IGFBP5, which may play a role in the fibrotic response to aging.

Knockout of IGFBP5 alleviates fibrosis in the
aging model

To investigate the specific mechanisms of action of IGFBP5 at the
cellular level, siRNA and plasmids were selected (Figures 4A, B). In
NOR-10 cells induced byD-gal, protein level analysis revealed that the
fibrosis level in fibroblasts decreased after the knockout of IGFBP5
(Figure 4C). Additionally, the senescence of cells with
IGFBP5 knockout was significantly improved (Figure 4D).
Moreover, SAMP8 mice were selected for the study. 24-week-old
mice was chosen for the experiment, administering siRNA via tail vein

FIGURE 3
(A) The heatmap of differential genes of the sequencing results (B) The volcano plot of differential genes of the sequencing results (C) The GO
enrichment of differential genes of the sequencing results (D) The KEGG enrichment of differential genes of the sequencing results.
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injection for 4 weeks to knock down the expression of IGFBP5 in
aging mice. At the end of the modeling, consistent with the previous
text, the mice’s body weight, muscle strength, and the weight of lower
limb muscles (gastrocnemius, tibialis anterior, quadriceps) and their
percentage related to mice weight were assessed (Figure 5A). The
results demonstrated that in the IGFBP5 knockdown group, there was
a moderate decrease in body weight, a significant improvement in
muscle strength, and a noticeable increase in the weight of the lower
limb muscles. The percentage was not as significantly improved, but
there was a general upward trend. Tissue section staining withHE and
Masson also showed that the degree of fibrosis in skeletal muscle was
improved in mice with IGFBP5 knockdown. This was manifested as a
significantly larger cross-sectional area of muscle fibers in the siRNA
group compared to aging mice, improved gaps between muscle
fibers, and relatively less connective tissue compared to aging mice,
although it did not reach the condition of normal adult mice
(Figures 5B, C).

IGFBP5 regulates skeletal muscle fibrosis
through IGF-1

Immunofluorescence staining of muscle tissue from aging mice and
mice with IGFBP5 knockout revealed that the expression of the fibrosis

marker α-SMAwas significantly reduced inmice with IGFBP5 knockout
(Figure 6). Notably, IGFBP5 expression was also substantially
decreased (Figure 6). This indicates that IGFBP5 can indeed alleviate
skeletal muscle fibrosis. IGF-1 can affect TGF-β1 activity, a cytokine
linked to fibrosis. It also regulates ECM buildup, key in muscle fibrosis.
IGF-1 is the main route for IGFBP5’s effects, with IGFBP5 impacting
processes both with andwithout IGF-1. The signaling pathway involves a
complex network of genes. This study focuses specifically on investigating
whether IGFBP5 can regulate skeletal muscle fibrosis in an IGF-1-
dependent manner, without delving into the deeper mechanistic
aspects of its action. To verify this, immunofluorescence staining of
skeletal muscle tissue was performed again, and it was found that in
SAMP8 mice with IGFBP5 knockout, the expression of IGF-1 was
increased compared to aging SAMP8 mice (Supplementary Figure 5).
TGF- β staining was also performed, and TGF- β expression was reduced
in the IGFBP5 knockout mice (Supplementary Figure 5). This suggests
that IGFBP5 may modulate the process of skeletal muscle fibrosis by
mediating interactions with both IGF-1 and TGF-β pathways.

Discussion

The interplay between muscle atrophy and fibrosis is a central
aspect of sarcopenia (Boccardi, 2024). While muscle atrophy

FIGURE 4
(A) The PCR of IGFGP5 (CONTROL vs. D-GAL vs. CONTROL + siRNA vs. D-GAL + siRNA); (B) The PCR of IGFBP5 (CONTROL vs. PLASMID) (C)
Western blot of α-SMA and the statistical analysis (D) SA-β-gal staining of NOR-10 and the statistical analysis (CONTROL vs. D-GAL + siRNA vs. D-GAL)
(compared to control group, *p < 0.05, **p < 0.01, ***p < 0.001, **** p < 0.0001).
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involves the loss of muscle fibers, fibrosis refers to the excessive
deposition of extracellular matrix (ECM) proteins, particularly
collagen, which leads to muscle stiffness and a reduction in
physical activity levels (Bonaldo and Sandri, 2013; Sakuma et al.,
2014; Mahdy, 2019). This combination not only impairs mobility
but also disrupts the communication between muscle satellite cells
and their environment, thereby compromising the muscle’s
regenerative capacity (Blau et al., 2015; Hong et al., 2022).

Skeletal muscle fibroblasts are essential cells within skeletal
muscle that play a multifaceted role in maintaining muscle
structure, function, and homeostasis (Chapman et al., 2016).
These cells are primarily responsible for the synthesis and
secretion of extracellular matrix (ECM) components, such as
collagen, elastin, and glycosaminoglycans, which provide
mechanical support and structural integrity to muscle fibers
(Plikus et al., 2021; Chapman et al., 2016). In addition to their

FIGURE 5
(A) Bodyweight,muscle strength, and theweight of lower limb skeletal muscles (gastrocnemius, tibialis anterior, quadriceps) and their percentage of
the body weight of mice(SAMR1 vs. SAMP8 vs. SAMP8+siRNA) (B) The HE and Masson staining of limb skeletal muscle(SAMR1 vs. SAMP8 vs.
SAMP8+siRNA) (C) the statistical analysis of myofiber CSA and CVF (compared to control group, *p < 0.05, **p < 0.01, ***p < 0.001, **** p < 0.0001).
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structural role, skeletal muscle fibroblasts are crucial for tissue repair
and regeneration following injury (Tidball, 2011; Younesi et al.,
2024). Upon activation, these fibroblasts can differentiate into
myofibroblasts, which express contractile proteins like α-smooth
muscle actin (α-SMA) and contribute to the formation of scar tissue
(Younesi et al., 2024; Hall et al., 2023; Gibb et al., 2020). However,
excessive or prolonged activation of myofibroblasts can lead to
pathological fibrosis (Schuster et al., 2023; Younesi et al., 2024).
Moreover, fibroblasts play a significant role in regulating
inflammation and immune responses (Davidson et al., 2021;
Chapman et al., 2016). Additionally, skeletal muscle fibroblasts
interact closely with muscle cells, influencing their growth,
differentiation, and contractile function through the secretion of
growth factors like IGF-1 and by providing mechanical signals
(Chapman et al., 2016; Murphy et al., 2011; Abdel-Raouf et al.,
2021). Their functions extend beyond structural support to include
critical roles in immune regulation and cellular communication,
highlighting their importance in both physiological and pathological
contexts (Chapman et al., 2016).

Fibro-adipogenic progenitors (FAPs) are mesenchymal stromal
cells residing in skeletal muscle interstitium, playing dual roles in
muscle homeostasis, regeneration, and pathology (Joe et al., 2010;
Uezumi et al., 2010). Following muscle injury, FAPs rapidly activate,

proliferate, and transiently expand to orchestrate regeneration,
which promote muscle satellite cell (MuSCs) proliferation and
differentiation into myofibers (Heredia et al., 2013). This post-
injury pro-regenerative response was tightly regulated by
inflammatory signals such as TNF-α, while anti-inflammatory
cytokines such as IL-4 and IL-13 later induce FAPs apoptosis,
preventing excessive extracellular matrix (ECM) deposition
(Lemos et al., 2015). Dysregulation of this balance leads to
pathological outcomes, where FAPs underwent fibro-adipogenic
differentiation, replacing functional muscle tissue and impairing
contractility (Natarajan et al., 2010).

Notably, FAPs exhibit microenvironment-dependent plasticity.
While their crosstalk with MuSCs is essential for repair, aberrant
signaling such as TGF-β overactivation shifts FAPs toward a
profibrotic state (Contreras et al., 2019). Recent studies highlight
their dual nature—indispensable for regeneration yet potential
drivers of degenerative diseases. Therefore, FAPs are pivotal
regulators of skeletal muscle dynamics, balancing regenerative
support with risks of pathological tissue remodeling, making
them critical targets for muscle disease therapies. However, their
complex mechanisms of action and interactions with numerous
other cellular pathways make it challenging to elucidate a singular
mechanism. In this study, we focus on skeletal muscle fibroblasts as

FIGURE 6
(A)The immunofluorescence staining of skeletal muscle (α − SMA, IGFBP5) (SAMR1 vs. SAMP8 vs. SAMP8+siRNA) (B) Statistical analysis of the positive
expression (compared to control group, *p < 0.05, **p < 0.01, ***p < 0.001, **** p < 0.0001).
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the primary cell type for investigation, although FAPs are also
employed for some key validations.

D-gal is a widely used chemical to induce cellular senescence
(Azman and Zakaria, 2019). Cells undergoing senescence induced
by D-gal exhibit mitochondrial structural damage and a decline in
energy metabolism, which are highly related to cellular aging studies
have confirmed that D-gal can induce senescence, fibrosis, and
redox imbalance in skeletal muscle fibroblasts (Wu et al., 2022;
Ma et al., 2024). Our results confirm that D-gal effectively induces
cellular senescence and skeletal muscle fibrosis in both cellular and
animal models. The increase in senescence markers and fibrosis-
related proteins, along with the observed decline in muscle strength
and mass, are consistent with previous studies that highlight the role
of D-gal in modeling aging-associated pathologies. The observed
lethargy and reduction in muscle fiber cross-sectional area further
validate the model’s relevance to sarcopenia research.

The sequencing analysis conducted in our study has unveiled
substantial alterations in mRNA expression, pinpointing IGFBP5 as
a potential regulator of skeletalmuscle fibrosis. This discovery associates
with existing literature, which posits that IGFBP5 plays a complex and
multifaceted role in cellular processes, particularly in the realms of cell
growth and metabolism regulation. The overexpression of IGFBP5 in
senescent skeletal muscle fibroblasts, coupled with its association with
elevated markers of fibrosis, highlights its potential as a therapeutic
target for interventions aimed at combating fibrosis. IGFBP5 is highly
conserved in evolution compared to other IGFBP proteins and
possesses a variety of biological activities (Duan and Allard, 2020).
Existing research has demonstrated that IGFBP5 can play a role in the
regulation of cell growth and metabolism by mediating the
IGF1 signaling pathway (Ding et al., 2016). However, in addition to
its function through the IGF signaling pathway, IGFBP5 also has IGF-
independent activity, which adds to the complexity of its regulation of
cellular behavior (Duan and Allard, 2020; Dittmer, 2022). We further
investigate whether IGFBP5 can affect the fibrotic phenotype of skeletal
muscle in an IGF-1-dependent manner.

The intricate role of IGFBP5 extends beyond its interaction with
insulin-like growth factors (IGFs) (Beattie et al., 2006). It is known to
modulate IGF bioavailability by binding to IGFs, thereby influencing
the activity of the IGF signaling pathway (Clemmons, 2016). This
pathway is crucial for various physiological processes, including
muscle growth and repair. Based on the provided search results,
there is no direct evidence discussing the regulation of
IGFBP5 expression in fibroblasts and FAPs. However,
IGFBP5 were found to be associated with fibrotic pathways in
other tissue, suggesting the possibility that the expression of
IGFBP5 could also be regulated under muscle pathologies
(Contreras et al., 2021; Sorokina et al., 2024; Babaeijandaghi
et al., 2023; Li et al., 2025). This study aims to investigate the
role of IGFBP5 in the fibrosis of aging skeletal muscle. In the in vivo
experiments conducted in this paper, it was found that in
SAMP8 mice with knockdown of IGFBP5, there was a noticeable
improvement in muscle strength, and both the weight and cross-
sectional area of the skeletal muscles were improved to some extent.
This indicates that the knockdown of IGFBP5 can partially
ameliorate the quality of aging skeletal muscle. Staining of the
skeletal muscles also showed a reduction in the degree of fibrosis,
and the expression of IGF-1 increased to some extent after the
knockdown of IGFBP5. This suggests that IGFBP5 can act through

the regulation of IGF-1 in the fibrosis of aging skeletal muscle. In
previous research related to skeletal muscle, there is literature
supporting that IGFBP5 can function as a growth factor
regulating skeletal muscle growth and also plays a role in disuse
atrophy of skeletal muscle.

Mice and humans share a high degree of similarity in genetic
mechanisms and physiological characteristics, which is why mouse
models are widely used in medical research on human aging (Breschi
et al., 2017). One of the most commonly used strains is the C57BL/6J
mouse; almost all biological markers can detect aging changes in mice
aged 18–24 months, making it a frequently used model for natural
aging (Wu et al., 2024). The D-gal-induced aging model involves the
continuous injection ofD-gal into animals over a certain period, leading
to an increase in galactose concentration within cells (Wang et al.,
2023). Under the catalysis of aldose reductase, galactose is reduced to
galactitol, which cannot be further metabolized by cells and
accumulates, affecting osmotic pressure, causing cell swelling and
dysfunction, ultimately leading to aging (Azman and Zakaria, 2019;
Azman et al., 2021). Initially used to establish cataract models, this
model has been developed through continuous research, and its various
biochemical and physiological indicators are similar to natural aging,
making it widely used today (Azman and Zakaria, 2019). The
senescence-accelerated mouse (SAM) is a kind of premature aging
model mouse, including two strains: SAMP (senescence accelerated-
prone mouse) and SAMR (senescence accelerated resistant mouse)
(Chiba et al., 2009; Takeda, 2009). SAMP exhibits rapid aging
characteristics after a normal growth period (Takeda, 2009).
SAMP8, a sub-strain of SAMP, is currently recognized as an ideal
model for natural aging and dementia (Butterfield and Poon, 2005; Liu
et al., 2020). In this article, the D-gal aging model and the
SAMP8 premature aging mouse model were selected for their short
modeling time and simple operation. Many pathways and targets
related to skeletal muscle have been identified in these two models,
such as the Wnt/β-catenin signaling pathway and its downstream
cascade (Rudolf et al., 2016), the AMPK/TGF-β/SMAD axis (Zhong
et al., 2024), and important skeletal muscle-related pathways, as well as
targets related to skeletal muscle fibrosis and atrophy, such as
CILP2 and TRIM16 (Deng et al., 2024; Guo et al., 2024). This study
found that the IGFBP5 target may regulate the progression of fibrosis
and sarcopenia in aging skeletal muscle through the IGF-1 pathway.

In this study, we also observed a seesaw effect between IGF-1
and TGF-β. The role of TGF-β in skeletal muscle fibrosis is
undoubted. In skeletal muscle fibrotic pathologies, TGF-β1 is
highly expressed and plays a key role in the development of
skeletal muscle fibrosis (Ismaeel et al., 2019; Budi et al., 2021). It
can promote the expression of extracellular matrix (ECM)
components such as collagen and fibronectin and inhibit ECM
degradation, playing a significant role in cell morphogenesis,
proliferation, and differentiation processes (Roberts et al., 1992;
Akhurst, 2004; Massagué and Sheppard, 2023). The activation of the
TGF-β signaling pathway leads to pathological fibrosis (Meng et al.,
2016). IGF-1 also plays a very important positive role in the growth
and development of skeletal muscle, can delay various pathological
muscle atrophies, and maintain and promote the growth and
survival of the nervous system (Yoshida and Delafontaine, 2020;
Ahmad et al., 2020). The decline in skeletal muscle mass and
strength (sarcopenia) is also related to the reduced activity of the
IGF-1/Akt/mTOR signaling pathway (Feng, 2010; López-Caamal
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et al., 2012). Both TGF-β and IGF-1 are important factors in skeletal
muscle, and our research suggests that IGFBP5 may affect skeletal
muscle aging and fibrosis by regulating the dynamic balance
between TGF-β and IGF-1 through the expression of
regulatory factors.

While our study focuses on the role of IGFBP5 in skeletal muscle
fibrosis and sarcopenia, its involvement in fibrosis extends to multiple
tissues and disease states, highlighting its potential as a therapeutic target.
IGFBP5 is upregulated in idiopathic pulmonary fibrosis (IPF) and
contributes to fibroblast activation and ECM remodeling. Elevated
IGFBP5 levels in bronchoalveolar lavage fluid correlate with disease
severity, suggesting its potential as a biomarker (Sureshbabu et al., 2011).
In heart failure and myocardial infarction, IGFBP5 plays a dual role in
fibrosis and repair, and also supports angiogenesis and cardiomyocyte
survival under stress, highlighting its context-dependent roles (Zhu et al.,
2024). IGFBP5 promotes fibroblast-to-myofibroblast transition and
collagen synthesis, and interacts with ECM components (e.g., collagen
I, III) to stabilize fibrotic lesions (Sureshbabu et al., 2009). Moreover,
IGFBP5 has been shown to act independently of IGF-1 in other cell and
disease models, indicating a complexity that warrants additional research
(Duan and Allard, 2020; Dittmer, 2022). The interplay between TGF-β
and IGF1 is not confined to a single pathway and requires further
exploration. By elucidating the broader role of IGFBP5 in fibrotic
disorders, our study not only advances understanding of its
mechanisms in sarcopenia but also highlights its relevance across
multiple diseases. This positions IGFBP5 as a promising target for
anti-fibrotic therapies, with potential applications in pulmonary,
cardiac, renal, hepatic, and dermal fibrosis.

In the present study, several limitations should be acknowledged.
Firstly, naturally aged mice were not utilized, which may limit the
direct relevance of the findings to natural aging processes. The
relationships among SAMP8, SMAR1, and SAMP8 with siRNA
require further investigation to elucidate their interactions and
potential synergistic effects. Furthermore, in in vivo models, the
injection of siRNA may potentially impact other cells within the
skeletal muscle, not just limited to NOR-10. This necessitates further
validation in subsequent studies. Additionally, conditional knockout
mice were not employed, which could have provided more precise
insights into gene-specific functions and their roles in the studied
processes. Future research should address these limitations to enhance
the robustness and applicability of the findings, and explore tissue-
specific IGFBP5 regulation and its interplay with other fibrogenic
factors to develop precision therapies.

These findings offer new insights into understanding age-
related skeletal muscle fibrosis and provide potential molecular
targets for the development of therapeutic strategies aimed at
skeletal muscle fibrosis. By modulating the expression or activity
of IGFBP5, it may be possible to slow down or reverse skeletal
muscle fibrosis, thereby improving muscle function and quality of
life in the elderly.
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Images of related-IGFBP5.
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Western blot of IGFBP5 and the statistical analysis (compared to control
group, *p < 0.05, **p < 0.01, ***p < 0.001, **** p < 0.0001).

SUPPLEMENTARY FIGURE S3
The PCR of P16,P21,PPARG,COL-1 and IGFBP5 (compared to control group,
*p < 0.05, **p < 0.01, ***p < 0.001).
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SUPPLEMENTARY FIGURE S4
The immunofluorescence staining of skeletal muscle (α-SMA, IGFBP5)
(CONTROL vs. D-GAL).

SUPPLEMENTARY FIGURE S5
The immunofluorescence staining of skeletal muscle (IGF-1, TGF-β)
(SAMP8 vs. SAMP8+siRNA).
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