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Acute myeloid leukemia (AML) is the most common type of acute leukemia in
adults and the second most common in children. Despite the introduction of
targeted therapies, AML survival rates have shown limited improvement,
particularly among older patients. This study explored personalized treatment
strategies for AML by proposing a novel subtyping method. Through
unsupervised clustering based on the enrichment scores of 14 pathways
related to metabolism, immunity, DNA repair, and oncogenic signaling, we
identified three AML subtypes: DNA repair (DR), immune-enriched (ImE), and
immune-deprived (ImD), consistent in four independent datasets. DR is marked
by high expression of DNA repair and metabolic pathways, high stemness and
proliferation potential, as well as high sensitivity to chemotherapy. ImD is
characterized by low expression of immune and oncogenic pathways,
favorable survival prognosis, low mutation rates of RUNX1 and TP53, high
homeostasis, and low migration potential. ImE exhibits high enrichment of
immune and oncogenic pathways, low stemness and proliferation capacity,
low homeostasis, high migration potential, and low sensitivity to
chemotherapy. Our pathway enrichment-based subtyping approach would
offer a promising framework for understanding the molecular heterogeneity
of AML and guiding personalized treatment of this disease.
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Introduction

Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults
and the second most common in children (Carter et al., 2020). This disease is marked by a
block in cellular differentiation and the clonal proliferation of abnormal myeloblasts within
the bonemarrow. AML is endowed with a highly heterogeneous clinical course, with diverse
molecular features playing crucial roles in risk assessment, prognosis, and treatment
selection (Döhner et al., 2017; Döhner et al., 2015; Arber et al., 2016; Papaemmanuil
et al., 2016a). In recent decades, the classification of AML has evolved from the French-
American-British (FAB) morphological subtyping to the more refined World Health
Organization (WHO) system (Khoury et al., 2022). More recently, with the
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advancement of high-throughput technologies, genomics and
transcriptomics-based classification of AML has been proposed.
For instance, The Cancer Genome Atlas (TCGA) program has
dissected the genomic landscape of AML, identifying nine
categories of gene mutations (null et al., 2013). Another
landmark study has established 11 distinct AML classes based
solely on genetic abnormalities, whereas 4% of AML patients met
the criteria for two or more classes, 11% remained unclassified, and
5% showed no driver mutations (Papaemmanuil et al., 2016b).

Despite these advances in AML subtyping, the survival rate of
this disease has achieved modest improvement over the past few
decades. One main reason for the limited treatment improvement
is the continued use of the “7 + 3” standard induction regimen, a
standard treatment option, particularly for younger patients
(Döhner et al., 2015), consisting of the chemotherapeutic
agents cytarabine (Ara-C) and daunorubicin. The limited
effectiveness of this treatment, especially in older populations,
can be attributed to the high toxicity of these drugs and the
heterogeneity of this disease (Eleni et al., 2010; Hassan et al.,
2017). New insights into the biology of AML have revealed
increasingly apparent AML heterogeneity (Lohse et al., 2018).
To improve the treatment effectiveness for AML, a number of
targeted therapies have recently been investigated in clinical
trials, particularly those targeting AML cell survival pathways
(Carter et al., 2020), including the FDA-approved agents
midostaurin (FLT3 inhibitor) (Novartis Pharmaceuticals Corp,
2017), gemtuzumab ozogamicin (anti-CD33 antibody-drug
conjugate) (Appelbaum and Bernstein, 2017), CPX-351
(liposomal cytarabine/daunorubicin) (Feldman et al., 2011),
enasidenib (Celgene Corporation, 2017) and ivosidenib (Agios
Pharmaceuticals, 2018) (IDH1/2 inhibitors), gilteritinib (FLT3
inhibitor) (Astellas Pharma, 2018), venetoclax (BCL-2 inhibitor)
(AbbVie Inc. and Genentech Inc, 2020), and glasdegib
(Hedgehog pathway inhibitor) (Pfizer, 2018). Consequently,
there is a shift from a “one-size-fits-all” approach towards
more targeted personalized therapies (Lohse et al., 2018).

To explore personalized targeted therapeutics for AML, we
proposed a new subtyping method for AML by unsupervised
clustering based on pathway enrichment scores. As the pathway
enrichment score integrates the expression levels of multiple genes
into a single value, the pathway enrichment-based clustering may
result in more stable and robust results than the gene expression-
based clustering. Moreover, the former can generate more
straightforward and explainable results for cancer subtypes than
the latter. Here we used 14 cancer-associated pathways to cluster
AML specimens. These pathways were involved in metabolism
(glycolysis/gluconeogenesis), immunity (natural killer cell-
mediated cytotoxicity, antigen processing and presentation, T cell
receptor signaling, B cell receptor signaling, and JAK-STAT
signaling), DNA repair (cell cycle, mismatch repair, and
homologous recombination), and oncogenic signaling (PI3K/Akt,
TGF-β, Wnt, Hedgehog, and mTOR). The pathway enrichment-
based clustering analysis identified three subtypes of AML,
consistent in three independent datasets. We further
comprehensively compared molecular and clinical characteristics
among these AML subtypes. Furthermore, we employed this
method in an AML single cell RNA-Seq (scRNA-seq) dataset to
exhibit its generality.

Methods

Datasets

From the Genomic Data Commons Data Portal (https://portal.
gdc.cancer.gov/), we downloaded multi-omics datasets and clinical
data for the TCGA AML cohort (termed TCGA-LAML), consisting
of 173 adult AML patients. The TCGA-LAML multi-omics datasets
included gene expression profiles (RSEM-normalized), and somatic
mutation data (MAF files). From cBioPortal for Cancer Genomics
(https://www.cbioportal.org/), we downloaded transcriptomic and
clinical datasets for another AML cohort (Beat-AML (Tyner et al.,
2018)), consisting of 143 adult AML patients. From the UCSC
database (https://xenabrowser.net/datapages/), we downloaded
transcriptomic and clinical datasets for a pediatric AML cohort
(TARGET-AML (Gamis et al., 2014; Aplenc et al., 2008; Aplenc et al.,
2020)), consisting of 561 samples with survival information. In
addition, we obtained transcriptomic and clinical datasets for two
AML cohorts (GSE106291 (Tobias et al., 2018) and GSE71014
(Chuang et al., 2015)) from the NCBI Gene Expression Omnibus
(GEO) (https://www.ncbi.nlm.nih.gov/geo/). The GSE106291 and
GSE71014 datasets contained 250 and 104 adult AML patients,
respectively. From GEO, we also downloaded an AML scRNA-seq
dataset (GSE116256 (van Galen et al., 2019)).

Gene-set enrichment analysis

To systematically investigate the impact of targeted therapies on
acute myeloid leukemia (AML) through survival pathway modulation,
we curated and compiled 14 signaling pathways from the KEGG
database into gene sets. These pathways were systematically
classified into four functional categories: metabolism (glycolysis/
gluconeogenesis (Yang et al., 2024)), immunity (natural killer cell-
mediated cytotoxicity (Merino et al., 2023), antigen processing and
presentation, T cell receptor signaling (Wang et al., 2024), B cell
receptor signaling (Guo et al., 2024), and JAK-STAT signaling
(Venugopal et al., 2020; Moser et al., 2021)), DNA repair (cell cycle,
mismatch repair, and homologous recombination), and oncogenic
signaling (PI3K/Akt (Nepstad et al., 2020; Darici et al., 2020), TGF-
β (Naji et al., 2024; Dong and Blobe, 2006),Wnt (Láinez-González et al.,
2023), Hedgehog (Shallis et al., 2019; Terao and Minami, 2019; Hoy,
2019), and mTOR (Nepstad et al., 2020; Darici et al., 2020)). We
determined the enrichment score of a gene set in a tumor sample using
the single-sample gene set enrichment analysis (ssGSEA) (Hänzelmann
et al., 2013). We employed the ssGSEA algorithm implemented in the
GSVA R package, to comprehensively assess pathway enrichment for
each sample in this study. A gene set is composed of the genes in a
pathway or marker genes of a specific biological process (stemness,
proliferation score, migration, and homeostasis) or signature. The gene
sets we analyzed are presented in Supplementary Table S1.

Determination and analysis of deregulated
genes in pathways

Differential analysis of the 14 pathways in the AML expression
data from the TCGA cohort was performed using the limma
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package, based on the pathway-based subtypes identified in our
study. In order to select differentially expressed genes (DEGs),
specific selection criteria were applied, requiring an adjusted
p-value of less than 0.05 and an absolute log-fold change of
greater than 1.5. We constructed a protein-protein interactions
(PPI) network of the overlapping genes using String (https://
string-db.org/) (Szklarczyk et al., 2019) with “Homo sapiens” as
the selected species and the minimum required interaction score set
to the highest confidence (0.7). The resulting “TSV” file was
imported into Cytoscape (https://cytoscape.org/) (Shannon et al.,
2003) for network analysis and visualization with the isolated
proteins excluded. The degree of the PPI network were obtained
by running the “NetworkAnalyzer ()” function.

Clustering analysis

We employed the hierarchical clustering algorithm to identify
AML subtypes based on the enrichment levels (ssGSEA scores) of
the 14 pathways. The clustering analysis was performed with the R
package hclust. To determine the optimal number of clusters, we
systematically evaluated hierarchical clustering results as follows:
The dendrogram derived from hierarchical clustering was cut at
varying heights to generate different numbers of clusters. For each
candidate cluster number (k = 3–10), we computed the average
silhouette coefficient across all samples, which quantifies both intra-
cluster cohesion and inter-cluster separation. The optimal number
of clusters was selected as the value of k that maximized the average
silhouette coefficient, ensuring robust and biologically meaningful
subtype definitions (Supplementary Figure S1).

Drug correlation evaluation

We utilized the tool OncoPredits (Maeser et al., 2021) for drug
sensitivity analysis, which predicts drug responses based on
baseline transcriptomic data of cell lines. Using the limma R
package, we performed differential analysis of drug sensitivity to
identify drugs having significant differences in sensitivity across
AML subtypes.

Gene coexpression network analysis

We applied the weighted gene coexpression network analysis
(WGCNA) algorithm (Langfelder and Horvath, 2008) to identify
gene modules significantly correlated with a specific trait, with
the gene expression matrix and sample labels as input. By
analyzing the expression correlation between hub genes in
gene modules, we determined associated gene ontology (GO)
terms. The WGCNA analysis was performed using the R package
WGCNA (version 1.73).

Analysis of scRNA-seq data

The scRNA-seq dataset GSE116256 was gene expression profiles
in 15,675 single cells from 16 untreated AML patients, consisting of

9,590malignant cells and 6,085 non-malignant cells. For the scRNA-
seq dataset, we performed quality control according to guide in the
original publication (van Galen et al., 2019). We used the Uniform
Manifold Approximation and Projection (UMAP) algorithm
(McInnes et al., 2018) to visualize malignant cells and non-
malignant cells, respectively.

Survival analysis

We compared overall survival rates among different groups
of cancer patients using the Kaplan-Meier (K-M) method (Bland
and Altman, 1998). The significance of differences in survival
rates was assessed using the log-rank test. We performed survival
analysis using the survfit () function in the R package survival
(version 3.5.5).

Statistical analysis

To compare two classes of normally distributed data, such as
gene expression levels, we used the two-tailed Student’s t-test. For
comparing two classes of data that were not normally distributed,
we employed the two-tailed Mann-Whitney U test. When
comparing three classes of data, if they were normally
distributed, we used the one-way ANOVA; otherwise, we used
the Kruskal–Wallis (K-W) test. For analyzing contingency tables,
we employed the Fisher’s exact test. To adjust for P values in
multiple testing, we used the Benjamini–Hochberg method
(Benjamini and Hochberg, 1995) to calculate the false
discovery rate (FDR). All statistical analyses were conducted
using the R programming language (version 4.3.1).

Results

Pathway enrichment-based clustering
identifies three AML subtypes

Based on the pathway enrichment scores (ssGSEA scores) of the
14 pathways related to metabolism, immune, DNA repair, and
oncogenic signaling, we uncovered three AML subtypes by
hierarchical clustering, consistent in four independent AML
datasets (TCGA-LAML (Ley et al., 2013), BEAT-AML (Tyner
et al., 2018), GSE106291 (Tobias et al., 2018), and GSE71014
(Chuang et al., 2015)). By integrating the average silhouette
coefficient and identifying natural cut points in the hierarchical
clustering dendrogram, we determined the optimal number of
clusters to be k = 3 (Supplementary Figure S1). In terms of
pathway enrichment levels, we termed the three subtypes DNA
repair (DR), immune-enriched (ImE), and immune-deprived
(ImD), respectively (Figure 1A). The DR subtype was
characterized by hyperactivation of glycolysis/gluconeogenesis,
DNA repair, and cell cycle pathways; the ImE subtype showed
high enrichment in immune and oncogenic pathways; and the ImD
subtype exhibited low expression of immune and oncogenic
pathways. Principal component analysis supported that AML can
be clearly separated into these three subtypes based on the pathway
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enrichment scores (Figure 1B). Survival analysis revealed that the
ImD subtype had the highest overall survival rates compared to the
other subtypes (log-rank test, P < 0.05) (Figure 1C). In parallel, we
applied a pathway-based clustering approach to analyze the
pediatric acute myeloid leukemia (AML) dataset. By examining
pathway enrichment scores, we identified a clustering pattern
that resembled the classification observed in adult AML, with the
data being similarly subdivided into three distinct subtypes
(Supplementary Figures S2A, B). However, despite these
clustering similarities, survival analysis did not reveal any

significant prognostic differences across the three subtypes
(Supplementary Figure S2C). Since the ImD subtype has the
highest survival rate, we performed differential gene expression
analysis between the ImD subtype and the remaining samples. In
the 14 pathways, we identified a total of 10 upregulated genes and
50 downregulated genes (Supplementary Figure S3A,
Supplementary Table S2). The PPI network of the 60 deregulated
genes was constructed by STRING. The network contained 46 nodes
and 232 edges with an average node degree of 10.1, which was
further analyzed and visualized using Cytoscape [32]

FIGURE 1
Hierarchical clustering identifies three AML subtypes based on the enrichment scores of 14 pathways. (A)Heatmap showing three AML subtypes: DR,
ImE, and ImD, identified based on the enrichment scores of 14 pathways in four different datasets (TCGA-LAML, BEAT-AML, GSE106291, and GSE71014).
The pathway enrichment scores were calculated by the ssGSEA algorithm. The 14 pathways are involved in metabolism, immune, DNA repair, and
oncogenic signaling. (B) PCA confirms that AML can be clearly separated into three subgroups based on the ssGSEA scores of the 14 pathways. (C)
Kaplan-Meier curves show that ImD tends to have the best survival prognosis among the three subtypes. The log-rank test P values are shown. OS:
overall survival.
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(Supplementary Figure S3B). In the PPI network, nine top potential
targets (CD4, IL10, FCER1G, FCGR3B, FCGR3A, TLR2, LILRB2,
TLR4, ITGB2) were selected according to the Degree ranking
(Supplementary Tables S3, 4).

The AML subtypes display different pathway
and biological process enrichment

In the TCGA-LAML dataset, we identified nine gene modules
by WGCNA (Langfelder and Horvath, 2008), whose enrichment
showed significant correlations with the AML subtypes, overall
survial time and/or overall survival status (Figure 2). The
representative GO biological processes for these modules
included positive regulation of cytokine production, immune
response-activating signaling pathway, myeloid cell
homeostasis, lymphocyte differentiation, regulation of cell
cycle phase transition, RNA splicing, epithelial cell
proliferation, cytoplasmic translation, and fatty acid metabolic

process (Figure 2). As expected, three immune-related modules
(positive regulation of cytokine production, immune response-
activating signaling pathway, lymphocyte differentiation) had
significant, positive correlations with the ImE subtype, while they
showed negative correlations with ImD or DR subtypes (P < 0.05,
|correlation coefficient| > 0.2). Of the immune-related modules,
the immune response-activating signaling pathway correlated
negatively with overall survival time (P = 0.003, |correlation
coefficient| > 0.2). Moreover, the myeloid cell homeostasis
module correlated positively with overall survival time (P =
0.03, correlation coefficient = 0.17). This is justified as AML is
an immune cell proliferation-associated cancer. We also
observed four modules (regulation of cell cycle phase
transition, RNA splicing, cytoplasmic translation, and fatty
acid metabolic process) showing significant, positive
correlations with the DR subtype but negative correlations
with ImE or ImD subtypes (P < 0.05, |correlation
coefficient| > 0.2) (Figure 2). It aligns with the high
enrichment of metabolism, DNA repair, and cell cycle

FIGURE 2
Genemodules and their representative GO terms significantly differentiating AML by the subtypes in TCGA-LAML. The correlation coefficients and P
values (in parenthesis) generated by WGCNA are shown. OS, overall survival.
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pathways in DR. In addition, the epithelial cell proliferation
module had a significant, negative correlation with the ImD
subtype as well as overall survival time (P < 0.05, correlation
coefficient < −0.2) (Figure 2). Again, it aligns with the property of
ImD that is characterized by low enrichment of immune
pathways and favorable survival prognosis.

The AML subtypes display different
mutation profiles

AMLgenomes have fewermutations thanmost other adult cancers,
with an average of 13 mutations found in genes (null et al., 2013). We
compared the mutational landscape among the AML subtypes in the

FIGURE 3
Comparisons of mutation profiles among the AML subtypes in TCGA-LAML. (A) Top 10 genes with the highest mutation rates in the three subtypes.
(B) Kaplan-Meier curves showing significantly poorer overall survival rates in the TP53 orRUNX1mutant groups compared to their wild-type counterparts.
(C) Oncogenic pathways associated with the frequently mutated genes in the three subtypes. The bars indicate the proportions of samples with the
pathway genes mutated.
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FIGURE 4
Comparisons of tumor-associated properties among the AML subtypes. Comparisons of stemness (A), proliferation (B), migration (C), and
homeostasis scores (D) among the AML subtypes. The two-tailed Mann–Whitney U test P values are shown. *P < 0.05, **P < 0.01, ***P < 0.001, ****P <
0.0001, ns P ≥ 0.05.
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TCGA-LAML cohort. Figure 3A shows the top 10 genes with the
highest mutation frequencies in each subtype. Notably, six genes (FLT3,
NPM1, DNMT3A, IDH2, IDH1, and TET2) were included in the top
10 most frequently mutated genes in all three subtypes, and FLT3,
NPM1, andDNMT3Awere identified as three most frequently mutated
genes in all three subtypes.We found thatRUNX1 and TP53 had higher
mutation rates in ImE than in DR and ImD (RUNX1: 11% (ImE) vs 9%
(DR) vs 6% (ImD); TP53: 11% (ImE) vs 7% (DR) vs 6% (ImD)). To
further explore the clinical implications of TP53 andRUNX1mutations,
we stratified patients from the TCGA-LAML and Beat-AML datasets
into TP53/RUNX1 mutant and wild-type groups. Kaplan-Meier
survival analysis demonstrated significantly poorer overall survival in
the TP53 or RUNX1 mutant groups compared to their wild-type
counterparts (P < 0.05) (Figure 3B). It aligns with the previous
result that the ImD subtype has the best overall survival among the
AML subtypes. In addition, we used the pathways function from the
maftools (Mayakonda et al., 2018) package to check for enrichment of
known oncogenic signaling pathways (Sanchez-Vega et al., 2018)
associated with frequently mutated genes in TCGA-LAML. This
analysis revealed that the RTK-RAS pathway was the most prevalent
oncogenic pathway mutated across the AML subtypes, being identified
in 51%, 53%, and 44% of DR, ImD, and ImE samples,
respectively (Figure 3C).

The AML subtypes display different
malignant properties

Certain malignant cells exhibit stem cells-like characteristics,
characterized by extremely high proliferation potential (Lei et al.,
2024). In the TCGA and BEAT AML datasets, DR exhibited the
highest stemness scores, while ImE had the lowest stemness scores
(Kruskal–Wallis test, P < 0.001) (Figure 4A). Likewise, in the
GSE71014 and GSE106291 datasets, ImE displayed the lowest
stemness scores (P < 0.001). These results suggest that the DR
subtype likely has the strongest proliferation potential, while the
ImE subtype has the lowest proliferation capacity. Similar results
were found in proliferation scores (Figure 4B). We also compared
the migration and homeostasis scores among the AML subtypes. In
the TCGA, BEAT, and GSE106291 datasets, ImD showed the lowest
migration scores, while ImE had the highest scores (Figure 4C).
Conversely, the homeostasis scores showed a consistent pattern
across all four datasets: ImE exhibited the lowest homeostasis scores,
and ImD had the highest (Figure 4D). It suggests that ImE has the
highest potential in cell migration, invasion, and metastasis to
contribute to disease progression. By contrast, ImD shows the
lowest cell migration potential that may lead to its relatively
favorable prognosis.

FIGURE 5
Eight chemotherapy drugs to which the AML subtypes show significantly different sensitivity. The two-tailed Mann–Whitney U test P values are
shown. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns P ≥ 0.05.
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The AML subtypes show different
drug response

Drug sensitivity analysis identified eight chemotherapy drugs to
which the AML subtypes had significantly different sensitivity. These
drugs included methotrexate, neopeltolide, daporinad, decitabine,
barasertib, cytarabine, KX2.391, and SB.743921. Among them,
KX2.391 is a synthetic, orally bioavailable small molecule inhibitor of
Src tyrosine kinase signaling and tubulin polymerization; this compound
is distinct from other Src kinase inhibitors by targeting the peptide
substrate rather than the ATP binding site, with its novel binding site on
hetero-dimeric tubulin being distinct from taxanes and other known
tubulin inhibitors53. SB.743921 is a derivative of ispinesib, found to be 5-
fold more potent against ATPase activity of, E.g.,5 and currently
undergoing phase II clinical trials54. Notably, the ImE subtype
consistently exhibited the lowest sensitivity to these drugs (Figure 5).
By contrast, theDR subtype displayed the highest sensitivity to four of the
eight drugs, including methotrexate, neopeltolide, KX2.391, and
SB.743921. These drugs belong to the category of cell cycle/cell
structure disruptors, which directly inhibit tumor cell proliferation by
blockingDNA synthesis, microtubule dynamics, ormitosis. This suggests
that the DR subtype may be particularly sensitive to agents targeting key
processes in the cell cycle. Among the drugs, decitabine is suitable for
elderly cancer patients who are not candidates for intensive
chemotherapy; it also serves as an alternative therapy for patients with
refractory or relapsed AML (Heuser et al., 2020). Cytarabine is widely
used in newly diagnosed AML patients as part of induction therapy to

achieve remission, and used in refractory or relapsed AML patients for
salvage therapy (Heuser et al., 2020).

Validation by analyzing scRNA-seq data

We utilized a pathway-based clustering approach to analyze a
scRNA-seq dataset (GSE116256). This dataset included the gene
expression profiles of 15,675 single cells obtained from 16 patients
diagnosed with acute myeloid leukemia (AML). Of these cells,
9,590 were classified as tumor cells, whereas the remaining
6,085 cells represented various immune cell types. Specifically,
these immune cells comprised 159 B cells (2.6%),
566 conventional CD4+ T cells (CD4 Tconv) (9.3%), 148 CD8+

T cells (2.4%), 202 erythroid progenitors (EryPro) (3.3%),
750 granulocyte-monocyte progenitors (GMP) (12.3%),
43 hematopoietic stem cells (HSC) (0.7%), 1,235 monocytes/
macrophages (Mono/Macro) (20.3%), 274 natural killer (NK)
cells (4.5%), 231 plasma cells (3.8%), 1,653 progenitor cells
(27.2%), 788 promonocytes (13.0%), and 36 proliferating T cells
(Tprolif) (0.6%). (Figure 6A). We performed hierarchical clustering
of the 15,675 single cells based on the enrichment scores of the
14 pathways and identified three subtypes of these cells (Figure 6B).
Of the 9,590 malignant cells, 5,011 (52.2%), 3,718 (38.8%), and
861 (9%) cells were classified into ImE, ImD, and DR subtypes,
respectively (Figure 6C). The distribution of the three subtypes in
the 16 samples is presented (Figure 6D). This result demonstrates

FIGURE 6
Validation of the pathway-based clustering method in a single-cell RNA-Seq (scRNA-seq) dataset. (A) Clustering 9,590 malignant cells and
6,085 non-malignant cells by the UMAP algorithm. (B) Hierarchical clustering based on the enrichment scores of the 14 pathways identifies three
subtypes of 15,675 single cells from 16 AML patients. (C)Distribution of the 15,675 single cells across the three AML subtypes. (D)Distribution of the three
subtypes in the 16 samples.
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the reproducibility of this AML subtyping method at the single-
cell level.

Comparison Between pathway enrichment
Subtyping and Other Clinical
Subtyping Methods

Although the FAB classification provides a fundamental
framework for diagnosing AML (Bennett et al., 1976), it is
noteworthy that most M1 and M2 cases are classified within the
DR subtype, while M3 cases predominantly fall under the ImD
subtype. M4 and M5 cases are almost entirely categorized within the
DR and ImE subtypes, with only one case assigned to the ImD
subtype (Fisher’s exact test, P < 0.05). Due to the limited sample size,
M6 and M7 cases are exclusively found within the DR subtype
(Figure 7A). M1 and M2 represent partially undifferentiated
leukemias, with M2 specifically associated with the t (8; 21)
chromosomal abnormality. This suggests that M1/M2 patients
may exhibit significant abnormalities in DNA damage repair
mechanisms. M3, classified as acute promyelocytic leukemia
(APL), is associated with t (15; 17) and is particularly sensitive to
all-trans retinoic acid (ATRA) treatment, with a tendency toward
immunodeficiency characteristics. As the understanding of the
molecular mechanisms of AML deepens, the ELN molecular risk
stratification provides a more precise prognostic assessment
(Döhner et al., 2022). Cases classified as “favorable” risk are
primarily distributed within the DR and ImD subtypes, while

most “intermediate” risk cases fall under the DR subtype. Nearly
half of the “adverse” risk cases are also assigned to the DR subtype
(Figure 7B). Additionally, M0 cases within the DR, ImD, and ImE
subtypes exhibit significantly different overall survival (OS)
outcomes (P < 0.05) (Figure 7C). These findings suggest that our
subtype classification method has the advantage of distinguishing
LAML cases within the same subtypes identified by other methods,
as they exhibit significantly different clinical outcomes.

Discussion

Uncovering cancer subtypes is a crucial strategy for precision
oncology. For the first time, we identified AML subtypes based on
pathway module enrichment. Using 14 pathways related to
metabolism, immune, DNA repair, and oncogenic signaling, we
revealed three AML subtypes: DR, ImD, and ImE, consistently in
four independent cohorts. DR is marked by high expressions of
DNA repair and metabolic pathways, high stemness and
proliferation potential, as well as high sensitivity to cell cycle/cell
structure disruptors. ImD is characterized by low expressions of
immune and oncogenic pathways, favorable survival prognosis, low
mutation rates of RUNX1 and TP53, high homeostasis, and low
migration potential. ImE exhibits high enrichment of immune and
oncogenic pathways, low stemness and proliferation capacity, low
homeostasis, high migration potential, and low sensitivity to all
agents (Figure 8). The lack of significant prognostic differences
among pediatric AML subtypes, despite clustering patterns

FIGURE 7
Comparison Between the Pathway enrichment Subtyping and Other Clinical Subtyping Methods in AML. (A) Overlapping between the Pathway
enrichment Subtyping and FAB Subtyping (B) Overlapping between the Pathway enrichment Subtyping and the ELN molecular risk Subtyping (C) The
cases in the M0 stratified by the Pathway enrichment subtyping show different overall survival prognosis.
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resembling those of adult AML, may be due to multiple factors.
Biologically, pediatric AML exhibits distinct driver mutation profiles
(e.g., fewer TP53 mutations, more KMT2A rearrangements)
(Bolouri et al., 2018) and epigenetic landscapes (Xu et al., 2022)
that alter the clinical impact of shared pathway activations.
Treatment differences also play a role: children tolerate intensive
chemotherapy better (de Rooij et al., 2015), potentially masking
subtype-specific outcomes, while adult-targeted therapies (e.g.,
FLT3 inhibitors) (Döhner et al., 2021) amplify prognostic
disparities. These findings highlight the need for pediatric-specific
risk stratification integrating developmental and therapeutic
contexts. Different from many solid tumors in which low
enrichment of immune signatures is associated with worse
clinical outcomes, such as breast cancer (He et al., 2018) and
melanoma (Liu et al., 2021), the low enrichment of immune
pathways is a positive prognostic factor in AML, as evidenced by
the immune-deprived subtype (ImD) showing the highest overall
survival rates. It is reasonable since AML is a malignancy caused by
uncontrolled clonal proliferation of immune cells (myeloid
progenitor cells) (Perzolli et al., 2024). In AML, the malignant
cells are themselves immune-derived, and heightened activity in
immune-related pathways—such as T cell receptor signaling or
JAK-STAT signaling—may reflect increased leukemic cell activity
or aggressiveness. Conversely, the ImD subtype’s low enrichment of

these pathways, coupled with reduced stemness, proliferation, and
migration potential (Figure 4), suggests a less aggressive disease
state, contributing to its favorable prognosis. This interpretation is
consistent with emerging evidence that dysregulated immune
signaling can promote AML progression (Perzolli et al., 2024),
highlighting the unique prognostic implications of immune
pathway activity in this hematologic malignancy.

Our AML subtyping method has significant clinical implications.
First, this AML classification has prognostic value, as the ImD subtype
exhibits a more favorable prognosis than the other subtypes. Second,
our AML classification may guide clinical treatment. Our mechanistic
stratification of chemotherapeutic agents revealed subtype-specific
vulnerabilities: The DR subtype displayed the highest sensitivity to
cell cycle/structural disruptors (e.g., methotrexate, SB.743921; P <
0.001 vs ImE), followed by the ImD subtype, whereas the ImE
subtype exhibited consistently poor responsiveness (Figure 5),
potentially due to enhanced DNA repair capacity. In contrast, for
metabolic and molecular targeted agents (e.g., daporinad, decitabine),
sensitivity patterns diverged: DR and ImD subtypes showed comparable
responses (P > 0.05), while ImEmaintained the lowest sensitivity across
all agents (P < 0.01; Figure 8). This outcome suggests that while DR
malignancies retain dependence on proliferative pathways, ImE tumors
may employ broad resistance mechanisms, such as metabolic plasticity
to bypass NAD depletion or epigenetic reservoir stability to counteract

FIGURE 8
Summary of the clinical and molecular characteristics of the AML subtypes. The figure was created with BioRender.com.
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DNMT inhibition. These findings underscore the need for subtype-
specific therapeutic strategies, prioritizing cell cycle disruptors for DR
subtype patients and combinatorial approaches targeting non-
proliferative vulnerabilities in ImE subtype malignancies. For
example, the activation of DNA repair pathways suggests that the
AML cells have enhanced DNA repair capabilities, making them
resistant to conventional chemotherapy. Thus, targeted therapies
that disrupt DNA repair mechanisms, such as PARP inhibitors
(Padella et al., 2022), could be more effective against the DR
subtype of AML patients. Also, targeting the cell cycle pathway,
such as CDK4/6 inhibitors (Abbas et al., 2021), may be effective for
this subtype of AML patients. For the ImE subtype of patients,
inhibitors of oncogenic pathways, such as PI3K/Akt, TGF-β, Wnt,
Hedgehog, and mTOR, could be relatively effective.

While our study provides valuable insights into the molecular and
clinical characteristics of AML subtypes, there are several limitations
that need to be addressed. First, the datasets used in this study are
primarily from adult patients, and further validation in pediatric cohorts
is necessary to ensure the generalizability of our findings. Second,
translating these molecular insights into improved patient outcomes
and treatment would require rigorous experimental and clinical
validation. Lastly, while our subtyping framework identifies clinically
actionable patterns, translating these insights into targeted therapies will
require functional validation in preclinical models.

In conclusion, our pathway enrichment-based subtyping
approach offers a promising framework for understanding the
molecular heterogeneity of AML and guiding personalized
treatment strategies. By identifying subtypes with distinct
pathway activities, molecular features, immune profiles, clinical
outcomes, and drug sensitivities, we aim to improve the clinical
management of AML.
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