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Photothermal therapy (PTT), a popular local treatment that uses heat to ablate
tumors, has limited efficacy in addressing metastatic and deeply located tumors
when used alone. Integrating PTT with immunotherapy not only yields a
synergistic effect but also promotes cancer regression and confers the benefit
of immunememory, which can surmount the challenges faced by PTTwhen used
in isolation. Metal-based nanomaterials, renowned for their superior
photothermal conversion efficiency and distinctive photochemical properties,
have been extensively researched and applied in the field of PTT. This review
summarizes the latest developments in combination therapies, with a specific
focus on the combination of PTT and immune checkpoint therapy (ICT) for
cancer treatment, including a comprehensive overview of the recent
advancements in noble metal-based and 2D transition metal chalcogenides
(TMDCs)-based photothermal agents, and their anticancer effect when
combining PTT with immune checkpoint blockades (anti-CTLA-4 and anti-
PD-L1) therapy. The goal of this review is to present an overview of the
application, current challenges and future prospects of metal-based
photothermal agents in PTT combined with ICT for cancer treatment.

KEYWORDS

noble metal, 2D transition metal dichalcogenides, photothermal therapy, immune
checkpoint blockades, immune checkpoint therapy

1 Introduction

Cancer is one of the most leading causes of death worldwide, in 2022, nearly 20 million
new cancer cases were diagnosed, and approximately 10 million people died from the
disease (Bray et al., 2024). It is projected that about one in five individuals will develop
cancer, with one in nine men and one in twelve women succumbing to it. The primary
therapeutic approaches for cancer management include surgery, chemotherapy,
radiotherapy, and other methods (Debela et al., 2021; Liu B et al., 2024). However,
these traditional treatments have several limitations and can cause significant side
effects, which make it necessary to explore more safety and effective treatment
strategies for cancer treatment.
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Photothermal therapy (PTT) is a local treatment that uses
photothermal agents (PTAs) to harvest energy from near-infrared
(NIR) light and convert the energy into heat, which leads to an
increase in the temperature surrounding the tumor tissue ultimately
inducing the death of cancer cells (Yang et al., 2016; Liu et al., 2018;
Nam et al., 2018; Gao et al., 2022). At present, the photothermal
agents mainly include noble metal nanomaterials (Wang et al., 2012;
Ding et al., 2021), graphene (Lin et al., 2020; Li L et al., 2024), two-
dimensional transition metal chalcogenides (TMDCs) (Gong et al.,
2017), semiconducting polymer nanoparticles (Zhang Y et al., 2018),
organic small molecule dyes and so on, some of these summarized in
Table 1. Among these photothermal agents, noble metal-based and
TMDCs-based photothermal agents possess numerous
advantageous characteristics, including high photothermal
conversion efficiencies and unique electronic and optical
properties (Hernández and Galarreta, 2019; Zhang X. et al.,
2019). Moreover, their large surface area and low cytotoxicity
facilitate the entry of biomolecules and drugs into cells, which is
crucial for effective cancer therapy (Gong et al., 2017; Yang F et al.,
2024). This treatment modality has a high degree of controllability
in the treatment of tumors, and can also produce a large number
of relevant antigens when eliminating the primary tumor. At the
same time, as a non-invasive therapeutic method, PTT has the
advantages of high specificity, low side effects, and high

photothermal conversion efficiency, exhibiting a good ablation
effect on solid tumors (Ban et al., 2017; Zhang et al., 2021; Kong
and Chen, 2022). Therefore, it is widely favored by scientific
researchers.

However, due to the limited penetration of light in tissues and
inefficacy target ability to tumor site, the use of photothermal
therapy alone will face problems such as low thermal ablation
efficiency of primary tumors in deep tissues and unsatisfactory
treatment effect for diffuse metastatic tumors (Chu and Dupuy,
2014; Deng et al., 2021). Therefore, scientists are working on
strategies to combine photothermal therapy with other
treatments. At present, the combination of PTT with
photodynamic therapy (PDT), chemotherapy and
immunotherapy are widely studied (Li et al., 2020; Huang et al.,
2021; Liu et al., 2022; Li S et al., 2024). The absorption spectra of
photodynamic and photothermal agents often do not align, which
requires the use of two different lasers for long-term combination
treatments involving PTT and PDT, further complicating the
treatment process (Yang et al., 2017; Younis et al., 2019). The
combination of PTT with immunotherapy effectively addresses
the aforementioned issues while also overcoming the challenges
of possible resistance to chemotherapy drugs. Therefore, researchers
are committed to studying the combination of photothermal therapy
and immunotherapy.

TABLE 1 The types of metal-based photothermal agents that have been reported.

Photothermal agents Main elements Wavelength (nm) Power (W/cm2) Cancer cell type References

Cu@Cu2O@polymer NPs Cu 660 0.61 HeLa Tai et al. (2018)

MoS2-PEG Mo, S 808 1.0 4T1 Feng et al. (2015)

BSA-Cu2SeNPs-DOX Cu, Se 808 3.0 U251 Liu et al. (2018)

SnSe-PVP nanorods Sn, Se 808/1,064 1.0 4T1 Tang Z et al. (2018)

Cu2MoS4 NPs Cu, Mo, S 808 0.48 U14 Chang et al. (2019)

MoSe2 Mo, Se 808 2.0 A375 He et al. (2019)

WS2-PEG W, S 808 0.5 HeLa Kong et al. (2019)

Bi-MoSe2@PEG-Dox Bi, Mo, Se 808 2.0 HepG2 Wang et al. (2019)

Au@Se NPs Au, Se 808 1.0 U14 Wang et al. (2020)

Ti2N QDs Ti, N 808/1,064 1.0 4T1/U87 Shao et al. (2020)

NbS2-PVP Nb, S 808/1,064 1.5 4T1 Sun Y et al. (2021)

PBPTV@mPEG (CO) Fe 808 2.5 4T1 Ma et al. (2022)

Te-PEG NSs Te 808 2.0 4T1 Pan et al. (2022)

RRP-MPBA-GNRs Au 808 2.0 A549, HepG2 Lin et al. (2024)

PyAnOH-Ag Ag 840 1.5 HepG2 Huang et al. (2019)

MoO3-x NWs Mo, O 980 1.0 HepG2 He et al. (2024)

Pt-Mn-PEI Pt, Mn 980 0.5, 0.7 4T1 Li et al. (2024)

Mo2C Mo, C 1,060 1.0 HeLa Liu et al. (2019)

Zn4-H2Pc/DP NPs Zn 1,064 0.6 MCF-7 Pan et al. (2019)

AuNRs@SiO2-RB@MnO2 Au, Si, Mn 1,064 1.0 4T1 Wen et al. (2022)
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In recent years, immunotherapy has emerged as a promising
cancer treatment option for individuals seeking to leverage their
own immune system against diseases, particularly for those with
uncontrollable cancers (Tan et al., 2020; Zhang and Zhang, 2020; Li
et al., 2023; Liu Y et al., 2024). Tumors utilize multiple strategies to
avoid immune detection, including the activation of regulatory
T cells and the induction of inhibitory checkpoint receptors
(Gajewski et al., 2013). Immune checkpoint proteins, including
cytotoxic T lymphocyte-associated molecule-4 (CTLA-4) and
programmed cell death ligand-1 (PD-L1) which are able to cause
T cells with tumor-killing inactivation and promotion of cancer cell
growth and invasion. Thus, the immune checkpoint blockades

(ICBs), anti-CTLA-4 and anti-PD-L1, have been employed to
suppress malignant tumors and have significantly improved
patient survival rates (Doroshow et al., 2021; Matias et al., 2021).
However, the eradication of the primary tumor through single
immunotherapy remains a significant challenge, especially due to
the considerable antigenic variation observed across different
cancers (Copier and Dalgleish, 2006; Shao et al., 2015). In
addition, PTT not only generates endogenous tumor-associated
antigens (TAAs) during thermal ablation of primary tumors, but
also generates damage-associated molecular patterns (DAMPs) and
induces immunogenic cell death (ICD) in tumors. TAAs enable
personalized and specific immunotherapy, and ICDs can awaken the

FIGURE 1
Immune checkpoints blockade (anti-CTLA-4 and anti-PD-L1) enhanced the immune cells activation and eradicate tumor cells. (A) The schematic
illustration of the multi-signal processes of T-cell activation and inactivation. Reproduced with permission from Ref (Jiang et al., 2021). Copyright
2019 Chongqing Medical University. Production and hosting by Elsevier B.V. (B) The schematic illustration of anti-CTLA-4 blocks the binding of CD80/
CD86 in APC cells, thus activated CD8⁺ CTLs can inhibit tumor cells proliferation, and the anti-PD-L1 blocks the binding, leading to tumor cells be
killed by CD8+ T cells. Reproduced with permission from Ref (Filin et al., 2020). Copyright 2020 by the authors.
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immune system and enhance the immunogenicity of tumors (Guo
et al., 2022; Zhuang et al., 2023). Therefore, the combination of
immunotherapy with PTT is the most promising strategy to
overcome the limitations of monotherapy (Wu et al., 2022b). In
this review, we will summarize the recent application in the
synergistic treatment of cancer with mental-based PTT and
immune checkpoint therapy (ICT). We hope this review can
provide a comprehensive status of mental-based PTT combined
ICT for further development, and contribute to the early clinical
translation of metal-based photothermal agents.

2 Immune checkpoint blockades (ICBs)

Over the past decades, a multitude of immune checkpoint
proteins have been identified and studied, including programmed
cell death protein-1 (PD-1)/PD-L1, CTLA-4, lymphocyte-activation
gene 3 (LAG3), T cell immunoglobulin and mucin domain
containing-3 (TIM3), T cell immunoreceptor with Ig and ITIM
domains (TIGIT), and B- and T-lymphocyte attenuator (BTLA) (He
and Xu, 2020). Normally, these immune checkpoints could protect
normal cells from damage through activating the immune system to
resist the malignancies and infections (Marin-Acevedo et al., 2018).
However, in tumor cells, PD-1/PD-L1 and CTLA-4, the most
broadly studied immune checkpoints, lead to T cells with tumor-
killing inactivation and promote tumor cells growth and invasion
(Figure 1A) (Jiang et al., 2021; Liu et al., 2021; Song et al., 2021; Sun S
et al., 2021; Yang et al., 2024). As shown in Figure 1B, CTLA-4
combines with CD80 and CD86 ligands on dendritic cells (DCs) to

deliver an inhibitory signal, which regulates the expression of Treg
cells, an immunosuppressive T cell, and inhibits T cell immune
response activation. Besides, the PD-L1 in cancer cells combines
with PD-1, expressed on T cells, prevents the T cells from killing
cancer cells, causing the immune escape of tumor cells (Filin et al.,
2020). Therefore, the immune checkpoint blockades (ICBs), anti-
CTLA-4 and anti-PD-L1, can enhance antitumor immunity through
disrupting the tumor co-inhibitory immune cells. Although ICT is
an effective strategy to activating T cells and promoting anti-tumor
immune responses, if the number of immune cells is low or non-
existent in the tumor microenvironment, it will diminish the
therapeutic effect of ICBs (He and Xu, 2020). Photothermal
therapy (PTT), using photothermal agents to generate heat under
laser irradiation, can induce ICD in tumors to promote T cells
infiltration. Therefore, combining PTT with ICB treatment can
enhance immune cells infiltration in tumor and prevent tumor
metastases. A comprehensive summary of the noble metal-based
and 2D TMDCs-based photothermal agents in PTT combined with
ICT are showed in Table 2.

3 Noble metal-based photothermal
agents

Noble metals, primarily consisting of gold, silver, platinum and
palladium, not only possess synthetic tunability and strong localized
surface plasmon resonance (LSPR) effects (Jahangiri-Manesh et al.,
2022; Yu et al., 2024) but also have superior optical and
photothermal properties. Based on the aforementioned

TABLE 2 The summary of noble metal-based and TMDCs-based photothermal agents in PTT combined with ICT.

Therapy
types

Photothermal
agents

Immune
checkpoint

Effector cells Power and
time

Temperature References

PTT/ICT Au@Pt-LMDP PD-L1 CD8+ T cells, CD4+ T, Tregs 1.5 W/cm2,
5 min

56.5°C Yang et al. (2019)

PTT/ICT AuNDs@aPD-1 PD-L1 CD8+ T cells, CD4+ T, effector
memory T cells, Tregs

2.0 W/cm2,
10 min

59.3°C He et al. (2022)

PTT/PDT/ICT Au/Ag NRs PD-L1, CTLA-4 CD8+ T cells, effector memory T,
Tregs

1.0 W/cm2,
10 min

Approx. 55°C Jin et al. (2021)

PTT/ICT AgPP@P@M PD-L1 CD8+ T cells, CD4+ T cells 0.5 W/cm2,
6 min

49.44°C ± 0.45°C Xiong et al. (2024)

PTT/ICT AuPtAg-PEG-GOx PD-L1 CD8+ T cells, CD4+ T cells, Tregs,
macrophages

0.7 W/cm2,
5 min

43.0°C Wang et al. (2022)

PTT/ICT/CT Pd-Dox@TGMs PD-L1 CD8+ T cells, Tregs 0.5 W/cm2,
5 min

51.2°C Wen et al. (2019)

PTT/ICT RBC-MoSe2 PD-L1/PD1 CD8+ T cells, CD4+ T cells,
macrophages

2.0 W/cm2,
3 min

53.5°C He et al. (2019)

PTT/ICT MoSe2-DPEG PD-L1 CD8+ T cells, CD4+ T cells, Tregs 1.0 W/cm2,
5 min

45°C Huang Z et al.
(2024)

PTT/ICT/CT FPMF@CpG ODN CTLA-4 CD8+ T cells, CD4+ T cells,
effector memory T cells, Tregs

2.0 W/cm2,
5 min

54.6°C Zhang X. et al.
(2019)

PTT/ICT/CT 1-MT-Pt-PPDA@MoS2 PD-L1 CD8+ T cells, CD4+ T cells, Tregs 1.0 W/cm2,
5 min

61°C Hu et al. (2021)

PTT/ICT/RT WO2.9-WSe2-PEG PD-L1 CD8+ T cells, CD4+ T cells 1.0 W/cm2,
8 min

Approx. 48°C Dong et al. (2020)
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outstanding properties of noble metal, noble metal-based
nanomaterials are widely used in PPT for cancer treatment.

3.1 Gold-based nanomaterials

Gold nanomaterials are the most widely studied noble metal
photothermal agents, due to their outstanding photostability, high
biocompatibility, and considerable photothermal conversion efficiency
(Gui et al., 2021; Shuai et al., 2023). In order to endow gold-based
nanomaterials with targeting and controlled drug release, Yang et al.
combined Au@Pt nanoparticles with the antagonist LMDP peptide to
form a multifunctional nanosystem (Au@Pt-LMDP) (Yang et al., 2019).
As shown in Figures 2A, B, the LMDP peptide consists of a three-part
combination including a PD-L1 antagonist short D-peptide (DPPA-1), a
MMP2-reactive peptide (PLGVRG) and LyP-1 (CGNKRTRGC)
sequence identical to tumor homing ligand, which endow Au@Pt-
LMDP with high tumor inhibition and the alleviation of metastasis,
especially the lung metastasis, via enhancing population of the CD8+

T cells and downregulating the Treg activity when combination with
PTT. Besides, He et al. prepared AuNDs@aPD-1, which not only
exhibits long-term retention of drugs and enhancing the tumor-
targeting ability, but also efficiently promotes the activation of
antitumor CD4+ and CD8+ T cells, and inhibit the Treg cells activity
in tumor when combined with PTT, showing significant anticancer
ability to local as well as distant tumors (Figures 2C, D) (He et al., 2022).

3.2 Silver-based nanomaterials

Silver nanomaterials have been used in the field of PTT for their
low toxicity, easy preparation, tunable SPR band, and superior
thermal conductivity compared to other metals (Boca et al.,
2011). Jin et al. found that a corn-like Au/Ag nanorod (NR)
combination with 1,064 nm laser irradiation obviously increased
the tumor infiltration of T cells after the injection of anti-PD-1 or
anti-CTLA4, indicating a strong immunological memory effect and
high anticancer ability (Figures 3A, B) (Jin et al., 2021). Moreover, in
order to effective target the tumor site and realize the controllable
TME-responsive drug release, Xiong et al. constructed Ag2S QDs/
PTX/α-PD-L1@PLGA@membrane (AgPP@P@M) NPs, which
exhibited superior antitumor ability and lung metastases
inhibition for primary TNBC by enhancing ICD and activating
the activity of CD4+ and CD8+ T cells, suggesting excellent
synergistic therapeutic effects combined PTT with ICB (Figure
3C) (Xiong et al., 2024).

3.3 Platinum-based nanomaterials

Platinum nanoparticles with properties including DNA damage
(Manikandan et al., 2013), antioxidant activity (Wang et al., 2023)
and light absorption in the biological range (Depciuch et al., 2020)
show high potential for use as effective photosensitizers in PTT. In

FIGURE 2
Gold-based nanomaterials combined with PTT and ICBs enhanced the anticancer ability. (A) The schematic illustration of Au@Pt-LMDP combined
with photothermal and immunotherapy. (B) The weights of tumors and the bioluminescent imaging of the metastatic foci of 4T1 lung metastatic tumors
at the end of treatments. Reproduced with permission from Ref (Yang et al., 2019). Copyright 2019, Elsevier B.V. All rights reserved. (C) The schematic
illustration of AuNDs@aPD-1 in photothermal therapy combined with immune checkpoint therapy in vivo. (D) The quantitative analysis of CD4+

T cells, CD8+ T cells, Treg cells and Teff cells in tumor at the end of treatments were detected by Flow cytometry. Reproduced with permission from Ref
(He et al., 2022). 2022, Elsevier Ltd. All rights reserved.

Frontiers in Pharmacology frontiersin.org05

Xie et al. 10.3389/fphar.2025.1553158

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1553158


addition, platinum nanoparticles can also be used in combination
with photoacoustic imaging, magnetic resonance imaging and
immunotherapy due to its excellent photo and thermal stability
(Zhao et al., 2017). As demonstrated in Figures 4A, B, Wang et al.
constructed AuPtAg-PEG-GOx nanozyme by a one-step method,
which showed a broad absorption band in the near-infrared (NIR)
region and higher CAT-like activity (Wang et al., 2022). More
importantly, AuPtAg-PEG-GOx can effectively reprogram “cold”
tumors into “hot” tumors through enhancing the expression of
M1 macrophages in tumors after combination with 1,064 nm laser
irradiation and anti-PD-L1, and increasing the ratio of DC
maturation in lymph nodes, CD4+ and CD8+ T cells activation in
spleen as well as inhibiting the proportion of Treg cells, showing
high tumors inhibition.

3.4 Palladium-based nanomaterials

Palladium-based nanomaterials have been used in
chemotherapy (CT), photodynamic therapy (PDT) and PTT due
to its high catalytic activity in the presence of hydrogen peroxide,
which facilitates the formation of oxygen molecules, thereby

enhancing the efficiency of various cancer treatment (Wei et al.,
2018; Zhang J et al., 2018; Singh et al., 2023; Yin et al., 2023;
Lakkakula et al., 2024). Moreover, it has been demonstrated that
palladium-based nanomaterials used in synergy with PPT and ICT
can effectively activate the immune response to suppress tumor
growth and metastasis. For instance, Wen et al. constructed Pd-
Dox@TGMs NPs with an excellent inhibitory effect on CT26 tumor
cells due to the synergistic therapy of CT and PTT, which cause ICD
in CT26 cells (Figure 5A) (Wen et al., 2019). In addition, as shown in
Figures 5B, C, the nanosystem could effectively trigger CD8+ T cells
and suppress the tumor growth in the CT26 lung metastatic model
when combining with anti-PD-L1. The Pd-Dox@TGMs NPs
demonstrate remarkable antitumor properties of palladium-based
photothermal agents when combining with PTT and ICT, however,
there is still a dearth of research in this area for other palladium-
based photothermal agents.

In conclusion, although the gold, silver, platinum and
palladium-based metal photothermal agents have exhibited
effectively anticancer ability in vitro and in vivo when combined
PTT with ICT, high price, poor targeting specificity to tumor tissue,
complex synergistic therapy processes and other shortcomings
remain to be overcome.

FIGURE 3
Silver-based nanomaterials combinedwith PTT and ICBs enhanced the anticancer ability. (A) Schematic illustration of anticancer immune responses
induced by Au/Ag NR combined with NIR-II PTT/PDT. (B) t-SNE analysis of immune cells in tumors at the end of treatment. Reproduced with permission
fromRef (Jin et al., 2021). Copyright 2020, Elsevier Ltd. All rights reserved. (C) Schematic illustration of AgPP@P@MNPs enhanced immunotherapy in vivo.
Reproduced with permission from Ref (Xiong et al., 2024). Copyright 2024, Wiley-VCH GmbH.

Frontiers in Pharmacology frontiersin.org06

Xie et al. 10.3389/fphar.2025.1553158

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1553158


4 Two-dimensional transition metal
dichalcogenides

Two-dimensional nanomaterials exhibit high NIR absorption
ability, photothermal conversion efficiency and surface area, which
hold huge potential for drugs delivery and photothermal tumor
treatment (Wu et al., 2022a). Among many two-dimensional
nanomaterials, the extremely high surface area of two-
dimensional transition metal disulfide compounds (2D TMDCs)
is able to attach a variety of nanoparticles and fluorescent probes for
integration with other functional moieties, giving them richer
properties than other 2D nanomaterials. The structure of
TMDCs is mainly composed of two chalcogen atoms X (such as
S, Se, Te) and a transition metal atom M (such as V, Ti, Nb, Mo, Zr,
Co., Hf, Mn, Ta, etc.) to form a sandwich-like X-M-X (MX2)
structure (Gong et al., 2017; Jiang et al., 2022; Mondal and De,
2024). In recent years, the combined anticancer advantage of 2D
TMDCs have also gained more attention in the area of biomedicine
because of its excellent properties with low toxicity, improving
therapeutic efficacy and overcoming multi-drug resistance
(MDR), which was shown in Figure 6 (Gong et al., 2017). So far,
2D TMDCs, such as MoS2, WS2, MoSe2 and WSe2 have been
extensively studied for synergistic therapy, including
photothermal therapy/photodynamic therapy (PTT/PDT) (Liu
et al., 2014; Jia et al., 2017; Liu et al., 2020; Zhao et al., 2024),

photothermal therapy/chemotherapy (PTT/CT) (Long et al., 2020;
Gao et al., 2021; Chen et al., 2023; Xie et al., 2023), photothermal
therapy/radiation therapy (PTT/RT) (Wang et al., 2016; Qi and Liu,
2019) and photothermal therapy/gene therapy (PTT/GT) (Kim
et al., 2016; Zhang et al., 2016). However, there are relatively few
studies focusing on PTT combined with ICT using 2D TMDCs as
photothermal agents. Therefore, three 2D TMDCs (MoSe2, MoS2
and WSe2), which have demonstrated a high capacity to activate
immune cells and realize effective tumor eradication, are introduced
as follow.

4.1 MoSe2-based nanomaterials

MoSe2 is considered as a promising 2D TMDCs for its narrow
band gap (~1.05 eV), considerable layer spacing (~0.65 nm),
excellent biocompatibility and highly efficient NIR-II absorption
(Yuwen et al., 2016; Jiang et al., 2022). He et al. developed two-
dimensional MoSe2 nanosheets with high photothermal conversion
efficiency through employing a liquid exfoliation method (He et al.,
2019). As shown in Figures 7A–C, hemocompatibility and
circulation time were enhanced by coating two-dimensional
MoSe2 nanosheets with red blood cell (RBC) membranes, which
had excellent photothermal conversion efficiency to prevent
macrophage phagocytosis. In addition, the RBC-MoSe2 combined

FIGURE 4
Platinum-based nanomaterials combined with PTT and ICBs enhanced the anticancer ability. (A) Schematic illustration of the AuPtAg-PEG-GOx
nanozyme combined with 1,064 nm laser irradiation and anti-PD-L1 in vivo. (B) Flow cytometric analyses of the populations of M2 and M1 macrophages
in tumor, DC cells in lymph nodes as well as CD4+ T cells, CD8+ T cells, and Treg in spleen. Reproduced with permission from Ref (Wang et al., 2022).
Copyright 2022, The Authors. Advanced Science published by Wiley-VCH GmbH.
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with 808 nm laser irradiation and PD-1 checkpoint-blockade
exhibited higher tumor ablation through CD4+ T cells activation
in primary tumor and reprogramming the tumor-associated
macrophages to tumoricidal M1 phenotype. Similarly, Huang
et al. constructed MoSe2-DPEG nanosheets, which performance
high PTT synergizing with anti-PD-L1, thus efficient depleting
GSH, improving the response of ICB and stimulating CD8+ T
cell-mediated systemic antitumor immune responses (Figures 7D,

E) (Huang Z et al., 2024). However, circulating tumor cells (CTCs),
detaching from the primary tumor tissue and entering bloodstream,
are vital for the development and progression of lung cancer, based
on this, Huang et al. constructed a PD-L1-MFP NS nanosystem,
which is based on MoSe2 as a core and Fe3O4 as a functional
magnetic material encapsulated with PDA coating in combination of
anti-PD-L1 (Huang H et al., 2024). The nanosystem is able to enrich
CTCs by an outer magnetic field and killing the captured CTCs

FIGURE 5
Palladium-based nanomaterials combinedwith PTT and anti-PD-L1 enhanced the anticancer ability. (A) Schematic illustration of the Pd-Dox@TGMs
NPs nanozyme combined with 808 nm laser irradiation and anti-PD-L1 in vivo. (B) The pictures of lungs and staining of H&E and Ki67 in lung sections at
the end of treatment. (C) The infiltration of CD8+ T cells and Tregs in lung sections after treatment. Reproduced with permission from Ref (Wen et al.,
2019). Copyright 2019, American Chemical Society.

FIGURE 6
The advantages of 2D TMDCs combined with photothermal therapy. Reproduced with permission from Ref (Gong et al., 2017). Copyright 2017,
Royal Society of Chemistry All rights reserved.
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under the irradiation of NIR laser. Furthermore, the nanosystemwas
also able to activate the expression of the surface ligands of NKG2D,
enabling NK cells to kill CTCs, further preventing CTCs from
undergoing immune escape.

4.2 MoS2-based nanomaterials

In recent years, MoS2 has been reported and rapidly employed as
a photosensitizer carrier or photothermal agent due to its excellent
biocompatibility and high photothermal properties (Wang et al.,
2024). For example, Zhang et al. designed multifunctional FPMF@
CpG ODN NCs, which was consist of folic acid (FA), FePt, MoS2,
oligodeoxynucleotides containing cytosine-guanine (CpG ODNs)
and anti-CTLA4 antibody (Zhang D. et al., 2019). The FPMF@CpG
ODN NCs exhibited higher synergistic photo-chemo-
immunotherapy for cancer due to the highly effective
photothermal conversion of MoS2 nanosheets, overproduction of
ROS induced by FePt, and the increase immune cells activated by
CpG ODNs and CTLA4 (Figures 8A, B). In addition, in order to
monitor the tumor treatment real time, Hu et al. constructed 1-MT-
Pt-PPDA@MoS2 complexes, with excellent multimode
complementary CT/PA/thermo imaging. Furtherly, the complexes
could obviously inhibit the tumor growth via the synergistic
photothermo-chemotherapy and activation of T cell-mediated
immunotherapy to realize complete tumor eradication (Figures
8C, D) (Hu et al., 2021).

4.3 WSe2-based nanomaterials

WSe2, an excellent member of the p-type TMD semiconductors
and having sizable bandgap, has been widely used in building CMOS
circuits (Xue et al., 2024). Furtherly, WSe2-based nanomaterials
have exhibited high biosafety than graphene-like nanomaterials,
showing enormous potential for biomedical applications (Altalbawy
et al., 2025). Dong et al. designed WO2.9-WSe2-PEG nanoparticles,
semiconductor heterojunction structure, to realize a synergistic RT/
PTT/CBT for enhanced antimetastatic and anticancer effect (Dong
et al., 2020). As shown in Figure 9A, the WO2.9-WSe2-PEG
nanoparticles not only showed excellent ROS overproduction in
highly expressed H2O2 TME under X-ray irradiation, but also could
enhance RT outcome under the 808 nm laser irradiation via
inducing hyperthermia. More importantly, the CD8+ T and CD4+

T cells in distant tumors were significantly activated in distant tumor
when WO2.9-WSe2-PEG nanoparticles combined with RT/PTT and
anti-PD-L1 antibody, indicating powerful immunological memory-
killing and efficiently antimetastatic and anticancer
effect (Figure 9B).

These results clearly illustrate that, due to their excellent physical
and chemical properties, MoSe2/MoS2/WSe2-based nanomaterials
showed high capacity to activate the CD8+ T and CD4+ T cells,
thereby achieving an effective antitumor effect when combining
PTT with ICT. However, the mechanisms underlying the activation
of immune responses and synergistic effects of PTT in antitumor
treatments remain to be elucidated.

FIGURE 7
MoSe2-based nanomaterials combined with PTT and ICBs enhanced the anticancer ability. (A) Schematic illustration of RBC-MoSe2 nanosheet
combined with 808 nm laser irradiation and anti-PD-L1, which efficiently enhanced photothermal-triggered cancer immunotherapy. Flow cytometric
analyses of the CD8+T cells in primary tumor (B) and the CD4+ T cells in spleen (C) at the end of different treatment. Reproducedwith permission fromRef
(He et al., 2019). Copyright 2019, WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim. (D) Schematic illustration of MoSe2-DPEG combined with
1,270 nm laser irradiation and anti-PD-L1 in vivo. (E) The quantitative analysis of CD8+ T cells in primary and distant tumor, and the Treg cells in distant
tumor. Reproduced with permission from Ref (Huang H et al., 2024). Copyright 2024, American Chemical Society.

Frontiers in Pharmacology frontiersin.org09

Xie et al. 10.3389/fphar.2025.1553158

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1553158


5 Photothermal agents impact the
immune response

5.1 Photothermal temperature

Evaluating the superior performance of a photothermal agent
usually focuses on its photothermal stability and photothermal
conversion efficiency. Cancer cells release heat shock proteins (HSP)
under heat stress, and the expression of HSP facilitates the repair of cells
that have been damaged by heat, contributing to the development of heat
resistance in tumor cells (Jin et al., 2018). Consequently, the
aforementioned property of heat resistance in tumor cells
compromises the efficacy of thermal ablation at relatively low
temperatures. (Toraya-Brown and Fiering, 2014; Tang X et al., 2018).

In addition, an appropriate increase in temperature can increase the
permeability of the tumor vasculature, thereby promoting immune cells
transport to the tumor and changing the visibility of the tumor to
immune cells. Therefore, the heat dose (a function of temperature and
time of exposure to that temperature) has an important impact on
obtaining the desired level of immune stimulation (Nomura et al., 2020).
However, the exact amount of heat required to stimulate the immune
system is still being explored, while small changes in heat dose may lead
to gaps in the efficacy of immune stimulation (Moy and Tunnell, 2017).

Sweeney et al. explored the optimal temperature window for PTT-
induced ICDwith an animalmodel of neuroblastoma and demonstrated
that too high and too low heat doses are not more favorable for ICD
activation (Figure 10A) (Sweeney et al., 2018). Prussian blue nano-
particles (PBNPs) was used as the photothermal agent, and three

FIGURE 8
MoS2-based nanomaterials combined with PTT and anti-CTLA4 or 1-methyl-tryptophan (1-MT) enhanced the anticancer ability. (A) Schematic
illustration of the FPMF@CpG ODN nanocomposites combined with chemotherapy, 808 nm laser irradiation and anti-CTLA4 in vivo. (B) The volume of
tumors, the percentage of CD4+ and CD8+ T cells in tumor, and the percentage of maturation of DCs in lymph nodes after different treatments.
Reproduced with permission from Ref. (Zhang D. et al., 2019) Copyright 2019, Royal Society of Chemistry. (C) Schematic illustration of the 1-MT-Pt-
PPDA@MoS2 combined with 808 nm laser irradiation and 1-MT in vivo. (D) PA images of tumors at different time points after the 1-MT-Pt-PPDA@MoS2
complexes injection, and flow cytometric analyses of the CD4+ and CD8+ T cells in tumor. Reproduced with permission from Ref (Hu et al., 2021).
Copyright The Authors. Advanced Science published by Wiley-VCH GmbH.
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different heat dose groups were set up (low, <40°C; medium, <60°C and
high, ≈90°C). Although higher PTT was more effective in tumor
inhibition suggested by slower tumor growth and highest survival,
thermal dose (3.3–5.6, log (CEM43)) initiated the innate immune
responses against tumor challenge (Figures 10B, C). In addition,
Sekhri et al., found that thermal doses >5 log (∑CEM43) could
efficient induced ICD in SH-SY5Y cells, and thermal doses≥10 log
(∑CEM43) in LAN-1 cells, which was consistent with the result that
compared with LAN-1 cells, at equivalent thermal doses, cytotoxicity
T cells exhibited significantly higher cytotoxicity toward SH-SY5Y cells
(Figures 10D–F) (Sekhri et al., 2022).

5.2 Size of photothermal agents

It is well established that the size of nanoparticles influences
their accumulation and retention time in vivo, as well as their

diffusion within tumor tissues. Studies indicate that nanoparticles
smaller than 5 nm are quickly cleared by the kidneys, while those
larger than 100 nmmay be removed by the mononuclear phagocytic
cell system (Blanco et al., 2015). The size of nanomaterials used in
combination PTT and ICT can influence the immune response,
including cellular uptake of nanomaterials, the maturation of
antigen-presenting cells (APCs), and the balance between
Th2 and Th1 immune responses. Nanoparticles that are similar
in size to pathogens are more readily identified and effectively
internalized by APCs to trigger immune responses. Dendritic
cells (DCs) preferentially internalize particles in the range of
20–200 nm, while macrophages tend to internalize larger
particles (0.5–5 μm) (Zhao et al., 2014). Additionally, the
photothermal conversion efficiency of nanomaterials must be
considered. For instance, in the case of plasmonic nanoparticles
with LSPR, the absorption, scattering, and extinction coefficients are
all size- and shape-dependent (Jain et al., 2006; Kim et al., 2019). The

FIGURE 9
WSe2-based nanomaterials combined with Radiotherapy (RT), PTT and anti-PD-L1 enhanced the anticancer ability. (A) Schematic illustration of the
WO2.9-WSe2-PEG nanoparticles combined with RT, 808 nm laser irradiation and anti-PD-L1 in vivo. (B) Flow cytometric analysis of CD8+ T and CD4+

T cells in distant tumors at the end of treatment. Reproduced with permission from Ref (Dong et al., 2020). Copyright 2020, American Chemical Society.
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optimal size of nanoparticles for maximizing the efficacy of PTT and
ICT varies and depends on specific conditions.

The above studies suggest that different metal-based
photothermal agents and their sizes may have the most suitable
thermal doses for efficiently addressing the issue of cancer cells
escaping immune recognition when combined PTT with and ICT.

6 Conclusion and future perspective

This review outlines recent developments in metal-based
photothermal therapy in conjunction with immune checkpoint
therapy. Noble metal-based and 2D TMDCs-based photothermal
agents showed high capacity to activate the CD8+ T and CD4+ T cells
to realize complete tumor inhibition and inhibit cancer cells
metastasis when combined PTT with ICT. Nevertheless, metal-

based photothermal therapy encounters several challenges that
hinder its potential synergistic application with ICT and clinical
translation, which are as follows: 1) Most metal-based photothermal
agents were low photothermal conversion efficiency and
biocompatibility; 2) Tumors in situ were little used to evaluate
synergistic effects in vivo; 3) Noble metal-based photothermal
agents and ICBs are expensive; 4) The tumor thermotolerance
triggered by photothermal therapy has been established; 5) Even
with NIR-II light, the irradiation sources used for most metal-based
photothermal agents often struggle to penetrate the deep-seated
solid tumors; 6) Current research has been limited to preclinical
studies in mice and has yet to be corroborated by large-scale clinical
trials (Sun et al., 2024).

As mentioned above, although the combination of PTT and ICT
effectively addresses the limitations of monotherapy and brings
breakthrough in cancer treatment, the development of a

FIGURE 10
Optimal thermal window of ICD generated by PBNP-based PTT. (A) Schematic illustration of middle thermal dose increasing the ICD. (B) The tumor
temperatures and survival of Neuro2a tumor-bearing mice treated with low, medium and high thermal dose PBNP-PTT. (C) Thermal dose [3.3–5.6, log
(CEM43)] improved long-term survival of Neuro2a tumor-bearing mice. Reproduced with permission from Ref (Sweeney et al., 2018). Copyright
2018 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim. (D) Schematic illustration of middle thermal dose, determined by laser power and PBNP
concentration, enhanced tumor cell killing and ICD. PBNP-PTT generates a thermal dose window of ICD in SH-SY5Y (E) and LAN-1 (F) cell. Reproduced
with permission from Ref (Sekhri et al., 2022). Copyright 2022 by the authors.
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photothermal agent with low toxicity, high photothermal effect and
cost-effective remains a bottleneck in its clinical translation.
Moreover, the mechanisms underlying the activation of immune
responses and synergistic effects of PTT in antitumor treatments
remain to be elucidated.

Overall, the development of safe and efficient metal-based
photothermal agents for enhanced synergistic ICBs therapy in
cancer treatment presents both challenges and opportunities.
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