Skip to main content

ORIGINAL RESEARCH article

Front. Pharmacol.

Sec. Ethnopharmacology

Volume 16 - 2025 | doi: 10.3389/fphar.2025.1552579

This article is part of the Research Topic The Vascular System: Effects of Traditional Medicines and Mechanism of Action View all 8 articles

Umbelliferone as an Effective Component of Rhodiola for Protecting the Cerebral Microvascular Endothelial Barrier in CSVD

Provisionally accepted
Li Tang Li Tang Hongfa Cheng Hongfa Cheng Qiuyue Yang Qiuyue Yang Yahui Xie Yahui Xie Qiuxia Zhang Qiuxia Zhang *
  • Capital Medical University, Beijing, China

The final, formatted version of the article will be published soon.

    Objective: Rhodiola is a common Chinese herb in the treatment of cerebral small vessel disease (cSVD). Umbelliferone, one of the effective components of Rhodiola, can protect the endothelial barrier. But its mechanisms are still unclear. Therefore, this study is aimed to explore mechanisms of umbelliferone of an effective component of Rhodiola in protecting the cerebral microvascular endothelial barrier in cSVD. Methods: Firstly, ETCM, SwissTargetPrediction and literatures were used to screen components and targets of Rhodiola. GeneCards was used to obtain targets of cSVD. STRING and Cytoscape were utilized for building the PPI and C-T network. Metascape was utilized to construct GO and KEGG enrichment analysis. Then, molecular docking was employed to evaluate the binding ability of the compounds for their respective target molecules. Ultimately, the endothelial cell damage caused by OGD was employed to explore the protective impact of umbelliferone, a bioactive constituent of Rhodiola, on the endothelial barrier. Endothelial cell leakage and migration assays were used to assess the permeability and migration ability of endothelial cells. IF and WB techniques were employed to ascertain the expression of endothelial tight junction protein.The major target proteins and related pathways were validated by WB. Results: 6 effective components and 106 potential targets were identified and 1885 targets of cSVD were obtained. 9 key targets were selected. GO and KEGG enrichment analysis suggested that effects of Rhodiola in cSVD were associated with PI3K-Akt, Ras, Rap1 and MAPK signal pathways. Molecular docking results showed good binding ability between 28 pairs of key proteins and compounds. Umbelliferone of an effective component of Rhodiola can protect tight junction proteins and improve the permeability and migration ability of endothelial cells damaged by OGD through MMP9, MMP2, CCND1, PTGS2 and PI3K-Akt, Ras, Rap1 signaling pathways.Our study systematically clarified mechanisms of Rhodiola in treating cSVD by network pharmacology and molecular docking, characterized by its multi-component, multi-target and multi-pathway effects. This finding was validated through in vitro tests, which demonstrated that umbelliferone of an effective component in Rhodiola can protect the brain microvascular endothelial barrier. It provided valuable ideas and references for additional research.

    Keywords: Rhodiola, Umbelliferone, CSVd, Network Pharmacology, molecular docking, Traditional Chinese medicine Abbreviations: ADME, absorption distribution metabolism and excretion, BBB, blood brain barrier, BC, betweenness centrality

    Received: 28 Dec 2024; Accepted: 27 Feb 2025.

    Copyright: © 2025 Tang, Cheng, Yang, Xie and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Qiuxia Zhang, Capital Medical University, Beijing, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

    Research integrity at Frontiers

    Man ultramarathon runner in the mountains he trains at sunset

    94% of researchers rate our articles as excellent or good

    Learn more about the work of our research integrity team to safeguard the quality of each article we publish.


    Find out more