
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Pharmacol.
Sec. Ethnopharmacology
Volume 16 - 2025 | doi: 10.3389/fphar.2025.1551257
This article is part of the Research TopicHerbal Medicines and Their Metabolites as Therapeutic Agents in Osteolytic Disease ManagementView all 10 articles
The final, formatted version of the article will be published soon.
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Background: Osteoporosis (OP) represents a widespread bone remodeling disorder within the domain of orthopedics, markedly compromising the quality of life in the elderly population. The need to develop more efficient therapeutic approaches to attenuate bone resorption by suppressing the excessive activation of osteoclasts (OCs) remains urgent. The plant flavonoid Isorhamnetin (Iso), recognized for its potent antioxidant properties, has been the subject of extensive research regarding its potential in treating bone-related conditions.Method: This study adopts a comprehensive methodology to evaluate Iso's impact on bone metabolism and its therapeutic possibilities for treating OP. By integrating network pharmacology, molecular dynamics simulations, and surface plasmon resonance (SPR), we performed in vitro phenotypic analyses to systematically evaluate the inhibitory effect of Iso on OC differentiation. The mechanisms behind Iso's inhibition of OC differentiation were further elucidated. In vivo testing was also performed to substantiate the therapeutic effects of Iso in an OP animal model.At low concentrations, Iso showed no cytotoxicity and did not interfere with cell proliferation in RAW 264.7 cells. Iso effectively inhibited RANKL-induced OC differentiation in these cells, while downregulating related genes levels (Nfatc1, Ctsk, Trap, c-Fos). Molecular dynamics simulations and surface plasmon resonance confirmed Iso's dual binding to both RANKL and RANK. KEGG pathway enrichment analysis results indicated that Iso modulates the MAPK, NF-κB/PI3K-AKT, and calcium signaling pathways.Western blot analysis revealed that Iso treatment targeting the RANKL/RANK binding pathway significantly downregulated phosphorylation levels of JNK, P38, AKT, and p65. Concurrently, Iso stimulation markedly increased IκBα expression, thereby rescuing its degradation. Furthermore, Iso demonstrated a robust inhibitory effect on reactive oxygen species (ROS) levels in vitro. Furthermore, in OVX mice, Iso treatment increased bone density, modulated serum bone metabolism markers, and downregulated transcriptional levels of OC marker genes.Conclusion: Iso exhibits therapeutic potential for OP by selectively targeting and disrupting the RANKL-RANK interaction. This intervention modulates the expression of intracellular transcription factors and multiple signaling pathways, thereby inhibiting the maturation of OCs. Through mitigating OC-mediated bone loss, Iso holds significant promise as a potent therapeutic agent for OP.
Keywords: Isorhamnetin, Molecular Dynamics Simulation, Network Pharmacology, osteoclast, Osteoporosis
Received: 25 Dec 2024; Accepted: 08 Apr 2025.
Copyright: © 2025 Zhou, Li, Hong, Wang, Shao, Wu and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Jianwei Wang, Wuxi Traditional Chinese Medicine Hospital, Wuxi, Jiangsu Province, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Supplementary Material
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.