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Background: Purslane (Portulaca oleracea) is a medicinal and edible plant.
Purslane extract (POEE) exhibits lipid-lowering, anti-inflammatory, and
antioxidant properties. Traditionally, this extract has been used to treat various
inflammatory conditions, including skin inflammation, enteritis, and dysentery.
However, its therapeutic potential and molecular mechanisms in atherosclerosis
(AS) remain unclear.

Methods: Ultra-performance liquid chromatography-quadrupole/time-of-flight
mass spectrometry (UPLC-Q/TOF-MS) and the Traditional Chinese Medicine
Systems Pharmacology Database were employed to identify the active
components of POEE. Network pharmacology was used to predict POEE’s
mechanisms for alleviating AS. An in vitro foam cell model was established by
treating RAW264.7 macrophages with oxidized low-density lipoprotein (ox-LDL),
and the protective effects of POEE were assessed via the 3-[4,5-dimethylthiazol-
2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, while intracellular lipid
accumulation was identified using Oil Red O staining. Protein expression
related to cholesterol metabolism was analyzed by Western blot (WB). For in
vivo validation, AS was induced in rats through a high-fat diet and carotid artery
injury. After 4 weeks of daily POEE administration, the therapeutic efficacy was
tested by measuring serum lipid levels, cardiac function, histopathological
changes, and the cholesterol transport-related protein expression.

Results: The bioactive compounds identified in POEE were categorized into
10 groups, including flavonoids (24), terpenoids (16), phenols (6), and alkaloids (4),
and others. Network pharmacology predictions implicated POEE in modulating
the “Lipid and Atherosclerosis” pathway. POEE significantly reduced total
cholesterol (TC) and free cholesterol (FC) levels in ox-LDL-stimulated
macrophages, attenuating foam cell formation. Furthermore, POEE enhanced
reverse cholesterol transport (RCT) by upregulating the expressions of ATP-
binding cassette transporters ABCA1 and ABCG1 to promote cholesterol
efflux, while suppressing CD36 and MSR1 expressions to inhibit cholesterol
uptake. In vivo, POEE administration lowered serum triglycerides (TG), TC, FC,
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and LDL-C levels; elevated HDL-C; and ameliorated carotid artery lesions in AS rats.
Concordantly, ABCA1 expression was upregulated and that of MSR1 was
downregulated in POEE-treated carotid tissues.

Conclusion: POEE alleviates atherosclerosis by enhancing RCT through regulation
of cholesterol efflux and uptake pathways. POEE may be a promising therapeutic
candidate for AS.

KEYWORDS

Portulaca oleracea, bioactive ingredients, atherosclerosis, cholesterolmetabolism, reverse
cholesterol transport

1 Introduction

Atherosclerosis (AS) is a chronic inflammatory disorder
involving lipid accumulation, inflammation, cellular death, and
fibrosis in the arterial tunica intima (Williams et al., 2020).
Currently, the primary mechanisms of prevention and
management of AS focus on lipid regulation, anti-inflammation,
and antihypertensive control (Wang et al., 2019; Devesa et al., 2023).
Central to AS pathogenesis is foam cell formation—a consequence
of dysregulated cholesterol homeostasis involving influx,
esterification, and efflux imbalances (Ren et al., 2021). The
hallmark pathological feature of AS is lipid-rich plaques,
characterized by abundant macrophage-derived foam cells within
the arterial intima (Zhao et al., 2019). Conversely, reverse cholesterol
transport (RCT) exported excess cholesterol from foam cells to the
liver for conversion into bile acids and subsequent fecal excretion
(Chen et al., 2023). Thus, RCT represents a critical and potentially
pivotal defense mechanism in mitigating the progression of AS.

RCT is a cholesterol metabolism pathway, and cholesterol efflux
can remove free cholesterol from macrophages through active
transfer or passive transmembrane diffusion mediated by
cholesterol transporters (Chen et al., 2023). Subsequently, HDL
or apolipoprotein (Apo) A1 captures and releases cholesterol.
The cholesterol transporters, ATP-binding cassette (ABC)
transporters (ABCA1 and ABCG1), play major roles in active
free cholesterol efflux (Bi et al., 2017). Macrophage scavenger
receptor 1 (MSR1) and cluster of differentiation 36 (CD36) are
scavenger family A and B receptor proteins, respectively (Bieghs
et al., 2010). They are the primary receptors for phagocytosis and
uptake of oxidized low-density lipoprotein (ox-LDL) by
macrophages cells, accounting for 90% of the ox-LDL load of
macrophages. This dynamic imbalance between ABCA1-/
ABCG1-facilitated cholesterol export and CD36-/MSR1-
dependent ox-LDL uptake constitutes a pivotal pathological
mechanism driving foam cell transformation and atherosclerotic
plaque progression (Duan et al., 2017).

Portulaca oleracea, widely distributed in temperate and tropical
regions, is recognized by the World Health Organization as one of
the most extensively used medicinal plants and a “global panacea”
(Zhang et al., 2020). Its phytochemical components include
flavonoids, terpenoids, alkaloids, coumarin, organic acids, and
polysaccharides (Li et al., 2024). These bioactive constituents
exhibited multi-target effects, including anti-inflammatory, anti-
tumor, and antimicrobial activities and metabolic management
(Gao et al., 2020; Park et al., 2019; Noorbakhshnia and Karimi-
Zandi, 2017). The traditional use of P. oleracea extract (POEE) was

in treating inflammatory disorders including skin inflammation,
enteritis, and dysentery (Li et al., 2024). Emerging evidence supports
that the P. oleracea plant has anti-atherosclerotic potential (Wang et al.,
2024; Hao et al., 2024). Experimental studies demonstrated that the
stem extract of P. oleracea has protective effects on hyperlipidemia (El-
Newary, 2016). In addition, Portulaca grandiflora, the plant belonging
to the same family as P. oleracea, played an important role in
attenuating atherosclerotic lesion progression in experimental
models. However, the precise mechanisms underlying POEE action
have not yet been fully elucidated. Therefore, the objective of the current
study was to explore the potential role of POEE against AS, with
particular emphasis on its modulation of RCT pathways. The flow chart
of this study is shown in Figure 1.

2 Materials and methods

2.1 Chemicals and reagents

DMEM-high glucose culture medium was purchased from
American Hyclone Inc., and fetal bovine serum was purchased
from Gibco Co. (United States). Ox-LDL was obtained from
Guangdong YiYuan Biotech Co. Ltd. (China) (Liu et al., 2014).
Shanghai Mclean Biochemical Technology Co. Ltd. (China)
supplied the cell lysis buffer used for Western blot and
immunoprecipitation (IP). Oil Red O dye was purchased from
Sigma (United States). The TC and free cholesterol (FC)
detection kits were purchased from Shanghai Yuan Ye
Biotechnology Co. Ltd. The antibodies against ABCA1, ABCG1,
CD36, and MSR1 were bought from Abcam Company
(United States). Rutin (purity >98.0%), matrine (purity >98.0%),
and glutamic acid (analytically pure) standards were purchased from
Beijing Solarbio Technology Co. Ltd., Dalian Meilun Biotechnology
Co. Ltd., and Sinopharm Chemical Reagent Co. Ltd., respectively.

2.2 Preparation of POEE

Manual crushing and high-speed grinding created a fine powder.
The powder was sifted with a 40-mesh sieve. Based on the extraction
optimization process of POEE (Kong et al., 2018), extraction was
performed at the temperature of 50°C; 70% ethanol was used, with
an extraction interval of 53 min and a solid-to-liquid ratio of 1:15 (g/
mL). POEE was obtained after filtrate drying and volume
confirmation. The concentration of the purslane extract was
prepared according to the mass concentration required for the test.
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2.3 Content determination of active
fractions in POEE

2.3.1 Determination of the total flavonoid content
in POEE

Two milliliters of POEE followed by 0.5 mL of 5%
sodium nitrite was pipetted into a volumetric flask,
shaken, and left to stand. After that, 0.5 mL of 10%
aluminum nitrate was added and mixed. At the end of the
reaction, 5 mL of 4% sodium hydroxide was added to the flask
and was filled to volume. After mixing, the solution was left

undisturbed for 20 min, which led to the formation of the
POEE reaction mixture (Yu et al., 2007). Using rutin as
the standard, the total flavonoid content was assessed by
measuring the mixture’s absorbance at 510 nm (Wang
et al., 2012).

2.3.2 Determination of the total alkaloid content
in POEE

The content of total alkaloid in POEE was determined
according to Gan et al. (2010). Matrine was conformed as the
standard to measure the total alkaloid content.

FIGURE 1
Flowchart of this study.
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2.3.3 Determination of the total amino acid content
in POEE

The content of total amino acid in POEE was determined
according to Wang (2006). In addition, the total amino acid
content was measured using glutamic acid as the standard.

2.3.4 Chemical profiling of POEE based on UPLC-
Q-TOF-MS/MS

The parameter setting of UPLC-Q-TOF-MS/MS was referred to
in Zhang C. et al. (2023). The sample injection volume was 2 μL.

A comprehensive score of 0.7 or more was used to identify
the compounds in POEE by comparing the retention time,
molecular weight (with an error of less than 10 ppm),
secondary fragmentation spectra, collision energy, and other
details. The methods employed for identification and statistical
analysis of the compounds were comparable to those used in Fei
et al. (2022).

2.4 Network pharmacology analysis

2.4.1 Screening of active components
All identified POEE components were input into the TCMSP

as references (Ru et al., 2014; Zhang J. et al., 2023). The
screening criteria were as follows: oral bioavailability (OB) ≥
20%, human Caucasian colon adenocarcinoma (Caco-2) ≥ – 0.4,
and drug-likeness (DL) ≥ 0.18. Compounds that meet these
requirements are considered to be active components. In
addition, as reported in literature, some compounds with
pharmacological activities do not meet the above criteria
were included in the scope.

2.4.2 Mining of targets for AS treatment with POEE
To discover the therapeutic targets for AS treatment with

POEE, the keyword “atherosclerosis” was used to mine relevant
target genes from databases (GeneCards, OMIM, DrugBank, and
DisGeNET). In addition, gene expression data for AS
(GSE100927) were downloaded from the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/)
for statistical analysis. The selection criteria included the
following: GeneCards score ≥1 and DisGeNET score ≥0.02,
and for GEO analysis, p < 0.05 and |logFC| > 1. After
combining all the target genes from the sources mentioned
above, duplicate targets were eliminated. Furthermore, the
active components of POEE were imported into
SwissTargetPrediction (http://www.swisstargetprediction.ch/).

The target gene identification can be referred to in Bardou et al.
(2014); Daina and Zoete (2024). Gene symbols were used to
standardize the target genes using the UniProt database (https://
www.uniprot.org/). We used Venny 2.1 (https://bioinfogp.cnb.csic.
es/tools/venny/) to find these genes’ intersections, which were
considered targets for POEE in treating AS (Bardou et al., 2014).

2.4.3 GO and KEGG enrichment analysis
The identified target genes of GO and KEGG enrichment were

referred to in Fei et al. (2022). A p-value of less than 0.01 was used to
screen and present the top 10 GO terms and the top
20 KEGG pathways.

2.5 Cell viability and cell proliferation assays

The methods for cell culture of RAW264.7 cells were referred to
in Picard et al. (2011). Cells at different densities were cultured using
the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide
(MTT) assay (6 × 103 cells/well), Oil Red O staining (4 × 104 cells/
well), lipid metabolism index detection (1 × 105 cells/well), and
Western blot.

RAW264.7 cells were prepared in high-glucose Dulbecco’s
Modified Eagle’s Medium (DMEM) supplemented with 10% fetal
bovine serum (FBS), partial shipments in 96-well plates, each group
of five holes, 100 μL per hole, at 37°C, and 5% CO2 incubator
adaptability training in 24 h.We added 20, 40, 60, 80, and 100 μg/mL
of ox-LDL to the culture medium for 24-h incubation to induce the
foam cells. Subsequently, POEE (final concentrations of 100, 200,
300, and 400 μg/mL) was added to foam cells, followed by the
replacement of serum-free culture, with each hole containing
100 μL, as determined by MTT. After 2 h, the medium was
drained, and 100 μL of dimethyl sulfoxide (DMSO) was added.
The plates were shaken and incubated at 37°C for 10 min, and the
absorbance was measured at 450 nm wavelength. The cell viability
was calculated based on the absorbance values of each group.

According to the above results, 60 mg/L ox-LDL was added with
POEE (final concentration of 300 μg/mL) to the cells for protection
and intervention for 4 h. The serum-free medium was replaced, and
100 μL of MTT was added to each well. The liquid was dried up after
2 h, and 100 μL of DMSO was added. Furthermore, the plates were
shaken and incubated at 37°C for 10 min, and the absorbance was
measured at 450 nm wavelength. The cell viability was calculated
based on the absorbance observed in each group.

2.6 Oil Red O staining

The RAW264.7 cells in the DMEM containing 10% fetal bovine
serum were used for cell adhesion and plated in a 24-well culture
plate. They were divided into the blank control group, model group,
and POEE dosage groups, at a density of 3 × 105 cells/mL,
adaptability training after 24 h, suck out the culture, and PBS
washing twice each every hole to join 500 μL DMEM medium
sugar, to medicine group to join the final concentration of POEE
(300 μg/mL). Following a 4-h incubation, 60 μg/mL of ox-LDL was
successfully added to the model group to commence modeling. After
24 h of reincubation and washing with PBS twice, “oil red O”
staining was performed, and the staining effect between each group
was observed under a microscope.

2.7 Animals

This study was approved by the Animal Ethics Committee of
Nanjing University of Chinese Medicine. We used 40 healthy
Sprague–Dawley (S-D) male rats aged 7–8 weeks and weighing
180~220 g (License No. SCXK (Jing) 2019–0016). All animal
experiments in this study were approved by the Ethics
Committee of Jiangsu Province Hospital on Integration of
Chinese and Western Medicine (AEWC-20200518-106). The rats
were maintained as mentioned in Duan et al. (2024). Following
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1 week of adaptation, the rats were randomly divided into four
groups: control, model, positive control group (5 mg/kg/day), and
the POEE group (1.0 g/kg/day), and they were fed adaptively for
1 week. The control group was fed a normal diet, whereas the other
groups were fed a high-fat diet (HFD). An intraperitoneal dose of
400,000 IU/kg of vitamin D3 injection was administered. Carotid
artery injury was performed 3 weeks later. In 4 weeks, the drug was
administered by oral gavage at the corresponding dose. The blank
control group was given a constant volume of normal saline once
daily for weeks. The mental state and diet were monitored daily,
whereas the weight was recorded weekly.

All operations were performed under 1% isoflurane anesthesia.
The rats were placed in the anesthetic box, after which they were
placed on the test table (temperature was set at 37°C) after
anesthesia. Breathing masks were put on them to maintain the
anesthetic state. The skin of the rat’s chest was depilated, a coupling
agent was applied, and the VEVO 3100 ultrasound for small animals
was used for transthoracic echocardiography. Indicators related to
cardiac function in the left ventricle of the rats were detected using a
400× probe. The long and short axes of the left ventricle of the rats
were detected by adjusting the probe’s position, the B- and M-mode
images were collected, and the original data were recorded.

2.8 Biochemical analysis

The levels of TG, TC, FC, HDL, and LDL in rat serum and TC
and FC in the foam cells were determined using the biochemical kit,
according to the manufacturer’s instructions.

2.9 HE staining and Masson staining

The carotid artery of each group was fixed with 10% formalin,
embedded in paraffin, sliced to 5 μm thickness, stained with HE and
Masson stain, and observed under a light microscope (Leica
DM3000, Germany).

2.10 Western blot analysis

The cells and tissues forWB can be referred to in Yu et al. (2020).
The primary antibodies included glyceraldehyde 3-phosphate
dehydrogenase (GAPDH), ABCA1, ABCG1, CD36, and MSR1.
Protein bands were visualized using the ChemiDoc imaging
system (Bio-Rad Laboratories, Berkeley, CA, United States).

2.11 Statistical analysis

All data were presented as mean ± standard deviation (SD).
GraphPad Prism 9.0 (GraphPad Software Inc., La Jolla, CA,
United States) was used for the analysis. Differences between two
groups were analyzed by unpaired Student’s t-test, and comparisons
between groups were established by one-way analysis of variance
(ANOVA) with the least significant difference test. Differences with
p-values less than 0.05 and 0.01 were considered significant and
extremely significant, respectively. * denotes comparisons vs. the

control group (p < 0.05). # indicates significance among different
treatment groups with the model group (p < 0.05).

3 Results

3.1 Prediction of the therapeutic mechanism
of POEE that mitigates atherosclerosis

First, the contents of flavonoids, alkaloids, and amino acids in
POEE were determined to be 6.58, 2.17, and 86.54 mg/g DW,
respectively. Subsequently, UPLC-Q-TOF-MS was used to analyze
the chemical components of POEE, and Supplementary Figure S1
displays the total ion chromatogram (TIC) of POEE. A total of
822 compounds were identified. Based on the component detection,
the TCMSP database, and published research studies,
66 pharmacologically active compounds were selected and
categorized into 10 classes: flavonoids (24), terpenoids (16), phenols
(6), alkaloids (4), quinones (3), esters (3), steroids (3), lignans (2),
organic acids (1), and others (4) (Table 1). A total of 725 targets of
POEE’s active components were identified using SwissTarget Prediction
and DrugBank (Supplementary Table S1). In addition, 2,749 AS-related
targets were obtained from the GeneCards, OMIM, DrugBank,
DisGeNET, and GEO databases (Supplementary Table S2). A total
of 330 targets were obtained for the treatment of AS after intersection
(Figure 2A; Supplementary Table S3). Bioinformatics analysis revealed
that the main BPs enriched by POEE intervention include
phosphorylation, inflammatory response, and negative regulation of
the apoptotic process; the CCs include the plasma membrane, lipid
rafts, and cytoplasm; and theMFs include the nuclear receptor, enzyme
binding, and protein kinase activity (Figure 2B). POEE is primarily
involved in pathways such as lipid metabolism, AS, and the Rap1 and
PI3K-Akt signaling pathways during AS development (Figure 2C). The
results of the GO and KEGG enrichment analyses are shown in
Supplementary Table S4. The lipid pathway is most closely related
to AS. Potential targets for improving AS with POEE are marked with
five-pointed red stars (Supplementary Figure S2). The key molecules
ABCA1, ABCG1, CD36, and MSR1 were selected for subsequent
validation.

3.2 POEE reduces the formation of foam
cells caused by ox-LDL

We established a macrophage-derived foam cell formation model
referring to Zhang C. et al. (2023). The effects of POEE (100, 200, 300,
and 400 μg/mL) and ox-LDL (10, 20, 40, 60, 80, and 100 μg/mL) on cell
proliferation were confirmed by MTT assay. We noted that POEE at
100–300 μg/mL did not influence cell viability; however, 400 μg/mL
POEE inhibited/increased the cell viability (Figure 3A). Different
concentrations of ox-LDL 10–100 μg/mL doses reduced the cell
activity (Figures 3A, B). The 300 μg/mL POEE treatment did not
cause a decrease in the cell activity, and there was no significant
difference in the cell activity between the treatment group and the
control group at 0–48 h (Figure 3C). Afterward, the influence of POEE
on foam cell formation was investigated by administering POEE for
24 h. We observed that POEE (200–400 μg/mL) significantly enhanced
the proliferation of ox-LDL (60 μg/mL)-induced injured cells
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TABLE 1 Active compounds screened from POEE by UPLC-Q-TOF-MS/MS and TCMSP.

No. Compound OB Caco-2 DL Class

C01 Betaine 24.80 0.36 0.55 Others

C02 Cianidanol 54.82 −0.03 0.24 Flavonoids

C03 (+)-Sparteine 61.89 1.41 0.21 Alkaloids

C04 N-trans-p-coumaroyloctopamine 78.46 0.11 0.23 Phenols

C05 Myricetin* 13.75 −0.15 0.31 Flavonoids

C06 Kaempferol 41.88 0.26 0.24 Flavonoids

C07 Rutin* 16.00 3.20 0.68 Flavonoids

C08 p-Hydroxy-N-(p-hydroxyphenethyl)-cinnamamide 85.63 0.69 0.20 Phenols

C09 Luteolin 36.16 0.19 0.25 Flavonoids

C10 Moupinamide 86.71 0.54 0.26 Phenols

C11 (+)-Syringaresinol* 3.29 0.47 0.72 Lignans

C12 Galangin 45.55 0.54 0.20 Flavonoids

C13 Ginkgolic acid (C15:1) 20.18 1.01 0.31 Phenols

C14 Quercetin 46.43 0.05 0.28 Flavonoids

C15 Morin 46.22 0.00 0.27 Flavonoids

C16 Wedelolactone 49.60 0.32 0.47 Flavonoids

C17 Arctigenin* 8.05 0.67 0.44 Lignans

C18 Kanzonol C* 1.02 0.80 0.45 Flavonoids

C19 Fisetin 52.59 0.20 0.24 Flavonoids

C20 Aloe-emodin 83.37 −0.11 0.24 Quinones

C21 Isorhamnetin 49.60 0.30 0.30 Flavonoids

C22 Diosmetin 31.14 0.46 0.27 Flavonoids

C23 Amentoflavone* 2.95 −0.30 0.64 Flavonoids

C24 Apigenin 23.06 0.43 0.21 Flavonoids

C25 Aurantiamide 45.76 0.12 0.43 Alkaloids

C26 Glabrone 52.51 0.59 0.50 Flavonoids

C27 6-Hydroxyapigenin* 18.97 0.30 0.24 Flavonoids

C28 Rubiadin 25.01 0.48 0.20 Quinones

C29 Glycitein 50.47 0.56 0.23 Flavonoids

C30 Emodin 24.39 0.22 0.23 Quinones

C31 Piperine 42.52 1.12 0.23 Alkaloids

C32 Aurantiamide acetate 58.02 0.32 0.52 Alkaloids

C33 Quillaic acid* 13.06 −0.27 0.72 Terpenoids

C34 Naringenin 59.29 0.28 0.21 Flavonoids

C35 Pseudobaptigenin 70.11 0.57 0.31 Flavonoids

C36 Hinokiflavone* 2.51 −0.07 0.61 Flavonoids

C37 Isoimperatorin 45.46 0.97 0.22 Others

C38 Bilobetin* 7.26 −0.13 0.63 Flavonoids

(Continued on following page)
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(Figure 3D). In addition, we found that POEE markedly reduced
intracellular TC and FC contents, demonstrating an efficacy
comparable to that of the positive control drug, atorvastatin (Figures
3D-F). This suggested that POEE effectively prevented the formation of
foam cells induced by ox-LDL.

3.3 POEE reduced lipid accumulation in
foam cells

The ox-LDL induction was performed according to a previous
study using ox-LDL. We employed Oil Red O staining to assess lipid

accumulation in foam cells. Treatment with POEE markedly
reduced lipid deposition induced by ox-LDL in foam cells
(Figure 4A). Macrophages clumping together and becoming foam
cells is a pathological indicator of AS. Further analysis on the
expression of proteins responsible for cholesterol influx
(CD36 and MSR1) and efflux (ABCA1 and ABCG1) in
macrophage foam cells was performed. Our findings
demonstrated that POEE significantly upregulated the
expressions of cholesterol efflux transporters, such as ABCA1 and
ABCG1, while concurrently downregulating the expressions of
CD36 and MSR1, thereby inhibiting cholesterol uptake (Figures
4B–E). The results indicated that POEE boosted cholesterol removal

TABLE 1 (Continued) Active compounds screened from POEE by UPLC-Q-TOF-MS/MS and TCMSP.

No. Compound OB Caco-2 DL Class

C39 β-Cryptoxanthin 25.16 1.84 0.57 Terpenoids

C40 Ginkgolic acid (C13:1)* 16.99 1.01 0.23 Phenols

C41 Euscaphic acid* 17.31 −0.21 0.71 Terpenoids

C42 Echinocystic acid 24.43 0.09 0.73 Terpenoids

C43 Methoxyluteolin 26.75 0.37 0.30 Flavonoids

C44 Tectorigenin 28.40 0.52 0.26 Flavonoids

C45 Dehydrotumulosic acid 31.07 0.05 0.81 Terpenoids

C46 18β-Glycyrrhetinic acid 22.05 0.10 0.74 Terpenoids

C47 Poricoic acid A 30.60 −0.13 0.76 Terpenoids

C48 Corosolic acid* 18.55 0.09 0.74 Terpenoids

C49 Linolenic acid ethyl ester 46.10 1.54 0.20 Esters

C50 Pachymic acid 33.62 0.10 0.81 Terpenoids

C51 Kukoamine A* 1.42 −0.20 0.56 Phenols

C52 2-Palmitoylglycerol 26.73 0.39 0.21 Esters

C53 Glyceryl monooleate 34.13 0.23 0.30 Esters

C54 Abietic acid* 16.45 1.13 0.28 Terpenoids

C55 Eicosapentaenoic acid 45.66 1.34 0.21 Organic acids

C56 Glabrolide* 17.46 0.29 0.61 Terpenoids

C57 Oleanolic acid 29.02 0.59 0.76 Terpenoids

C58 Ursolic acid* 16.77 0.67 0.75 Terpenoids

C59 Betulinic acid 55.37 0.73 0.77 Terpenoids

C60 Tigogenin* 13.16 0.83 0.80 Terpenoids

C61 Ergosterol peroxide 44.39 0.86 0.82 Others

C62 Stigmasterol 43.82 1.44 0.75 Steroids

C63 α-Spinasterol 42.97 1.44 0.75 Others

C64 Lupenone* 11.66 1.48 0.78 Terpenoids

C65 Fucosterol 43.78 1.34 0.76 Steroids

C66 Campesterol 37.58 1.32 0.71 Steroids

Note: * represents the components with pharmacological activity reported in the literature.

POEE, Portulaca oleracea L. extract; TCMSP, traditional Chinese medicine systems pharmacology database and analysis platform; OB, oral bioavailability; Caco-2, human Caucasian colon

adenocarcinoma; DL, drug likeness.
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FIGURE 2
Analysis results of network pharmacology. (A) Intersection of CHD targets and compound targets of POEE; (B) GO enrichment analysis; (C) KEGG
pathway enrichment analysis. Bubble size indicates the number of targets within the pathway, and bubble color signifies the p-value’s magnitude. The
more red the color, the smaller the p-value.
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and lowered cholesterol absorption, helping reduce lipid
accumulation in the formation of foam cells.

3.4 POEE alleviated AS progression in rats

We established an animal model of AS using SD rats to confirm
the effects of POEE on AS. After 4 weeks on HFD, cardiac
ultrasound results show that POEE enhanced the FS, EF, LVESV,
and LVEDV in the model group compared to that in the vehicle
group; improved the level of cardiac hypertrophy; and delayed the
disease process compared to that in the model group (Figure 5A).

HE and Masson staining were used to observe the structural
damage of the carotid artery. Compared to the control group, the
model group showed a disordered vascular elastic membrane,
thickened carotid artery intima, and cells filled with fat droplets
(Figure 5B). In addition, these histological changes reverted after the
administration of atorvastatin or POEE. Notably, the effect of POEE
was better than that of atorvastatin. Masson’s staining of the carotid
artery validated the increase in collagen content t in the POEE group
(Figure 5B). In addition, POEE significantly increased the serum
HDL level and decreased the levels of TG, TC, FC, and LDL in the

atherosclerotic rat models (Figures 6A–E). We further investigated
the protein expressions of MSR1 and ABCA1 in the carotid artery of
rats treated with POEE using WB. The results showed that POEE
significantly increased the expression levels of ABCA1 and
decreased the expression levels of MSR1 (Figure 6F). Collectively,
POEE alleviates AS progression in rats.

4 Discussion

This study characterized 882 components in POEE through the
LC–MS technology, with the majority of the compounds having
been previously reported in the literature (Li et al., 2024).
Subsequently, 66 active components were preliminarily screened
using TCMSP, mainly including flavonoids, terpenoids, phenols,
and alkaloids. In plants, flavonoids provide defense against biotic
and abiotic challenges, while in humans, they help avert
degenerative diseases when included in the diet (Shen et al.,
2022). They possess general characteristics such as antioxidant,
antibacterial, and anti-inflammatory activities (Li et al., 2024).
According to previous reports, kaempferol, apigenin, luteolin,
myricetin, and quercetin are the main flavonoids found in POEE

FIGURE 3
Effect of ox-LDL on foam cell development. (A) Proliferation activity of foam cells induced by different ox-LDL treatments. (B) Different
concentrations of POEE on RAW264.7 cell viability. (C)Different treatment times for 0–48 h of POEE (300 μg/mL) on RAW264.7 cell viability. (D)Different
concentrations of POEE on cell viability induced by ox-LDL (60 μg/mL). (D) TC concentrations of foam cells. (E) FC concentrations of foam cells.
*p < 0.05, ***p < 0.001, ****p < 0.0001 when compared with control, ##p < 0.01, ###p < 0.001, ####p < 0.0001 when compared with model
group (n = 6).
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(Zhu et al., 2010). A recent research reported the anti-atherosclerotic
effects of the aforementioned five dietary flavonoids (Salvamani
et al., 2014). Modern pharmacological studies have shown that
kaempferol alleviates palmitic acid-induced lipid storage through
AMPK/mTOR-mediated adipophagy (Varshney et al., 2018).
Luteolin reduces body fat storage by promoting the central 5-
hydroxytryptamine pathway (Lin et al., 2020). Portulaca oleracea
and its main component, myricetin, alleviate non-alcoholic fatty
liver disease by downregulating and inhibiting prostaglandin-
endoperoxide synthase 2 (PTGS2) (He et al., 2021). In addition,
alkaloids in P. oleracea have been proven to have significant
antioxidant and antitumor activities (Li et al., 2024). For
instance, aurantiamide and aurantiamide acetate have been
reported to possess significant antioxidant activity (Chen et al.,
2016; Tamokou et al., 2012). Other research studies have shown that
oral intake of the terpenoid component β-cryptoxanthin can exert
anti-obesity effects, which are related to the inhibition of lipid
formation in 3T3-L1 cells by RAR activation (Shirakura et al.,
2011). Overall, these compounds contribute effectively to the

anti-atherosclerotic properties of POEE. In addition, our network
pharmacology study showed that anti-atherosclerotic effects of
POEE are most closely related to the lipid and atherosclerosis
pathway. It has been reported that during the occurrence of AS,
cholesterol efflux in macrophages and lipid accumulation play a key
role in this process (Wang et al., 2021). Further validation
experiments were guided by the predicted molecular mechanisms.

Cholesterol metabolism-related molecules, including MSR1,
CD36, ABCA1, and ABCG1, regulate cholesterol metabolism
during macrophage transformation into foam cells (Liu et al.,
2024). ABCA1 and ABCG1 are located in the plasma membrane
of cells and mediate the outflow of intracellular cholesterol to
apolipoprotein A-I (apoA-I) and HDL (Ouimet et al., 2019). A
decreased cholesterol excretion leads to foam cell formation, which
triggers an inflammatory response and formation of atherosclerotic
lesions in the arterial wall (Zhang J. et al., 2023; Wu et al., 2024). The
other scavenger receptors are macrophages that ingest ox-LDL and
CD36; MSR1 is a scavenger of two primary ox-LDL receptors on the
cell membrane, devouring ox-LDL and activating the formation of

FIGURE 4
Lipid accumulation in foam cells was alleviated by POEE. (A) Foam cells were depicted in images and stained with Oil Red O. (×200 magnification).
Scale bar = 20 μm. (B–E) Protein expressions of ABCA1, ABCG1, CD36, MSR1, and GAPDHweremeasured byWB. *p < 0.05, ***p < 0.001, ****p < 0.0001
when compared with control, #p < 0.05, ##p < 0.01, ###p < 0.001 when compared with model group (n = 3).
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foam cells (Shen et al., 2018). Our laboratory has focused on
cholesterol efflux and uptake and found that an upregulation in
ABCA1, ABCG1, and CD36 and downregulation in
MSR1 expressions accelerate cholesterol efflux and are beneficial.
Therefore, effective removal of excess lipids is necessary for AS
prevention. This may be a promising strategy for preventing AS.

In vitro experiments showed that POEE could regulate the
expressions of ABCA1, ABCG1, MSR1, and CD36 in ox-LDL-
induced foam cells. The expressions of MSR1 and CD36 were
downregulated, therefore inhibiting the positive feedback of ox-LDL
uptake. The upregulation of ABCA1 andABCG1 expressions promoted
positive feedback of ox-LDL excretion. The combination of ABCA1 and
ABCG1 can reduce free cholesterol in macrophages and cholesterol
accumulation. MSR1, CD36, ABCA1, and ABCG1 are considered to be
the main therapeutic targets of AS caused by dysfunction of cholesterol
metabolism, and these proteins play a key role in the RCT (Chawla et al.,
2001). In the experiment of TC and FC index in cells and Oil Red O
staining, the intracellular lipid determination results are consistent. On
the other hand, in experimental rats, carotid atherosclerotic tissue WB
results are consistent with experimental results of in vitro cells. This
shows that POEE can adjust lipid content in the cell across the
plasma membrane.

In animal experiments, according to the results of HE and
Masson staining, the alcohol extract of purslane can significantly
reduce the lesion area in carotid artery AS. This prevents the rupture
of vulnerable plaques, necrotic core, and the formation of secondary

thrombosis. In this study, we found that administration of HFD
increases the serum levels of TG, TC, FC, and LDL in rats and causes
a rapid decline in HDL. POEE helped mitigate the sharp increase in
TG, TC, FC, and LDL levels and significantly increased the HDL
level after the intervention. These findings are consistent with those
of Wang’s study, who was able to change the lipid content in the
serum and eggs of laying hens supplemented with a moderate
amount of purslane extract (Wang et al., 2020).

Notably, POEE’s cholesterol-lowering efficacy paralleled that of
atorvastatin (Figures 3D,E), yet its mechanism diverges
fundamentally from that of statins. While statins inhibit hepatic
cholesterol synthesis via HMG-CoA reductase (Schonewille et al.,
2016), POEE uniquely targets macrophage lipid handling through
ABCA1/ABCG1-mediated cholesterol efflux and
CD36 downregulation (Figure 4). Histopathological evidence
underscores POEE’s therapeutic potential, including reduced
intimal thickening and alleviation of carotid artery pathologies
(HE and Masson staining, Figure 5B). In contrast, statins
primarily reduce plaque volume without directly modulating the
collagen content (Makowski and Botnar, 2013).

In addition, these findings demonstrated the effectiveness of POEE
inAS and that it might be a promising target for the disease by adjusting
the blood lipid levels and reversing cholesterol’s role in AS protection
and treatment. There was a significant negative correlation between
macrophage cholesterol flow capacity and the strength of an artery’s
intima-media thickness and cardiac function. Lipid peroxide and

FIGURE 5
POEE alleviated atherosclerosis progression in S-D rats. (A) Cardiac function indexes of rats in each group. (B) Images showing HE and Masson
staining of the carotid artery. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 when compared with control, #p < 0.05, ##p < 0.01, ###p < 0.001 when
compared with model group (n = 3).
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macrophage cholesterol intake outflow ability can lead to the
accumulation of cholesterol in the cell and foam cell
formation, during the development of AS in streaks of fat and
plaque. Increased aortic sclerosis leads to increased cardiac
afterload, leading to centripetal remodeling (Djellouli et al.,
2018). Ultrasound evaluation of a rat’s heart in the animal
experiments showed that FS, EF, LVESV, and LVEDV of rats
treated with POEE were significantly increased compared with
untreated rats, indicating that POEE delayed cardiac structural
changes and deterioration of cardiac function, inhibited
ventricular remodeling, and had a significant cardiac
protective effect. Studies have shown that the aorta is a tube
that carries blood to surrounding organs and acts as a buffer
against the heart’s pulsating pressure and outflow of blood (Sanz
et al., 2019). Aortic sclerosis has a low buffering effect on
pulsating pressure, thereby resulting in increased left
ventricular (LV) afterload and decreased systolic function of
the LV. After adjusting for age, blood pressure, and other
cardiovascular risk factors, the ventricular systolic index was
independently related to left ventricular systolic and diastolic
dysfunction. The increases in the aortic stiffness of left
ventricular systolic and diastolic dysfunction had a direct
impact. Therefore, POEE may reduce the incidence of AS and
cardiovascular diseases (Munguia-Realpozo et al., 2024).

This study has several limitations. First, the assessment of
POEE’s biosafety was validated only in the
RAW264.7 macrophages. Although a 4-week in vivo toxicology
study showed no significant body weight reduction or mortality
in rats at the 1.0 g/kg/day dose, systemic toxicity should be further
assessed. Second, regarding POEE’s regulatory network in lipid
metabolism, other modulation mechanisms, including LXR-
mediated cholesterol efflux, SREBP-controlled lipid synthesis, and
PPAR-regulated metabolic clearance pathways, should also be
investigated in future studies.

5 Conclusion

In this study, key active elements of POEE were discovered and
examined, with network pharmacology predicting the possible
mechanisms through which POEE mitigates AS. In this study, we
demonstrated that POEE could improve the lipid profiles of foam
cells and HFD-fed rats, while attenuating the risk of AS.
Furthermore, our findings indicated that the improvement in
overall RCT by POEE in living organisms could be a mechanism
behind its anti-atherosclerotic effects. In vitro, POEE upregulated
the expressions of ABAC1 and ABCG1 and inhibited those of
CD36 and MSR1 to alleviate lipid accumulation. Furthermore,

FIGURE 6
Role of POEE in the progression of atherosclerosis in rats. (A–E) Detection of serum levels of TG, TC, FC, HDL, and LDL. (F) Measurement of
ABCA1 andMSR1 expression. * p < 0.05, ** p < 0.01, *** p < 0.001 when compared with control, # p < 0.05, ## p < 0.01, ### p < 0.001, #### p < 0.0001
when compared with model group (n = 3).
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POEE reduced TG, TC, FC, and LDL levels, whereas it elevated HDL
levels in rat serum. In addition, POEE increased the expression of
ABCA1 and reduced that of MSR1 in the carotid arteries and
remarkably alleviated carotid artery pathologies. The study
suggests approaches for identifying useful medications or
supplements in the treatment of hyperlipidemia or AS.
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Glossary
AS atherosclerosis

BP biological process

CC cellular component

CD36 cluster of differentiation 36

DMSO dimethyl sulfoxide

ESI electrospray ionization

EF2 ventricular ejection fraction

FS fractional shortening

FC free cholesterol

GO Gene Ontology

HFD high-fat diet

H&E hematoxylin and eosin

HDL high-density lipoprotein

KEGG Kyoto Encyclopedia of Genes and Genomes

LVESV left ventricular end-systolic volume

LVEDV left ventricular end-diastolic volume

MSR1 macrophage scavenger receptor 1

MDA malondialdehyde

MF molecular function

MTT 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide

ox-LDL oxidized low-density lipoprotein

PTGS2 prostaglandin-endoperoxide synthase

RCT reverse cholesterol transport

S-D Sprague–Dawley

SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis

TG triglyceride

TIC total ion chromatogram

TCMSP Traditional Chinese Medicine Systems Pharmacology Database and
Analysis Platform

UPLC-
MS/MS

ultra-performance liquid chromatography-quadrupole/time-of-flight
mass spectrometry

WB Western blot

LDL low-density lipoprotein
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