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Drug discovery plays a crucial role in medicinal chemistry, serving as the
cornerstone for developing new treatments to address a wide range of
diseases. This review emphasizes the significance of advanced strategies, such
as Click Chemistry, Targeted Protein Degradation (TPD), DNA-Encoded Libraries
(DELs), and Computer-Aided Drug Design (CADD), in boosting the drug discovery
process. Click Chemistry streamlines the synthesis of diverse compound libraries,
facilitating efficient hit discovery and lead optimization. TPD harnesses natural
degradation pathways to target previously undruggable proteins, while DELs
enable high-throughput screening of millions of compounds. CADD employs
computational methods to refine candidate selection and reduce resource
expenditure. To demonstrate the utility of these methodologies, we highlight
exemplary small molecules discovered in the past decade, along with a summary
of marketed drugs and investigational new drugs that exemplify their clinical
impact. These examples illustrate how these techniques directly contribute to
advancing medicinal chemistry from the bench to bedside. Looking ahead,
Artificial Intelligence (AI) technologies and interdisciplinary collaboration are
poised to address the growing complexity of drug discovery. By fostering a
deeper understanding of these transformative strategies, this review aims to
inspire innovative research directions and further advance the field of medicinal
chemistry.
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1 Introduction

Medicinal chemistry is the interdisciplinary field that focuses on the design,
development, and optimization of pharmaceutical compounds. It combines principles
from chemistry, biology, and pharmacology to create bioactive molecules that can
effectively treat diseases (Francesco, 2023). Key research contents include the synthesis
of new compounds, structure-activity relationship (SAR) studies, optimization of drug
properties (such as solubility and bioavailability), and the evaluation of pharmacological
effects. The discovery and design of small molecule drugs have been pivotal in the field of
medicinal chemistry, serving as the cornerstone for developing new therapeutics to combat
a myriad of diseases (Campbell et al., 2018). Small molecules have historically played a
critical role in the development of effective treatments for a wide range of diseases, including
cancer, infectious diseases, and chronic illnesses (Zhong et al., 2021; Davis et al., 2020; Parra
Sánchez et al., 2022). Despite their significance, the process of small molecule drug discovery
is fraught with challenges, such as high attrition rates in clinical trials, the complexity of
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biological systems, and the need for precision-targeted therapies
(Zhong et al., 2021; Keserü and Makara, 2009; Bedard et al., 2020).
As such, there is a pressing need for innovative approaches that can
enhance the efficiency and success of small molecule drug design.

One of the primary challenges in the drug discovery process is
the vast chemical space that needs to be navigated (Saldívar-
González and Medina-Franco, 2022). Traditional methods often
rely on trial-and-error approaches, which are not only time-
consuming but also resource-intensive. Additionally, the
complexity of biological systems and the diverse nature of
diseases necessitate a more targeted and strategic approach to
drug design. In this context, several new methodologies have
emerged, promising to transform the landscape of small molecule
drug discovery.

Click Chemistry has garnered significant attention as a powerful
tool in drug discovery. It enables the rapid synthesis of diverse
compound libraries through highly efficient and selective reactions
(Zhao et al., 2024; Wilson Lucas et al., 2023). Click chemistry’s
modular nature allows for the straightforward incorporation of
various functional groups, facilitating the optimization of lead
compounds and enabling the creation of complex structures from

simple precursors (Jiang et al., 2019). This approach not only
accelerates the discovery process but also enhances the likelihood
of identifying compounds with desirable pharmacological
properties.

Targeted Protein Degradation (TPD) strategies represent
another groundbreaking advancement in small molecule drug
design (Wells and Kumru, 2024). Unlike traditional inhibitors
that aim to block protein activity, TPD technologies employ
small molecules to tag undruggable proteins for degradation via
the ubiquitin-proteasome system or autophagic-lysosomal system
(Song et al., 2023). This novel approach provides a means to address
undruggable targets and offers a new therapeutic paradigm for
conditions where conventional small molecules have fallen short.
By harnessing the body’s own degradation machinery, TPD
strategies enable the selective removal of disease-associated
proteins, thereby providing an innovative pathway for
drug discovery.

DNA-Encoded Libraries (DELs) have emerged as a widely used
technology that allows for the high-throughput screening of vast
chemical libraries (Peterson and Liu, 2023). DELs utilize DNA as a
unique identifier for each compound, facilitating the simultaneous
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testing of millions of small molecules against biological targets
(Dockerill and Winssinger, 2023). This technology not only
streamlines the identification of potential drug candidates but
also allows for the exploration of chemical diversity in an
unprecedented manner. The ability to rapidly probe the
interaction of small molecules with target proteins enhances the
efficiency of lead discovery and optimization, making DELs an
essential tool in modern drug development.

Computer-Aided Drug Design (CADD) has also significantly
influenced the drug discovery landscape by employing
computational methods to predict the binding affinity of small
molecules and specific targets (Sadybekov and Katritch, 2023;
Jiménez-Luna et al., 2021) This approach significantly reduces
the time and resources required for experimental screening
(Giordano et al., 2022). With advancements in artificial
intelligence (AI), CADD is becoming increasingly sophisticated,
enabling researchers to simulate complex biological interactions and
refine drug design more effectively (You et al., 2022). This predictive
capability not only accelerates the discovery process but also
enhances the precision of drug design, addressing the critical
need for tailored therapies.

Each approach brings unique advantages, addressing specific
challenges in the drug development pipeline and paving the way for
innovative therapeutic solutions. The integration of these
technologies promises to enhance the efficiency of drug
discovery, reduce attrition rates in clinical trials, and ultimately
lead to the development of more effective and targeted therapies.
This review aims to provide a comprehensive overview of recent
advancements in these approaches, to explore their underlying
principles, and their potential impact on the future of medicinal
chemistry. To illustrate the utility of these techniques, we highlight
exemplary small molecules developed over the past decade,
emphasizing their role in accelerating drug development.
Furthermore, we summarize representative marketed drugs and
investigational new drugs, illustrating these technologies’ direct
contributions to clinical practice. Finally, we discuss the future
prospects and challenges of each approach. By fostering an
understanding of these emerging strategies, we aim to inspire
new research directions and collaborations that will further
advance the field of medicinal chemistry.

2 Click chemistry

Click chemistry, a combinatorial methodology first introduced
by Professor Sharpless in 2001, revolutionized the rapid synthesis of
C-X-C atom frameworks (Kolb et al., 2001). This approach has since
become an essential tool in the medicinal chemist’s toolbox, offering
significant advantages such as broad substrate scope, high yield,
stereospecificity, operational simplicity, and the formation of only
benign by-products that can often be removed without
chromatography (Caselli et al., 2015; Le Droumaguet et al.,
2022). Additionally, click reactions are conducted using
environmentally benign solvents, further enhancing their utility
in drug discovery (Shankaraiah et al., 2019). In contrast to
traditional drug design, click chemistry employs modular
reactions to efficiently create new drug-like molecules. Moreover,
these reactions serve as versatile linkers for small molecules and

proteins. An example is their application in the synthesis of
proteolysis targeting chimeras (PROTACs), where click chemistry
links two pharmacophores via a specific scaffold to produce
compounds with high target affinity (Wurz et al., 2017). Click
chemistry is also instrumental in constructing diverse compound
libraries, offering a robust platform for screening bioactive
molecules and potential therapeutic agents. Importantly, target-
templated in situ click chemistry allows for the direct generation
of hits within the binding pocket of a target, streamlining the
discovery of enzyme inhibitors and other bioactive compounds.
This powerful method significantly accelerates both the synthesis
and screening processes in drug discovery (Kugler et al., 2023;
Glassford et al., 2016).

2.1 The conventional click chemistry

Conventional click chemistry has found widespread application
in various domains of drug discovery, facilitating the modular
synthesis of new drug-like molecules, serving as a linker for
PROTACs or pharmacophore groups, and enabling the rapid
construction of compound libraries. This efficient, chemo-
selective synthesis method allows for the coupling of molecular
fragments under mild reaction conditions, making it highly
desirable in medicinal chemistry. Key reactions within click
chemistry include the Cu-catalyzed azide-alkyne cycloaddition
(CuAAC), strain-promoted azide-alkyne cycloaddition (SPAAC),
thiol-ene reactions, inverse electron demand Diels–Alder reactions
(IEDDA), hydrazone click chemistry, and the recently emerging
sulfur fluoride exchange (SuFEx) reaction (Shankaraiah et al., 2019;
Kim and Koo, 2019; Barrow et al., 2019). Since its introduction in
2001, click chemistry has become a prominent research focus,
driving innovation in the development of bioactive compounds
and therapeutic agents (Cai et al., 2023).

2.1.1 Cu-catalyzed azide-alkyne
cycloaddition (CuAAC)

The discovery of Cu(I) catalyzed CuAAC in 2001 represented a
pivotal advancement, transforming click chemistry from a
theoretical concept into a widely accepted and practical
methodology (Kolb et al., 2001). Among all click reactions,
CuAAC has emerged as the most popular synthetic and coupling
tool. This reaction offers exceptional application potential due to its
ability to facilitate the functionalization of organic scaffolds with
azides and alkynes (Jiang et al., 2019), which remain stable during
subsequent transformations in the presence of highly functionalized
biomolecules, molecular oxygen, water, and other common reaction
conditions. In contrast to the uncatalyzed cycloaddition of azides
and alkynes, which yields a mixture of 1,4- and 1,5-triazole
regioisomers at elevated temperatures, CuAAC selectively
combines organic azides and terminal alkynes to produce 1,4-
disubstituted 1,2,3-triazoles exclusively under mild conditions
(Figure 1A), thus eliminating the need to separate the 1,4- and
1,5-linked regioisomers using classical chromatographic techniques.
The detailed reaction mechanisms underlying this transformation
are illustrated in Figure 2A. Notably, the CuAAC reaction offers key
advantages, including exceptional stereoselectivity, rapid reaction
rates, and the ability to form intermolecular connections efficiently
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under mild conditions. These attributes have positioned CuAAC as
a powerful and widely adopted tool in drug discovery. Compounds
containing the 1,2,3-triazole moiety have demonstrated compelling
biological activities, as illustrated by several approved drugs and
drug candidates depicted in Figure 3A.

Recent studies illustrate the utility of CuAAC click chemistry in
drug discovery. For instance, Synta66 has been employed as a
chemical probe to elucidate the role of store-operated calcium
entry (SOCE) in cellular mechanisms. To identify drug-like
SOCE inhibitors with improved pharmacokinetic profiles, Pirali
et al. replaced the amide group in Synta66 with a triazole ring.
Among the synthesized 1,2,3-triazoles, compound #1 (Figure 4A)
exhibited significantly higher aqueous solubility (1,528 μg/mL vs.
0.28 μg/mL) compared to Synta66. Furthermore, compound #1
demonstrated potent inhibitory activity at nanomolar
concentrations, favorable pharmacokinetic properties, and in vivo
efficacy in a mouse model of acute pancreatitis (Serafini et al., 2020).
In another study, Manera et al. designed, synthesized, and
functionally characterized the first bitopic ligands for the
cannabinoid receptor CB2 (CB2R). These ligands were
synthesized through a click chemistry reaction between azido and

alkyne derivatives. The most promising bitopic ligand, FD-22a
(Figure 4A), exhibited anti-inflammatory activity in a human
microglial cell inflammatory model and demonstrated
antinociceptive effects in vivo in a mouse model of neuropathic
pain (Gado et al., 2022). Additionally, Cee et al. reported a click
chemistry approach as a reliable linking strategy for the synthesis of
a 10-membered library of PROTACs (Figure 4A). This method
enables the parallel synthesis of PROTAC libraries, contingent upon
the availability of the requisite azides and alkynes. Conceptually, this
platform represents a powerful new tool for accessing diverse
PROTAC libraries, with principles that can be readily applied to
other ligases and target proteins (Wurz et al., 2017).

2.1.2 Sulfur (VI)-fluoride exchange (SuFEx)
In 2014, Sharpless and colleagues introduced the next

advancement in click chemistry: SuFEx (Click-II) (Figure 1B).
The detailed reaction mechanisms are shown in Figure 2B.
SuFEx represents a recent set of ideal click chemistry
transformations, characterized by metal-free reaction conditions.
This approach utilizes sulfuryl fluoride (SO2F2) and thionyl
tetrafluoride (SOF4) to synthesize two key S–F motifs:

FIGURE 1
Schematic representation of click chemistry. (A) Cu-catalyzed azide-alkyne cycloaddition (CuAAC). (B) Sulfur (VI)-Fluoride Exchange (SuFEx). (C) In
situ click chemistry approach.
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arylfluorosulfates (Ar–O–SO2–F) and iminosulfur oxydifluorides
(R–NSOF2) (Barrow et al., 2019). Although the potential of SuFEx
in drug discovery is just beginning to be explored, it holds promise.
In contrast to the CuAAC reaction, which has been employed in
proof-of-concept studies for lead optimization, only a limited
number of drugs feature the 1,2,3-triazole linkage. Sulfonamides,
however, are a common structural motif in drug design and
represent the primary sulfur-based feature in clinically approved
medications (Figure 3B). More than 150 sulfonamide drugs are
available on the market (Zhao et al., 2019), encompassing a range of
therapeutic activities including antibacterial, antitumor, anti-
obesity, anti-thyroid, and analgesic effects for neuropathic pain.
Furthermore, sulfonate esters (R–SO2–OR) and sulfate diesters
(R–OSO2–OR) serve as excellent bioisosteric substitutes for
carboxylic acids and esters. Despite their greater lipophilicity,
these sulfonyl compounds maintain a polarized S–O bond,
facilitating robust electrostatic interactions with target proteins
(Hong et al., 2019). This positions SuFEx as a promising tool for
the modular synthesis of functional libraries in drug discovery.

SuFEx click chemistry has emerged as a valuable tool in drug
discovery. Kim, Jang, and colleagues successfully utilized SuFEx
reactions in a click chemistry approach to synthesize biaryl sulfate
core derivatives, demonstrating their efficacy as potent inhibitors
of hepatitis C virus (HCV) nonstructural protein 5A (NS5A).
Among the synthesized inhibitors, compounds #2, #3, and #4
(Figure 4A) exhibited impressive two-digit picomolar EC50 values

against HCV genotype-1b (GT-1b) and single-digit or sub-
nanomolar activities against the HCV genotype-2a (GT-2a)
strain (You et al., 2018). A pioneering study by Wolan et al.
showcased biocompatible SuFEx click chemistry as a proof-of-
concept for a high-throughput process aimed at generating drug-
like, biologically active molecules. Starting from a modest high-
throughput screening hit against the bacterial cysteine protease
SpeB, a SuFExable iminosulfur oxydifluoride [RN = S(O)F2] motif
was introduced, leading to the rapid diversification into
460 analogs in overnight reactions. Direct screening of these
products yielded drug-like inhibitors with up to 300-fold
increased potency. Compound #5 (Figure 4A) is the first potent
and selective SpeB inhibitor, useful for studying the protease’s role
in cellular and animal models (Kitamura et al., 2020). More
recently, the research groups of Moses et al. demonstrated the
versatility and practicality of Accelerated SuFEx Click Chemistry
(ASCC) for the late-stage derivatization of bioactive molecules.
They employed ASCC to synthesize discrete compound libraries in
a 96-well plate format, ensuring experimental consistency and
significantly enhancing the efficiency of identifying potent hit
molecules. Additionally, ASCC was utilized to create arrays of
sulfonate ester-linked, high-potency microtubule-targeting agents
(MTAs) that exhibited nanomolar anticancer activity against
multidrug-resistant cancer cell lines. These findings highlight
ASCC’s promise as a robust platform for advancing drug
discovery (Homer et al., 2024).

FIGURE 2
Reaction mechanisms of click chemistry of (A) Cu-catalyzed azide-alkyne cycloaddition (CuAAC) and (B) Sulfur (VI)-Fluoride Exchange.
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2.2 In situ click chemistry

The discovery of bioactive compounds hinges on the iterative
generation of SAR data derived from the preparation and
biological assays of hit congeners. However, traditional
methods are often time-consuming and labor-intensive,
leading to slow and costly hit-to-lead transitions. Target-
guided synthesis (TGS) is a synthetic strategy for enzyme
inhibitors that involves the selective assembly of
complementary functional groups based on biological targets
(e.g., enzymes) serving as templates (Hu and Manetsch,
2010a). The application of click chemistry in kinetic TGS,
known as in situ click chemistry, represents an innovative
synthesis process where a biological target facilitates the
assembly of its own inhibitor through the guided selection of
suitable building blocks (Hu and Manetsch, 2010a; Bhardwaj
et al., 2017) (Figure 1C). This approach not only results in
compounds with high binding affinity for the target but also
offers a powerful strategy for rapidly preparing and
characterizing compound libraries of bioactive molecules,
greatly improving the efficiency of drug discovery. Fragment-
based drug design plays a crucial role in drug discovery. In situ
click chemistry provides a unique strategy for fragment
modification and optimization. In this approach, chemical
ligation depends on the close proximity and optimal spatial
arrangement of reactive fragments (Bhardwaj et al., 2017).
When these fragments bind simultaneously to the target’s
binding sites, they facilitate the formation of irreversible
bonds. Consequently, the selection of suitable combinatorial

fragment libraries is a critical factor for the success of
this method.

The general protocol for assembling and screening focused
combinatorial fragment libraries using in situ click chemistry
involves four key steps. First, suitable fragments are selected,
typically featuring a common warhead—a core structure for
interaction with a specific class of biological targets. These
fragments should exhibit a variety of substituents and functional
groups, as greater skeletal and stereochemical diversity within the
chemical space increases the likelihood of identifying effective hits.
Additionally, the fragments need to possess desirable properties such
as stability, solubility, and cellular permeability to ensure
compatibility with biological systems (Wang et al., 2016; Rzuczek
et al., 2014; Hu andManetsch, 2010b). Second, the reactant fragments
are synthesized to include reactive groups such as azides, alkynes, or
sulfonyl fluorides, which serve as warheads in the click chemistry
reactions. Third, in situ screening is conducted, typically in 96- or 384-
well plates, enabling high-throughput screening without further
purification, thus streamlining the drug discovery process. Finally,
interactions between the fragment molecules and target compounds
are assessed based on preliminary screening data, such as percentage
inhibition, with promising hits further validated through IC50

determination to confirm their potency (Wang et al., 2016).
In recent years, the rapid assembly and in situ screening of

focused combinatorial fragment libraries using CuAAC and SuFEx
click chemistry have emerged as robust and efficient strategies for
generating bioactive molecules. In 2015, Wuest and colleagues
demonstrated for the first time the use of CuAAC click
chemistry in conjunction with the cyclooxygenase-2 (COX-2)

FIGURE 3
Chemical structures of approved drugs and drug candidates containing the (A) 1,2,3-triazole moiety, and (B) sulfonamides moiety.
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active site as a reaction vessel for the in situ generation of highly
specific inhibitors. This study led to the discovery of two highly
potent and selective COX-2 isozyme inhibitors (compounds #6 and
#7) (Figure 4B), which exhibited significantly greater in vivo anti-
inflammatory activity compared to widely used selective COX-2
inhibitors. These findings provide a valuable tool for the economical
and rapid screening of potential drug candidates (Bhardwaj et al.,
2017). In 2016, Wang and colleagues introduced two cell-permeable
O-GlcNAc transferase (OGT) inhibitors, APNT and APBT
(Figure 4B), developed from low-activity precursors (IC50 >
1 mM) through a strategy termed “tethering in situ click

chemistry” (TISCC). Among these, APNT exhibited a
significantly enhanced inhibitory activity, with an IC50 of 66.7 ±
0.8 μM, representing over a 60-fold improvement. Notably, APNT’s
potency was comparable to that of benzoxazolinone, an irreversible
OGT inhibitor. However, benzoxazolinone’s high reactivity made it
unsuitable as a selective OGT inhibitor for cellular applications. In
contrast, both APNT and APBT effectively suppressed
O-GlcNAcylation in cells without causing significant cytotoxicity.
This highlights TISCC as a promising approach for optimizing low-
activity precursors with millimolar IC50 values into potent and
selective inhibitors (Wang Y. et al., 2017).

FIGURE 4
Chemical structures of small molecules discovered from (A) the conventional click chemistry and (B) in situ click chemistry.
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2.3 Challenges of click chemistry in
drug discovery

Click chemistry offers several advantages, including insensitive
to oxygen and water, high yields, regioselectivity, and
stereoselectivity. These properties enable researchers to rapidly
prepare target compounds and build compound libraries.
Furthermore, in situ click chemistry leverages enzymes as
reaction templates, taking advantage of their favorable
conformations under physiologically relevant conditions. This
approach selectively connects individual building blocks to
synthesize novel enzyme inhibitors. However, the application of
click chemistry in drug discovery also presents challenges and
should not be regarded as a universal solution. Firstly, when
generating large numbers of compounds at a rapid pace, it
remains uncertain whether click chemistry consistently yields
compounds with desirable drug-like properties. As a result,
further optimization of biological activity and drug-like
characteristics can also be time-consuming. While copper species
are among the simplest and most useful catalysts for the CuAAC
click reaction, their introduction into biological systems raises
concerns regarding potential toxicity, which may interfere with
the screening of compound libraries utilizing biological targets as
templates. In contrast, the SuFEx reaction is a metal-free procedure
that shows promise for library screening. The synthesis of 1,2,3-
triazole rings as pharmacophores or bioisosteres via CuAAC has

significant potential in drug design for various diseases. However,
the 1,2,3-triazole ring itself is not commonly utilized as a
pharmacophore and is rarely found in marketed drugs, indicating
certain limitations in its application as a drug molecule. Conversely,
sulfonamides are a prevalent feature in drug structures and serve as
the primary sulfur-based motif in clinically approved drugs, with
over 150 sulfonamide drugs available in the market. Despite their
stability, ease of synthesis, and potential as pharmacophores, sulfur-
ester linkages remain notably underrepresented in drug molecules.
Lastly, despite the decades since its inception, click chemistry
encompasses only a limited number of reactions, resulting in the
identification of multiple hits and leads for specific targets, but
relatively few marketed drugs have been successfully discovered
through this approach. Consequently, while click chemistry presents
both advantages and disadvantages in medicinal chemistry and drug
discovery, it also faces numerous challenges. Ongoing developments
hold the promise of advancing this synthetic technique to meet the
preclinical and clinical requirements of various systemic and
localized diseases.

3 Targeted protein degradation (TPD)
strategies

Targeting pathogenic proteins with small molecule inhibitors
has become a widely adopted strategy for treating various diseases.

FIGURE 5
The molecular mechanism of targeted protein degradation (TPD). (A) Proteolysis targeting chimeras (PROTACs) are composed of an E3 ligase-
targeting ligand, a linker, and a proteins of interest (POI)-binding ligand. By simultaneously interacting with both the POI and the E3 ligase, PROTACs
promote the polyubiquitination of the POI, marking it for degradation via the proteasome. (B)Molecular glues bind to the E3 ubiquitin ligase, or the POI,
facilitating their interaction and triggering the ubiquitination and degradation of the POI. (C) Autophagy-targeting chimeras (AUTACs) consist of a
POI-targeting warhead, a linker, and a cGMP-based degradation tag. This tag promotes K63 polyubiquitination of the POI, leading to selective
degradation via autophagy in the lysosome. (D) Autophagosome-tethering compounds (ATTECs) bind LC3 and the POI, (E)while AUTOphagy-TArgeting
Chimeras (AUTOTACs) bind p62 and the POI, driving autophagosome formation, which then merge with lysosomes to degrade the targeted POI.
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However, many intracellular proteins are deemed “undruggable”
due to the absence of accessible active sites, posing a significant
challenge in the design and development of effective small molecule

inhibitors (Xie et al., 2023). TPD is an emerging concept in drug
discovery, first introduced in 1999 (Wickner et al., 1999). Recently,
TPD has gained traction as a novel approach for targeting these

FIGURE 6
Chemical structures of proteasome-based degraders. Representational PROTACs currently in (A) clinical trials and (B) preclinical trials.
Representational molecular glues currently in (C) clinical trials and (D) preclinical trials. Degradation tag and proteins of interest (POI) warheads are
respectively marked in blue and red.
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previously undruggable proteins, utilizing proteasomal and
lysosomal pathways (Ding et al., 2020; Zhang C. et al., 2024).
Unlike traditional inhibitors, small molecule degraders do not
require continuous exposure of the protein’s binding site, which
enhances their therapeutic potential. Additionally, many degraders,
such as PROTACs, operate catalytically, allowing for lower dosages
to achieve the desired effects (Bondeson et al., 2015). Most TPD

strategies, including PROTACs and molecular glues, primarily rely
on the ubiquitin–proteasome system (UPS) and predominantly
target intracellular proteins. In contrast, lysosome-dependent
TPD strategies can degrade membrane proteins, extracellular
proteins, and protein aggregates, significantly broadening the
range of substrates that can be targeted (Zhao et al., 2022). The
proper functioning of these two pathways is crucial for preventing or

FIGURE 7
Chemical structures of lysosome-based degraders. Representational (A) AUTACs, (B) ATTECs and (C) AUTOTACs currently in preclinical trials.
Degradation tag and proteins of interest (POI) warheads are respectively marked in blue and red.
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treating a variety of diseases, including tumors, neurodegenerative
disorders, autoimmune diseases, and metabolic syndrome.
Therefore, employing proteasomes and lysosomes to target
pathogenic proteins represents a promising strategy in addressing
these complex health challenges.

3.1 Targeted protein degradation via
proteasome

The UPS is a crucial pathway for protein degradation, playing a
vital role in maintaining cellular homeostasis by facilitating the
degradation of over 80% cellular proteins (Chen et al., 2016). This
degradation process targets damaged proteins or those that are no
longer needed. Ubiquitination is achieved through a cascade
involving three key enzymes: an E1 activating enzyme, an
E2 conjugating enzyme, and an E3 ligase. The E1 enzyme binds
to a ubiquitin molecule in an ATP-dependent manner and
subsequently transfers it to the E2 enzyme. The E3 ligase then
catalyzes the transfer of the ubiquitin from E2 to the target substrate,
leading to the polyubiquitination of the substrate (Eldridge and
O’Brien, 2009). The accumulation of the polyubiquitin chain on a
targeted protein serves as a signal for degradation by the proteasome.
PROTACs and molecular glues are two prominent technologies that
leverage the UPS for the targeted degradation of specific proteins of
interest (POI), and will be the focus of our discussion.

3.1.1 Proteolysis-targeting chimeras (PROTACs)
The UPS, exemplified by PROTACs, offers a powerful strategy

for degrading otherwise undruggable POI. PROTACs are synthetic
heterobifunctional molecules composed of an E3-recruiting ligand, a
POI-targeting warhead, and a flexible linker that connects the two
(Konstantinidou et al., 2019). By promoting the formation of a
ternary complex comprising the POI, PROTAC, and E3 ligase, these
compounds enhance the ubiquitination of the POI, leading to its
degradation via the UPS (Figure 5A). Unlike traditional inhibitors,
PROTACs operate through an event-driven mechanism, acting as
catalysts for selective protein degradation—one molecule of
PROTAC can induce the ubiquitination of multiple target
protein molecules (Burslem and Crews, 2020). Initially
demonstrated by Crews and colleagues in 2001, the concept of
PROTACs has since evolved into various innovative degradation
technologies targeting kinases, nuclear receptors, epigenetic
proteins, misfolded proteins, and even RNAs (Sakamoto et al.,
2001; Schreiber, 1992). This broadens the spectrum of potential
targets and enhances clinical applications for treating cancer,
neurodegenerative diseases, and viral infections. Consequently,
PROTAC technology is advancing into clinical settings, with over
15 targeted degraders currently in clinical trials (Figure 6A).

The PROTAC technology represents a promising therapeutic
modality for treating various diseases. Here, we highlight some
PROTACs that target specific proteins for degradation. A
significant achievement in PROTAC technology is the
development of orally bioavailable PROTACs that have
progressed to clinical trials. Notably, the androgen receptor
degrader ARV-110 (Clinical Trial No. NCT03888612) and the
estrogen receptor degrader ARV-471 (Clinical Trial No.
NCT05654623) have entered phase II and III clinical trials for

prostate and breast cancer, respectively. The PROTAC approach,
widely exploited in cancer research, also holds promise for antiviral
development. In 2022, the Marazzi and Jin groups identified FM-74-
103 (Figure 6B), a small-molecule degrader that inhibits infections
from Influenza A virus (IAV), syndrome coronavirus 2 (SARS-CoV-
2), and cytomegalovirus (CMV). FM-74-103 selectively degrades
human G1 to S phase transition 1 (GSPT1), a translation
termination factor, showcasing its potential as a host-directed
antiviral that can degrade key factors controlling both RNA and
DNA virus replication in host cells. This work highlights the broad
utility of the PROTAC platform for rational design and development
of next-generation antivirals (Zhao et al., 2023). Moreover,
PROTACs can target undruggable proteins, significantly
expanding the therapeutic prospects for refractory diseases. Tau
protein accumulation is a hallmark of Alzheimer’s disease (AD) and
related tauopathies; however, tau is a natively unfolded protein
lacking well-defined folds and active sites. In 2021, Wang et al.
discovered C004019 (Figure 6B), a novel small-molecule PROTAC
that selectively promotes tau clearance, significantly improving
synaptic and cognitive functions in various hTau cell models and
in AD-like hTau and 3xTg transgenic mice. This work demonstrates
that PROTACs can effectively induce the degradation of
undruggable proteins, offering promising therapeutic avenues for
AD and related tauopathies (Wang W. et al., 2021).

3.1.2 Molecular glue
The concept of molecular glue was first introduced Harvard

chemical biologist Stuart Schreiber in the early 1990s (Schreiber,
1992). As a linker-free scaffold, molecular glues induce, stabilize, or
enhance interactions between E3 ligases and their POI by modifying
the surface of the E3 ubiquitin ligase, thereby promoting the
ubiquitination of the POI (Zhou et al., 2023) (Figure 5B). This
modality effectively hijacks the ubiquitin-proteasome pathway to
degrade traditionally challenging therapeutic targets, thereby
broadening the spectrum of druggable proteins. Unlike
PROTACs, molecular glues are generally smaller
(typically<500 Da) and lack clearly separable components like
linkers or distinct chemical moieties for binding to each protein.
While their smaller size and successful precedents suggest that
molecular glues may exhibit better drug-like properties, their
design poses significant challenges. However, the few molecular
glues that have made it into clinical trials were largely discovered
serendipitously (Ding et al., 2022) (Figure 6C). In 2014, Krönke et al.
reported the first molecular glue, lenalidomide (a thalidomide
analog), which induces the degradation of IKZF1/3 via the
CUL4/CRBN pathway (Krönke et al., 2014). Since the discovery
of thalidomide, over ten small molecular glues with similar
structural motifs have been identified. Subsequent studies
revealed that a series of aryl sulfonamides function as molecular
glues, enhancing the interaction between the E3 ubiquitin ligase
CUL4-DCAF15 (DDB1 CUL4 Associated Factor 15) and RBM39
(RNA binding motif protein 39), thereby promoting
RBM39 degradation. Several aryl sulfonamides, including
Indisulam, CQS, and E7820, have been evaluated in clinical
trials as potential antitumor agents (Figure 6C) (Han et al., 2017;
Uehara et al., 2017).

Molecular glue degraders have generated significant interest in
the research community. To facilitate the discovery of molecular

Frontiers in Pharmacology frontiersin.org11

An et al. 10.3389/fphar.2025.1550158

https://clinicaltrials.gov/ct2/show/NCT03888612
https://clinicaltrials.gov/ct2/show/NCT05654623
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1550158


glue degraders targeting diverse proteins and bindingmodes, there is
an urgent need for new screening methods and rational design
strategies that transition from serendipitous discovery to systematic
exploration. (1) Innovative Screening Technologies: Ebert et al.
developed a method to mine correlations between the
cytotoxicity of 4,518 clinical and preclinical small molecules and
the expression levels of E3 ligase components across a wide range of
human cancer cell lines. This led to the identification of CR8 as a
molecular glue degrader that binds to CDK12–cyclin K, recruiting
the DDB1–CUL4–RBX1 E3 ligase complex to ubiquitinate cyclin K
(Figure 6D) (Słabicki et al., 2020; Kozicka et al., 2023). Similarly,
through chemogenomic screening, Han et al. discovered HQ461, a
novel molecular glue that binds the ATP pocket of CDK12 and
promotes interaction with DDB1, triggering cyclin K degradation
(Figure 6D) (Lv et al., 2020). (2) Optimization of Molecular Glue
Design: Daniel et al. introduced a transposable chemical handle that
can convert protein-targeting ligands into molecular degraders.
Using the CDK4/6 inhibitor Ribociclib as a prototype, they
identified a covalent handle capable of inducing
CDK4 degradation. Further optimization led to the development
of a “fumarate” handle, a universal modular chemical tool for
generating molecular glue degraders (Figure 6D) (Toriki et al.,
2023). Additionally, Rao et al. employed a dual-target, dual-
mechanism design strategy to combine multiple mTOR inhibitors
with E3 ligase ligands. After extensive screening, they discovered the
bifunctional molecule YB-3-17, which selectively degrades
GSPT1 while inhibiting mTOR (Figure 6D) (Liu Y. et al., 2024).
These studies demonstrate the growing sophistication of molecular
glue degrader design and expand their potential applications across
various therapeutic targets.

3.2 Targeted protein degradation
via lysosome

More recently, new TPD strategies have been developed to hijack
the lysosomal degradation pathway, the major degradation pathway

independent of the proteasome. As a central “garbage disposal”
mechanism within cells, lysosomes facilitate the breakdown of
various biomacromolecules, including proteins, lipids, carbohydrates,
and nucleic acids, through endocytic, phagocytic, and autophagic
pathways (Saftig and Klumperman, 2009). The lysosomal
degradation system comprises the endosome/lysosome and
autophagy pathways, which operate both independently and
synergistically to degrade intracellular and extracellular components.
The endosome/lysosome pathway involves a series of membrane-
bound compartments that mediate the processing of internalized
material. Endocytosed substances are first incorporated into early
endosomes, then transported through endosome carrier vesicles, late
endosomes, and ultimately delivered to lysosomes for hydrolytic
degradation (Ding et al., 2020). Autophagy, an evolutionarily
conserved process, plays a critical role in maintaining cellular
homeostasis by clearing unnecessary or damaged organelles and
proteins via a lysosome-dependent mechanism. In this process,
targeted organelles and proteins are encapsulated within double-
membrane vesicles, known as autophagosomes (Zhao et al., 2022).
These autophagosomes subsequently fuse with lysosomes, where their
contents are broken down.

3.2.1 Autophagy-targeting chimeras (AUTACs)
AUTAC is an innovative targeted protein degrader that harnesses

the autophagy pathway to facilitate the selective degradation of
intracellular proteins and organelle debris (Sakamoto et al., 2001).
By inducing specific ubiquitin modifications, particularly K63-linked
polyubiquitination, AUTAC molecules create a recognition signal that
is effectively processed by the selective autophagy machinery. This
K63 polyubiquitination is distinct from the more common K48-linked
ubiquitination, which typically signals for proteasomal degradation
(Figure 5C) (Takahashi et al., 2019). Structurally, AUTACs are
heterobifunctional molecules comprising three key components: a
degradation tag, which is often a guanine derivative responsible for
initiating ubiquitination; a flexible linker that connects the degradation
tag to the ligand; and a ligand warhead that selectively binds to the POI.
Following binding, the targeted cellular components are sequestered

FIGURE 8
Schematic illustration of DNA-encoded libraries (DELs).
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into autophagosomes, which then fuse with lysosomes for degradation
in the presence of lysosomal hydrolases. Despite the promise ofAUTAC
technology in drug discovery, significant gaps remain in understanding
the detailedmechanisms underlying its efficacy, including themolecular
interactions involved in the recognition and processing of ubiquitinated
targets (Li et al., 2021). Currently, there are no clear examples of
AUTACs in clinical trials, with research primarily focused on early
preclinical assessments.

In 2019, Arimoto’s group introduced the concept of AUTAC,
drawing inspiration from the antibacterial autophagy process. Since
then, molecules of AUTACs 1–4 (Figure 7A) have been successfully
employed to degrade various proteins, including methionine

aminopeptidase 2 (MetAP2), FK506-binding protein (FKBP12),
BET family proteins, translocator protein (TSPO), and others,
alongside mitochondrial components, showcasing their
remarkable degradation capabilities. Subsequent investigations
have indicated that the degradation of mitochondria can trigger
the elimination of additional pathogenic proteins (Takahashi et al.,
2019). In 2023, the group conducted a SAR study, substituting
L-Cysteine with pyrazole in the design of second-generation
AUTACs. This modification resulted in a substantial
enhancement of activity, with the tt44 (Figure 7A) of second-
generation AUTACs achieving up to a 100-fold increase in
potency compared to first-generation AUTACs, which were

FIGURE 9
Chemical structures of small molecules discovered from DNA-encoded libraries (DELs). Representational small molecules currently in (A) clinical
trials, and (B, C) preclinical trials.
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effective at concentrations of 10 μM (Takahashi et al., 2023). More
recently, Schmitzer and colleagues developed an AUTAC-
Biguanide compound (Figure 7A) by incorporating a biguanide
functional group as a targeting moiety linked to the guanine scaffold.
This strategic addition enables the selective targeting of the
degradation process toward mitochondria. Notably, AUTAC-
Biguanide exhibits superior antiproliferative properties compared
to metformin and demonstrates enhanced selectivity for cancer cells
(Vatté et al., 2024). This body of research underscores the potential
of AUTAC molecules to effectively degrade cellular organelles,
including damaged mitochondria, paving the way for novel
therapeutic strategies.

3.2.2 Autophagosome-tethering
compounds (ATTECs)

ATTEC was first introduced in 2019 by Professor Boxun Lu of
Fudan University (Li et al., 2019). Unlike PROTACs and AUTACs,
which rely on ubiquitination for protein degradation, ATTEC
molecules operate independently of this modification. Instead,
ATTEC compounds function by tethering the POI to LC3,
effectively directing disease-related targets to phagocytes for
degradation (Figure 5D). This unique mechanism provides broad
applicability across various disease contexts and target types (Zhang
C. et al., 2024; Li et al., 2019). Distinct from PROTACs and
AUTACs, which are characterized by two ligands connected via a
linker, ATTEC molecules do not utilize a linker and can be likened
to “molecular glue.” This innovative design allows for the precise
and efficient recruitment of target proteins. In recent years, a series

of novel ATTECs have been developed as heterobifunctional small
molecules, enhancing their functionality. Given the diverse range of
autophagic substrates, ATTEC technology holds significant promise
for extending the applicability of protein degraders to non-
proteinaceous biomolecules and organelles. This adaptability may
pave the way for new therapeutic strategies targeting a wider array of
biological processes, potentially transforming treatment approaches
for various diseases.

In 2019, the Lu research group introduced ATTEC technology,
developing ATTEC molecules capable of binding both the key
autophagy protein LC3 and the mutant huntingtin protein
(mHTT). This pioneering study demonstrated that molecules
AN1 and AN2 (Figure 7B) effectively degrade mHTT in both
cellular and in vivo animal models, successfully rescuing
phenotypes associated with Huntington’s disease (Li et al., 2019).
Building on this initial work, Lu and colleagues expanded the
application of ATTEC technology by designing small molecules
that target lipid droplets (LDs), which are implicated in various
metabolic disorders such as obesity, type 2 diabetes, liver steatosis,
and atherosclerosis. These novel ATTECs (LD-ATTECs C1-C4,
shown in Figure 7B) bind to both LC3 and LDs, achieving near-
complete clearance of LDs and rescuing LD-related phenotypes in
cell cultures as well as in two independent mouse models (Fu et al.,
2021). The proof-of-concept findings underscore the potential of
ATTECs to facilitate the degradation of LDs. Most recently, Lu’s
team has developed new bifunctional ATTEC (mT1, shown in
Figure 7B) that simultaneously bind to the outer mitochondrial
membrane protein TSPO and the autophagosome protein LC3. This

FIGURE 10
A typical workflow for computer-aided drug design (CADD).
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innovative approach enhances the engulfment of damaged
mitochondria by autophagosomes, promoting their subsequent
autophagic degradation (Tan et al., 2023). This study not only
confirms the ability of ATTECs to degrade organelles but also
presents promising new strategies for intervening in
mitochondria-related disorders. Conceptually, this approach
could be extended to target a range of other proteins and non-
protein entities, broadening the therapeutic potential of ATTEC
technology.

3.2.3 AUTOphagy-TArgeting
chimeras (AUTOTACs)

In 2022, Kwon’s group introduced AUTOTACs, an innovative
degrader technology that degrades UPS-resistant misfolded proteins
and their oligomeric/aggregated species (Ji et al., 2022). AUTOTACs
directly bind to the ZZ-type zinc finger (ZZ) domain of
sequestosome 1 (SQSTM1)/p62, eliminating the need for

polyubiquitination. This bifunctional molecule comprises two key
components: a ligand that targets the POI and a ligand that directs
the molecule to the autophagy pathway via the p62 protein
(Figure 5E). By effectively linking these components through a
flexible linker, AUTOTACs facilitate the simultaneous
degradation of the target protein while enhancing autophagic
flux. This dual functionality not only improves the efficiency of
protein degradation but also promotes cellular health by ensuring
the clearance of damaged or unnecessary proteins through
autophagy, offering a promising strategy for therapeutic
interventions in various diseases.

In 2022, the research team led by Yong Tae Kwon developed
AUTOTAC compounds that features a module specifically designed
to interact with the ZZ domain of p62, alongside a module targeting
the POI. Both in vitro and in vivo studies demonstrated that these
AUTOTACs (e.g., PBA-1105,Anle138b-F105, shown in Figure 7C)
effectively targets the androgen receptor (AR) in prostate cancer

FIGURE 11
Chemical structures of approved small molecules discovered from CADD technology.
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FIGURE 12
Chemical structures of small molecules discovered from virtual screening. (A) Exemplary small molecules by structure-based virtual screening
(SBVS). (B) Exemplary small molecules by ligand-based virtual screening (LBVS).
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cells and methionine aminopeptidase 2 (MetAP2) in glioblastoma
cells, showcasing its powerful degradation capabilities (Ji et al.,
2022). Building on this success, in 2023, Kwon’s group

synthesized a series of AUTOTAC molecules that bind both p62/
SQSTM1 and α-synuclein aggregates, which are implicated in the
progression of Parkinson’s disease. One notable compound,

FIGURE 13
Chemical structures of small molecules identified through (A) de novo drug design, (B) drug repurposing, and (C) ADMET predictions.
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ATC161 (Figure 7C), is an oral drug characterized by favorable
pharmacokinetic and pharmacodynamic profiles. It selectively
induces the degradation of α-synuclein aggregates in both
in vitro and in vivo models (Lee et al., 2023). This research
underscores the potential of the AUTOTAC platform for
advancing drug discovery in the context of proteinopathies and
related diseases.

3.3 Challenges of targeted protein
degradation in drug discovery

TPD has emerged as a groundbreaking modality in drug
discovery over the past 2 decades, with PROTACs and molecular
glues representing the most advanced technologies in this field. In
recent years, lysosome-based degrader technologies have begun to
gain traction, significantly expanding the range of disease-related
targets that can be addressed, thereby offering new strategies for
clinical treatment. However, the development of lysosome-based
TPD technologies remains in its infancy compared to the more
established PROTAC and molecular glue approaches. While
multiple PROTAC compounds have shown great promise in
clinical trials, their development is not without challenges. First,
synthesizing PROTACs requires not only the identification of a
suitable ligand for the protein of interest but also converting that
ligand into a functional PROTAC, which can be a time-intensive
process demanding considerable expertise in synthetic and
medicinal chemistry. Additionally, PROTACs often struggle with
issues related to cell permeability and oral bioavailability, primarily
due to their complex chemical structures. Furthermore, traditional
methodologies do not provide a comprehensive understanding of
the mechanisms of action of PROTACs, necessitating the
implementation of complementary technologies for thorough
evaluation. In contrast, molecular glues are generally smaller and
more drug-like, which enhances their potential for clinical
application. However, significant challenges remain, particularly
during the later stages of optimization. While lysosome-based
TPD technologies are still emerging, further research is essential
to elucidate the molecular mechanisms and SAR of AUTACs,
ATTECs, and AUTOTACs, and to establish their fundamental
design principles. Despite these hurdles, TPD technologies hold
immense potential to not only serve as powerful tools for biomedical
research but also to enrich the medicinal chemist’s toolkit. With
focused research and development efforts, these technologies could
substantially broaden the spectrum of degradable targets, paving the
way for exciting new avenues in therapeutic discovery.

4 DNA-encoded libraries (DELs)
technology

DELs have emerged as a revolutionary tool in drug discovery,
offering significant advantages in the identification of potential
therapeutic candidates. Initially conceptualized by Brenner and
Lerner in 1992, who proposed a theoretical framework for
utilizing DNA to encode synthetic peptides (Brenner and Lerner,
1992), DEL technology saw practical application when Liu and
Gartner employed DNA-templated synthesis to create small

molecules with diverse chemical structures in 2001 (Gartner and
Liu, 2001). DELs consist of combinatorial libraries of drug-like
molecules, each uniquely barcoded with a DNA sequence that
encodes the structure of the attached library member (Clark
et al., 2009; Potowski et al., 2021). This innovative approach
enables the preparation of libraries with unprecedented diversity
and facilitates efficient screening for ligands that bind to specific
protein targets. Traditional methods of synthesizing and screening
individual molecules are often costly and complex, requiring
substantial quantities of target protein, well-established bioassays,
and intricate logistical arrangements. In contrast, DEL selections can
be performed in just a few days, utilizing only tens of micrograms of
protein and picomole amounts of DELs, along with next-generation
DNA sequencing (NGS) technologies (Matsuo et al., 2023)
(Figure 8). Compared to conventional compound libraries, DELs
offer higher density, improved stability, and reduced costs, thereby
opening up new avenues for the design and synthesis of complex
molecules. This capability not only enhances the efficiency of the
drug discovery process but also expands the range of chemical
diversity that can be explored, ultimately contributing to the
development of more effective therapeutics.

4.1 Selections on single immobilized targets

The application of DELs for small molecule discovery primarily
involves affinity-based selections conducted on single immobilized
targets in vitro. In these affinity-based selections, purified proteins
equipped with affinity tags are immobilized on solid matrixes, such
as magnetic beads or resin (Cochrane et al., 2021; Zhang Y. et al.,
2024). This setup enables the effective separation of active library
members that bind to the target from those that are weakly or non-
binding and remain in solution. Following this, a series of washing
steps is employed to remove inactive library members, ensuring that
only those bound to the target remain attached. The target-bound
library members can be eluted through various methods, including
cleaving the target from the solid support, disrupting ligand-target
interactions, or introducing an excess of a competitive ligand. In the
context of DELs, the DNA sequences encoding the selected library
members are then amplified via PCR. This amplified DNA can be
subjected to additional rounds of in vitro selection, often under
increasingly stringent conditions, to enrich the most active
compounds (Scheuermann et al., 2006; Neri and Lerner, 2018).
This straightforward yet effective methodology allows for the rapid
evaluation of molecules with affinity for a target of interest. As such,
it serves as a crucial starting point for further optimization,
characterization, and eventual development of candidates for
clinical trials. By leveraging the unique advantages of DEL
technology, researchers can streamline the drug discovery process
and enhance the likelihood of identifying promising therapeutic
candidates.

Traditional workflows for DELs have proven effective in
identifying multiple clinical candidates, with more than three
candidates having progressed to clinical trials to date
(Figure 9A). Gough, Bertin, and their collaborators developed
extensive DNA-encoded small-molecule libraries using a split-
and-pool strategy, resulting in approximately 7.7 billion diverse
warheads across three cycles of building blocks. Utilizing these
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libraries, they discovered a novel series of highly potent
benzoxazepinone inhibitors targeting receptor interacting protein
1 (RIP1) kinase. Notably, these inhibitors (e.g., compound #8,
shown in Figure 9B) demonstrated complete selectivity against
over 450 off-target kinases in a stereochemical-dependent
manner. This series not only showcases high potency and kinase
selectivity but also exhibits favorable pharmacokinetic profiles in
rodent models (Harris et al., 2016). Building on this success, the
team optimized a benzoxazepinone hit from their DNA-encoded
library, leading to the discovery of the clinical candidate
GSK2982772, which is currently undergoing phase 2 clinical
trials for psoriasis, rheumatoid arthritis, and ulcerative colitis
(Harris et al., 2017; Weisel et al., 2020). In a significant
expansion of DEL technology, Dou et al. in 2022 adapted the
approach for RNA targets. They initially faced challenges with
false positive signals arising from unintended DNA-RNA
interactions during their selection against the HIV-1 TAR (trans-
acting responsive region) RNA. To mitigate this issue, they
developed an optimized strategy incorporating RNA patches and
competitive elution to minimize unwanted binding. Subsequent
k-mer analysis and motif searches effectively filtered out false
positives. This refined method was successfully applied to a DEL
selection against the Escherichia coli FMN riboswitch, yielding
compounds (e.g., HGC-1 and HGC-2, shown in Figure 9B) with
nanomolar binding affinities and comparable potency in functional
assays (Chen et al., 2022).

4.2 Selections on living cells

Traditional DELs selection methods that rely on purified,
immobilized protein targets face significant limitations when
applied to many critical classes of drug targets. Certain proteins
cannot be isolated or subjected to in vitro selection due to instability
or the absence of established isolation protocols. Additionally,
conventional DELs screening is conducted in dilute solutions
containing primarily water, buffers, and salts, which fails to
accurately replicate the complex cellular environment. The
cytosol of living cells comprises 20%–30% (by weight) diverse
macromolecules, creating a markedly different milieu compared
to the dilute conditions used in traditional screening (Ellis, 2001).
Consequently, there is a pressing need to perform ligand discovery
directly in live cells (Figure 8). Developing approaches that enable
the selection of DELs against targets within a cellular context would
eliminate the challenges associated with requiring a pure, active
protein and allow for the assessment of proteins in a more
functionally relevant state. This would ensure that essential
binding partners and post-translational modifications are
preserved, ultimately leading to more effective drug
discovery outcomes.

The Hansen group achieved a significant milestone by
successfully screening a multimillion-member DELs within living
cells, utilizing oocytes from the South African clawed frog, Xenopus
laevis. They screened a DEL comprising 194 million members
against three protein targets: mitogen-activated protein kinase 14
(p38α), human acetyl-coenzyme A synthetase 2 (ACSS2), and
human dedicator of cytokinesis 5 (DOCK5). This effort yielded
multiple chemical clusters and identified nanomolar-level potent

hits (e.g., VCP00630 andVCP00628, shown in Figure 9C) for p38α,
highlighting the potential of DELs to broaden target screening and
reduce attrition rates in drug discovery (Petersen et al., 2021). In a
separate study, a novel approach was introduced for identifying
small molecule agonists for membrane proteins by selecting DELs
on live cells. This method connects extracellular ligand binding to
intracellular biochemical responses, thereby enhancing the
likelihood of discovering agonists. It was demonstrated on three
membrane proteins: epidermal growth factor receptor (EGFR),
thrombopoietin receptor (TPOR), and insulin receptor (INSR),
utilizing DELs containing 30 million and 1.033 billion
compounds. This innovative approach successfully identified
novel agonists (e.g., i14, i15 and i16, shown in Figure 9C) with
sub-nanomolar affinities and micromolar cellular activities (Huang
et al., 2024).

4.3 Challenges of DNA-encoded libraries in
drug discovery

DELs present significant advantages in drug discovery, but they
also face notable challenges. One major challenge is the delivery of
DELs into target cells, as traditional methods often struggle with
membrane permeability, limiting the effective screening of
compounds in vivo. While advances have been made using
techniques like electroporation and microinjection, achieving
efficient delivery while maintaining cell viability remains a
hurdle. Another issue is the complexity of interpreting the
binding interactions between DEL members and target proteins.
High background noise from endogenous proteins can confound
results, making it difficult to distinguish between specific and
nonspecific interactions. Additionally, the large size of DELs
complicates the characterization of individual hits, as the
multimeric nature of the libraries can obscure individual ligand
properties. Furthermore, ensuring the stability and integrity of the
DNA during the selection process is crucial, as degradation can
affect the quality of the results. Lastly, while DELs enable high-
throughput screening, the need for extensive bioinformatics
resources to analyze and validate hits can be resource-intensive,
posing a logistical challenge for many research teams. Addressing
these challenges is essential for maximizing the potential of DELs in
drug discovery and expanding their applicability to a broader range
of targets.

5 Computer-aided drug design (CADD)

In recent years, significant advancements have been made in the
pharmaceutical field, driven by the rapid development of computer
technology and artificial intelligence (AI). The policy for the
evaluation of chemicals (Registration, Evaluation and
Authorisation of Chemicals [REACH]) has strongly advocated
for the adoption of in silico methods within the pharmaceutical
industry (Neri and Lerner, 2018). This approach is particularly
justified, as it enables a substantial reduction in the use of
laboratory animals for in vivo testing and leads to considerable
cost savings in research. Recent studies have established CADD is an
indispensable tool for drug discovery and can speed up, especially,
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the early development stages of lead identification and optimization
(Rusinko et al., 2024; Hsieh et al., 2023) (Figure 10). CADD
primarily integrates traditional disciplines such as computational
chemistry, molecular biology, and structural biology. By utilizing
advanced algorithms and predictive models, it facilitates the
assessment of interactions between drug molecules and
biomolecules, thereby accelerating the drug design and
optimization processes. Consequently, several small molecules
discovered through CADD technology have been approved, as
illustrated in Figure 11. Additionally, AI technologies—including
machine learning (ML), deep learning (DL), and natural language
processing—have been successfully implemented in real-world drug
discovery (Liu G. et al., 2023; McNair, 2023).

5.1 Structure-based virtual screening (SBVS)

In structure-based drug design (SBDD), the binding interaction
and binding site between target structure and ligand are determined
using various techniques such as X-ray diffraction, NMR, or
calculations involving molecular mechanics and dynamics
techniques (Zhu et al., 2020; Sugiki et al., 2018; Defelipe et al.,
2018). However, in SBVS, basing a three-dimensional (3D)
structural model of the intended target macromolecule (usually a
protein, or RNA structure) search and rank accessible chemical
space for potential ligands (Maia et al., 2020). SBVS is widely
employed to find small molecules that can bind to the active or
allosteric site of the target, predicting potential drug candidates.
SBVS involves docking of large and diverse virtual chemical libraries
into an X-ray crystal structure or homology model of the target
protein. The success of SBVS depends on the accuracy of both the
target structure and the docking/scoring algorithms (Macalino et al.,
2015). The integration of AI technologies in SBVS has influenced the
field by improving the accuracy, speed, and scalability of virtual
screening (Lima et al., 2016; Zhang et al., 2023).

5.1.1 Molecular docking
The most employed SBVS technique in drug design studies is

molecular docking. This method is a computational technique used
to predict how small molecules (ligands) interact with a target
macromolecule, typically a protein. Nowadays more than
227,000 biological macromolecular structures are deposited on
Protein Data Bank (PDB) database (http://rcsb.org), covering
more than 170,000 organisms and 190,000 distinct protein
sequences. Molecular docking techniques have been popular in
SBVS since the early 1980s (Kuntz et al., 1982). Molecular
docking study prophesies the interaction energy between two
molecules, and determines the interactions of ligand and target
to find the conformation of ligand in the formed complex with
overall binding free energy (Forli et al., 2016). In general, the process
of molecular docking is performed according to the following steps:
(i) obtain the 3D structure of the target macromolecule from crystal
structure repositories (e.g., PDB); (ii) characterization of the binding
sites and cavities; (iii) compound library construction, which
involves several processes of characterization, filtering, and
clustering; (iv) molecular docking of target with compounds
supplemented with known actives and decoys followed by
scoring; and (v) final evaluation and validation (Lionta et al.,

2014). Some common tools are used in molecular docking, such
as AutoDock and AutoDock Vina, Glide, GOLD (Genetic
Optimization for Ligand Docking), DOCK, Surflex-Dock, LeDock
and FlexX (Cheng et al., 2012; Shen et al., 2020). Moreover, AI-based
enhancements in scoring, protein flexibility modeling, and ligand
design have transformed molecular docking into a more efficient
and reliable tool for drug discovery, making it possible to screen vast
chemical libraries and optimize lead compounds with high
precision. Molecular docking are superseded by tools like
AtomNet, DeltaVina (AI-enhanced AutoDock Vina) and GNINA
(Stafford et al., 2022; Wang and Zhang, 2017; McNutt et al., 2021).

In 2019, Xie et al. conducted a virtual screening of 2,004 clinical
and preclinical drugs using AutoDock Vina to target multiple
enzymes. Their study identified kinase inhibitors, particularly
Lifirafenib (Figure 12A), as promising lead compounds for
inhibiting the aroQ, phzG, and phzS enzymes, which are
involved in the phenazine biosynthesis pathway. These findings
highlight the potential of Lifirafenib in drug repurposing, though
further experimental validation is necessary (Xie and Xie, 2019). The
combination of molecular docking and drug repositioning strategies
is proving effective in accelerating the discovery of new preclinical
drug candidates. SBVS has been shown to enhance hit quality,
especially as the number of compounds screened increases.
Arthanari et al. developed VirtualFlow, an open-source platform
for large-scale virtual screening capable of handling ultra-large
libraries and multiple docking programs. VirtualFlow processed
over one billion compounds using AutoDockTools, leading to the
discovery of lead molecules such as iKeap1 (Figure 12A), which
binds to Kelch-like ECH-associated protein 1 (KEAP1) with
nanomolar affinity, demonstrating significant potential in drug
discovery (Gorgulla et al., 2020). In 2023, Houston et al.
introduced SCORCH, a new ML-based model designed to
improve the scoring functions used in molecular docking.
SCORCH showed superior performance in virtual screening and
pose prediction compared to traditional scoring methods, with
higher enrichment factors and improved pose ranking. This
model’s increased accuracy, combined with uncertainty
estimation, offers a promising approach to reducing drug
discovery costs and timelines (McGibbon et al., 2023).

5.1.2 Homology modeling
An interesting contradiction in drug discovery is the fact that

60%–70% of drugs on themarket target integral membrane proteins,
which to date have been unsuitable for structure-based approaches
because of the enormous difficulties in producing suitable quantities
of functional protein for crystallization trials (van Montfort and
Workman, 2009). In the case of target proteins for which no direct
crystallographic data are available, the construction and screening of
homology models can be performed. Homology modeling is a
computational method used to predict the 3D structure of a
protein based on its amino acid sequence and an available
structure of a homologous protein (a protein with a similar
sequence). The homology modeling consists of five key steps: (i)
find a suitable homologous protein structure to use as a template, (ii)
align the sequence of the target protein with the sequence of the
template protein, (iii) construct a 3D model of the target protein
based on the template structure, (iv) improve the quality of the
modeled structure, and (v) assess the quality and accuracy of the
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model (Lee et al., 2017). Homology modeling employs information
from template structures of homologous proteins. Some common
tools include BLAST, MODELLER, SWISS-MODEL, and PyMod
(Bullock et al., 2013; Waterhouse et al., 2018; Janson and Paiardini,
2021). However, with the advance in the AI field, these methods are
superseded by methods like AlphaFold, RoseTTAFold, ESMFold,
and OmegaFold, which supersedes traditional homology modeling
methods by offering greater accuracy, faster predictions, and the
ability to model proteins for which no template is available (Lee
et al., 2022; Song et al., 2024; Chen et al., 2024).

Overexpression of Forkhead box protein C2 (FOXC2) is
associated with cancer progression and metastasis, making it a
key target for anticancer drug development. In 2023, Tao et al.
used the I-TASSER server for homology modeling to construct a 3D
structure of full-length FOXC2. Ligand-based drug design (LBDD)
identified MC-1-F2 analogues from 15 million compounds in the
ChEMBL and ZINC databases, resulting in eight promising lead
compounds (compounds #9-#16) (Figure 12A) through molecular
dynamics (MD) simulations and molecular mechanics/generalized
Born surface area (MM/GBSA) MM/GBSA calculations (Ibrahim
et al., 2022). In 2024, Ali et al. utilized SWISS-MODEL to generate a
homology model of the dengue virus non-structural 4B (NS4B)
protein and validated it using multiple tools. Molecular docking
revealed significant binding affinities of triterpenoids, including 15-
oxoursolic acid and betulinic acid (Figure 12A), against NS4B (Ali
et al., 2024). The same year, Darvishi et al. employed MODELLER
9v10 and AutoDock Vina for homology modeling and molecular
docking to optimize Yarrowia lipolytica L-asparaginase. Three
mutants—T171S, T171S-N60A, and T171A-T223A—exhibited
increased affinity for L-asparagine and reduced affinity for
L-glutamine. This study underscores the utility of combining
homology modeling and molecular docking to identify
therapeutic candidates with fewer side effects, providing valuable
insights for enzyme optimization in drug development (Darvishi
et al., 2024).

With advancements in AI, traditional homology modeling
methods are being increasingly superseded by ML approaches.
Svenningsson et al. compared virtual screenings using protein
structures generated by AlphaFold, a ML method, and traditional
homology modeling. By docking over 16 million compounds onto the
trace amine-associated receptor 1 (TAAR1) model, they selected
30 and 32 highly ranked compounds from the AlphaFold and
homology model screenings, respectively. The hit rate of AlphaFold
screening (60%) was more than twice as high as that of the homology
model, leading to the discovery of the most effective agonist (Díaz-
Holguín et al., 2024). RoseTTAFold, inspired by AlphaFold, was tested
by Tseng et al. on a collection of solved G-protein-coupled receptor
(GPCR) structures in the PDB. They assessed the accuracy of the
predictions using the root-mean-square deviation (RMSD) of
backbone alpha-carbons, finding that AlphaFold outperformed
RoseTTAFold in top-scored model accuracy, while RoseTTAFold
showed a smaller variance in RMSDs (Lee et al., 2022). Meanwhile,
single-sequence-based structure prediction methods, such as ESMFold
and OmegaFold, offer a balance between inference speed and
prediction accuracy. Lin et al. introduced ESMFold, a pre-trained
language model for fast and accurate structure prediction, achieving
accuracy comparable to AlphaFold2 while reducing inference time by
up to 60 times (Lin et al., 2023).

5.1.3 Molecular dynamics (MD) simulations
MD simulations are a crucial computational tool either before or

after docking to study deep insights into the dynamic interactions
between potential drug molecules (ligands) and their target proteins
(Liu et al., 2018). MD simulations have been long proposed to
provide insight into protein dynamics beyond that available
crystallographically, and unravel novel cryptic binding sites,
expanding the druggability of the targets (Kuzmanic et al., 2020).
MD simulations study protein-ligand interactions, facilitating
SBDD and optimizing lead compounds by assessing binding
affinities and stability. The MD process involves several key
steps: (i) preparing the system (selecting molecules, solvation,
and ionization), energy minimization, equilibration under
controlled conditions, and conducting a production run where
atomic positions are updated over time, (ii) data is collected for
analysis, focusing on structural changes, binding interactions, and
dynamic properties, and (iii) visualization tools are used to interpret
results, leading to insights into molecular behavior and interactions
in drug discovery (Yelshanskaya et al., 2020; Tang Y. et al., 2020).
MD simulations utilize a variety of tools and software packages, with
common examples including GROMACS, CHAPERON g, NAMD,
VMD, and OpenMM (Yelshanskaya et al., 2020; Yekeen et al., 2023;
Phillips et al., 2020; Eastman et al., 2017).

Amantadine (Figure 12A) has emerged as a promising
candidate for COVID-19 treatment by inhibiting the ion channel
activity of SARS-CoV-2 Proteins E and open reading frame (ORF)
Protein 10. Rosenkilde et al. demonstrated that amantadine blocks
Protein E-mediated currents, further elucidating its specific
interaction profile through solution NMR and MD simulations
(Toft-Bertelsen et al., 2021). Chen et al. identified caspase-1 as a
key regulator in febrile seizures (FS), with caspase-1 knockout mice
showing resistance to FS. Overexpression increased susceptibility,
and MD simulations coupled with MM/GBSA binding free energy
calculations identified CZL80 (Figure 12A) as a potent brain-
penetrable, low molecular weight caspase-1 inhibitor. These
findings emphasize the utility of MD simulations in virtual
screening to uncover drug mechanisms (Tang Y. et al., 2020).
Another study combined MD simulations and patch clamp
electrophysiology to assess drug candidates targeting KIR6.2 wild-
type (WT) and developmental delay, epilepsy, and neonatal diabetes
(DEND) syndrome-related mutant channels. Betaxolol and
Levobetaxolol (Figure 12A) were identified as effective pore
blockers, exhibiting IC50 values ranging from 22 to 55 μM.
Travoprost (Figure 12A) demonstrated the strongest inhibitory
effect on WT and L164P channels. The MD simulations provided
insight into the potential channel interaction and clarified the
possible mechanisms shed light on mechanisms of the tested
drug candidates (Houtman et al., 2022).

5.2 Ligand-based virtual screening (LBVS)

LBVS is a valuable computational approach in drug discovery,
particularly useful when structural information on the target protein
is unavailable (Yang et al., 2019). The core principle of LBVS
involves analyzing the binding affinities and structural features of
known ligands to design drug molecules with improved affinity and
selectivity. Key methodologies in LBVS include QSAR modeling,
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which links chemical structures with biological activity, and
pharmacophore modeling, which identifies critical spatial features
necessary for binding (Lee et al., 2011). LBVS approach is especially
beneficial in the early stages of drug discovery, enabling efficient
screening of large compound libraries and prioritizing candidates
for experimental testing. However, the effectiveness of LBVS
depends on the availability of high-quality ligand data and may
overlook potential drug candidates that lack significant structural
similarity to known ligands (Pérez-Castillo et al., 2014). The
integration of AI technologies has greatly enhanced LBVS by
improving its accuracy and efficiency. ML and DL techniques are
used to analyze large datasets, predict molecular interactions, and
optimize ligand properties, allowing for more efficient exploration of
chemical space and accelerating the identification of promising
therapeutic agents (Bonanno and Ebejer, 2019; Wu et al., 2024).

5.2.1 Quantitative structure–activity
relationship (QSAR)

QSAR models predict biological activity—such as toxicity,
efficacy, or binding affinity—based on molecular properties like
electronic, topological, steric, and hydrophobic features derived
from a compound’s structure (Vyas et al., 2021). These models
aid in designing compounds with improved therapeutic profiles.
QSAR uses statistical methods such as multiple linear regression,
support vector machines, and neural networks to correlate
molecular features with biological outcomes (Tang W. et al.,
2020). The QSAR modeling process involves several steps: (i)
collecting compound data, (ii) representing molecular structures
via descriptors, (iii) preprocessing the data, building and training the
model using statistical techniques, and (iv) validating the model
through internal and external validation methods (Lee et al., 2011).
QSAR modeling employs tools like CoMFA, CoMSIA, HQSAR,
Dragon, and PaDEL-Descriptor for molecular descriptor
calculation (Sainy and Sharma, 2015; Wang Y. et al., 2021; Liu Z.
et al., 2023), while platforms like AutoQSAR is used for model
building (Yang et al., 2021; Arakal et al., 2021). Additionally, ML
libraries such as R, Python (scikit-learn), and WEKA are crucial for
statistical analysis and model development (Shah and
Arumugam, 2024).

Khairullina and Martynova used GUSAR 2019 software,
developed by the V.N. Orekhovich Institute, to perform QSAR
analysis on derivatives of 5-ethyluridine, N2-guanine, and 6-
oxopurine with anti-herpetic activity against Herpes simplex
viruses (HSV) thymidine kinase. Twelve predictive models, based
on quantitative neighborhoods of atoms (QNAs), multilevel
neighborhoods of atoms (MNAs), and whole-molecule
descriptors, demonstrated high accuracy in predicting
pIC50 values. Virtual screening of the ChEMBL database using
these QSAR models identified 42 new potential HSV-1 and HSV-2
TK inhibitors (compounds #17-#58) (Figure 12B) (Khairullina and
Martynova, 2023). Similarly, Gaston-Mathé’s team evaluated a DL-
based de novo design technology for generating lead compounds
across 11 biological activity targets. Their QSAR models achieved
precision between 0.67 and 1.0, and the AI algorithm generated
150 virtual compounds, with 11 synthesized compounds showing an
86% average success rate. One compound (compound #59)
(Figure 12B) met all 11 objectives, while two met 10, highlighting
the efficacy of combining AI-based de novo design with QSAR

modeling for multi-parameter optimization (Perron et al., 2022). In
the context of RNA-targeted drug discovery, Hargrove et al.
developed QSAR models to predict binding parameters of small
molecules to HIV-1 transactivation response (TAR) RNA. These
models, built using multiple linear regression with feature selection,
identified key properties influencing binding strength and kinetics,
and were validated with new compounds, demonstrating their
accuracy and broad applicability (Cai et al., 2022).

Recent advancements in AI techniques, particularly DL, along
with the rapid expansion of molecular databases for virtual
screening and significant improvements in computational power,
have led to the emergence of a new field in QSAR applications,
known as “deep QSAR” (Tropsha et al., 2024). One key advantage of
“deep QSAR” over traditional methods is its ability to more
effectively tackle multi-objective optimization tasks through
knowledge transfer, leveraging diverse data sources to improve
prediction accuracy across different tasks. For instance, Pérez-
Castillo et al. developed a QSAR model based on DL strategies
using hundreds of inhibitors of the SARS-CoV main protease (Mpro)
(Tejera et al., 2020). This model was used to virtually screen a large
number of drugs from the DrugBank database, followed by docking
and molecular dynamics analysis of the top 20 candidates. The
results identified Levothyroxine, Phenobarbital, and ABP-700 as
the most promising inhibitors of the SARS-CoV-2 Mpro enzyme
(Figure 12B). In a different approach, Ghosh et al. developed two
supervised ML-based 3D-QSAR methods, CoMFA and CoMSIA, to
analyze the structure-activity relationships of focal adhesion kinase
inhibitors. Unlike 2D-QSAR, 3D-QSAR incorporates quantum
chemical descriptors, molecular scaffolds, substitution constants,
and various surface and volume descriptors, providing richer
insights into the non-bonding interactions between receptors and
ligands (Ghosh and Cho, 2023).

5.2.2 Pharmacophore modeling
Pharmacophore modeling aims to identify the essential

molecular features required for a ligand to interact with a
biological target, typically a protein. These features include steric
arrangements, electrostatic properties, aromatic rings, hydrogen
bond donors and acceptors, and hydrophobic regions, which are
abstracted into a pharmacophore—a 3D model representing the
spatial arrangement of these key interactions necessary for binding
and biological activity (van Drie, 2003). Pharmacophore modeling
can identify key structural features shared by active ligands, which
can then be used to screen for other molecules possessing these
characteristics. To predict the activity of a new compound, QSAR
models can be developed. While pharmacophore models highlight
the essential features responsible for activity, QSAR provides a
deeper understanding of how the chemical or physical properties
of a ligand relate to its biological effect (Vyas et al., 2021).
Pharmacophore models are useful for virtual screening, enabling
the identification of new potential drug candidates by comparing
large chemical libraries with the pharmacophore, thus accelerating
hit identification, lead optimization, and drug design. The process
typically involves identifying active compounds, extracting key
molecular features, aligning them in 3D space, and generating a
pharmacophore model to capture the essential interactions for
biological activity (Lee et al., 2011). Tools like LigandScout,
Discovery Studio, PharmMapper, and ZINCPharmer are
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commonly used to generate and evaluate pharmacophore models
(Temml et al., 2014; Wang X. et al., 2017; Koes and Camacho, 2012).

Zhong et al. used MOE software to develop a pharmacophore
model targeting Glucose Transporter 1 (GLUT1) and screened the
National Cancer Institute (NCI) compound database, comprising
1,469 molecules. This screening identified 16 hit compounds, with
four (compounds #60-#63) (Figure 12B) showing dose-dependent
inhibition of glucose uptake and reduced colon cancer cell growth
in vitro. Further results indicate that lead compound 57 was a GLUT
inhibitor (Almahmoud et al., 2020). Similarly, Aulifa et al.
performed an in silico study to evaluate the inhibitory activity of
active compounds from the ashitaba plant compared to statins
against the 3-hydroxy-3-methylglutaryl (HMG) Co-A reductase
enzyme. Using pharmacophore modeling and docking
simulations, 299 active HMG-CoA reductase inhibitors and
8,884 inactive compounds (decoys) were downloaded from the
DUD-E database. Molecular docking revealed that 15 hit
compounds exhibited low binding energy (ΔG), suggesting
potential inhibitory activity against HMG-CoA reductase. The
lowest ΔG value was found in 3′-carboxymethyl-4,2′-dihydroxy-
4′-methoxy chalcone (compound #64) (Figure 12B), which was
lower than the ΔG value of the other comparator drugs, atorvastatin
and simvastatin (Aulifa et al., 2024).

Traditional pharmacophore modeling relies on an effective
pharmacophore with a protein-ligand eutectic structure as a
reference, often depending on existing molecular libraries.
However, obtaining these eutectic structures can be challenging,
making de novo drug design difficult in many drug development
projects (Giordano et al., 2022). To address this, Koes et al. proposed
PharmRL, a novel approach that combines DL with geometric
reinforcement learning to construct high-quality pharmacophores
without requiring ligand information. Their algorithm
demonstrated superior prospective virtual screening performance
on the DUD-E dataset compared to randomly selecting ligand
recognition features from eutectic structures. PharmRL was also
tested on the COVID Moonshot dataset, effectively identifying
potential lead molecules without fragment screening experiments
(Aggarwal and D, 2024). Additionally, Imrie et al. introduced the
DEVELOP model, which utilizes pharmacophore information to
optimize precursor or lead compounds. By integrating the graph-
based deep generative model DeLinker with a convolutional neural
network, DEVELOP leverages 3D representations of molecules and
target pharmacophores. Using the design of menin and mixed
lineage leukemia (MLL) fusion protein inhibitors as a case study,
they demonstrated that molecules generated by DEVELOP closely
matched the input pharmacophore information (Imrie et al., 2021).

5.3 De novo drug design

De novo drug design involves creating novel molecules without
relying on existing compounds or natural products. Traditional
methods, such as fragment-based approaches, generate new
molecules from scratch but often face challenges due to the
complexity of molecular structures, making them difficult to
synthesize (Schneider et al., 2017). Compared to virtual
screening, drug design from scratch, aided by new algorithms for
molecular design and evaluation, allows for more efficient

exploration of a wider chemical space. While molecules proposed
through de novo drug design are typically far from final drug
candidates, they serve as valuable starting points for medicinal
chemistry development (Tang et al., 2024). De novo drug design
methods can be classified into structure-based and ligand-based
approaches, depending on the level of molecular characterization
(Schneider, 2014). Early structure-based methods involved growing
ligands within a binding pocket’s steric and electronic constraints,
either directly from protein structures or inferred from known
ligand properties (Schneider and Fechner, 2005). However, these
approaches often resulted in compounds with poor drug-likeness
and synthetic feasibility, limiting their practical application. In
contrast, recent advancements in ligand-based de novo drug
design have shown promise in generating compound libraries
that can be further analyzed using scoring functions to evaluate
properties such as biological activity, synthetic accessibility,
metabolism, and pharmacokinetics (Thomas et al., 2021; Atz
et al., 2024).

In 2022, Gaston-Mathé et al. demonstrated the use of DL for
multi-parameter optimization in ligand-based de novo drug design
(Perron et al., 2022). They employed DL generative models to
accelerate the identification of lead compounds that satisfied
11 different biological activity objectives. Using Servier’s project
dataset, they established QSAR models for all 11 objectives,
achieving moderate to high performance. A de novo algorithm
based on DL was combined with the QSAR models to generate
150 virtual compounds expected to be active against all 11 objectives.
Among the synthesized compounds, mol 885 was active for all
11 indicators, whilemol 886 and 887were active for 10, with the last
indicator within the detection error range (Figure 13A). In 2024,
Gisbert Schneider’s research team developed the DRAGONFLY
computational method, which integrates graph neural networks
and chemical language models (CLMs) to generate compound
libraries with specific biological activity, synthesizability, and
structural novelty (Atz et al., 2024). Using DRAGONFLY, they
designed new ligands targeting the human peroxisome proliferator-
activated receptor (PPAR) gamma subtype. Two top-scoring
compounds (1 and 2) were synthesized and characterized
through computational, biophysical, and biochemical methods
(Figure 13A). The results identified potent PPAR partial agonists
with favorable activity and selectivity profiles for both nuclear
receptors and off-target interactions.

5.4 Drug repurposing

Drug repurposing, or the process of identifying new
pharmacological effects for existing drugs, traditionally involved the
labor-intensive task of analyzing vast amounts of medical literature and
clinical data. This approach required interdisciplinary collaboration and
was relatively inefficient. However, with the rapid expansion of
bioinformatics and large-scale “omics” data, the time and cost
associated with drug development have significantly decreased
(Keiser et al., 2009). Computational drug repurposing has evolved
from traditional methods based on chemical similarity and
molecular docking to more advanced approaches that leverage
systems biology for drug effect evaluation (Haupt and Schroeder,
2011; He et al., 2023). Recently, DL-based methods have shown
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great promise in automating the extraction of molecular structures,
omics data, and clinical information, which improves the accuracy and
interpretability of prediction models. These advances have accelerated
drug repositioning. Several AI-driven platforms, such as DTINet,
DEEPScreen, PandaOmics, PREDICT, SLAMS, and NetLapRLS,
have been proposed to integrate heterogeneous data sources and
identify potential drug repurposing opportunities (Luo et al., 2017;
Rifaioglu et al., 2020; Liu B. H. M. et al., 2024; Gottlieb et al., 2011; Chen
et al., 2021).

Zeng et al. proposed DTINet, a novel computational pipeline for
predicting drug-target interactions (DTIs) by building a large-scale
heterogeneous network that integrates data from various sources,
including target genes, drugs, drug side effects, diseases, and other
relevant factors (Luo et al., 2017). Focusing on the top
150 predictions, DTINet identified novel interactions between the
drugs telmisartan, chlorpromazine, and alendronate, and
cyclooxygenase proteins. These predictions were experimentally
validated, revealing the potential of these drugs as cyclooxygenase
inhibitors in preventing inflammatory diseases. In 2020, Doğan et al.
introduced DEEPScreen, a DTI prediction system based on deep
convolutional neural networks (CNNs), which uses 2-D structural
compound representations to predict protein targets for drugs
(Rifaioglu et al., 2020). As a case study, DEEPScreen predicted
JAK proteins as new targets for Cladribine, and this was
experimentally validated in vitro on cancer cells through
STAT3 phosphorylation (Figure 13B). Meanwhile, Wang et al.
employed PandaOmics, an AI-driven target discovery engine, to
analyze large-scale transcriptomic data and identify novel
therapeutic targets for endometriosis, including guanylate binding
protein 2 (GBP2) and hematopoietic kinase (HCK), as well as the
drug reuse target integrin β 2 (ITGB2). The FDA-approved drug
Lifitegrast, a small molecule integrin antagonist for dry eye
syndrome, was identified as a potential treatment for
endometriosis (Figure 13B). In vivo experiments showed that
Lifitegrast effectively inhibited lesion growth in a mouse model of
endometriosis, suggesting its repurposing potential for this
condition (Liu B. H. M. et al., 2024).

5.5 ADMET predictions

In addition to pharmacological efficacy, an ideal drug must also
exhibit favorable ADMET (Absorption, Distribution, Metabolism,
Excretion, and Toxicity) properties. Imbalances in these
characteristics are a leading cause of late-stage drug failures and
the withdrawal of approved drugs (Morgan et al., 2012). CADD
plays a vital role in predicting ADMET properties, employing
simulation techniques to forecast how drugs will behave in the
body and their potential toxicity. Accurate ADMET predictions are
essential in the early stages of drug discovery, guiding optimization
efforts (Ferreira and Andricopulo, 2019). Recent advancements in
AI and DL technologies have significantly enhanced the precision
and efficiency of ADMET predictions. A new generation of
predictors based on DL and big data promises to further
streamline the drug discovery process, from laboratory studies to
clinical applications (Keutzer et al., 2022; Alsultan et al., 2020).
Popular tools for ADMET prediction include ADMETlab, ADMET
Predictor, SwissADME, OptADMET, FAF-Drugs4, and Hit Dexter

(Fu et al., 2024; Sohlenius-Sternbeck and Terelius, 2022; Daina et al.,
2017; Yi et al., 2024; Lagorce et al., 2017; Stork et al., 2019).

In 2022, Iqbal et al. employed a comprehensive computational
approach to identify potent never in mitosis A (NIMA)-related
kinase 7 (NEK7) inhibitors, using both Autodock 4.2 and Molecular
Operating Environment (MOE) 2015.10 for docking studies (Aziz
et al., 2022). Their top compounds, M7 and M12, demonstrated
excellent binding affinities and were subsequently evaluated for
ADMET properties using the ADMETlab 2.0 server (Figure 13C).
Notably, both compounds showed superior human intestinal
absorption (HIA) values compared to the standard HIV drug
Dabrafenib (Figure 13C). In 2024, Cao et al. launched
ADMETlab 3.0, an updated version of the web server that
overcomes limitations of its predecessor by offering broader
coverage, enhanced performance, improved API functionality,
and better decision support (Fu et al., 2024).

5.6 Challenges of computer-aided drug
design (CADD)

CADD has greatly enhanced drug discovery, but several
challenges remain. SBVS requires high-quality 3D structures of
biological targets, which are often unavailable, especially for
membrane-bound or flexible proteins. This can lead to inaccurate
docking results. To overcome this, advances in techniques like cryo-
electron microscopy and homology modeling are being used to
improve target structure prediction. LBVS faces limitations in
predicting novel compounds, as it depends on known ligand-
target interactions. Hybrid methods that combine SBVS and
LBVS are now being explored to enhance screening accuracy and
broaden the search for new drugs. De novo drug design offers the
potential to generate entirely novel compounds, but the challenge
lies in optimizing them for drug-like properties such as synthetic
feasibility and biological activity. AI and ML are now being applied
to refine de novo designs, increasing their success rate. Drug
repurposing, although an efficient strategy for identifying new
uses for existing drugs, often struggles with predicting the
binding affinity of repurposed compounds to new targets. The
use of large-scale molecular databases and advanced AI models
can help in this area. ADMET predictions remain imprecise,
complicating early-stage drug development. Enhanced
computational models and multi-parameter optimization
techniques are being developed to better predict these properties
and identify safer drug candidates.

6 Conclusion and perspectives

This review highlights advanced strategies for the discovery and
development of small-molecule drugs, delving into their underlying
principles and examining their potential to the future of medicinal
chemistry. As highlighted in this review, the integration of advanced
techniques such as Click chemistry, TPD strategies, DELs
technologies, and CADD has significantly improved the efficiency
and effectiveness of drug discovery. Click Chemistry, with its rapid
synthesis of diverse compound libraries, has reshaped how
researchers approach the optimization of lead compounds. Its
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modular nature facilitates the incorporation of functional groups,
allowing for the streamlined development of therapeutics tailored to
specific targets. TPD technologies introduce a novel paradigm by
utilizing the body’s natural degradation systems, enabling the
targeting of previously undruggable proteins and expanding the
therapeutic landscape. Similarly, DELs have transformed high-
throughput screening by facilitating the parallel evaluation of
millions of compounds, thereby accelerating the efficient
identification of novel drug candidates. CADD represents a
significant leap forward in the predictive capabilities of drug
design, leveraging computational tools to refine candidate
selection based on structural properties. This not only reduces
the time and resources needed for experimental screening but
also enhances the precision of drug design, aligning with the
increasing demand for tailored therapies that meet individual
patient needs.

Looking forward, the future of medicinal chemistry appears
promising yet complex. The integration of AI into drug discovery
processes is poised to further enhance the predictive capabilities and
efficiency of these methodologies. However, challenges remain,
particularly in terms of the biological validation of discovered
compounds and the translation of preclinical findings into
successful clinical applications. There is also a critical need to
address the ethical implications and potential risks associated
with these innovative approaches, ensuring that advancements
are made responsibly. Additionally, by integrating multimodal
data, including protein structure, sequence, and functional
information, researchers can conduct a comprehensive analysis
that provides deeper insights into drug design. This holistic
approach enhances our understanding of molecular interactions
and optimizes the development of targeted therapeutic drugs.
Finally, to maximize the potential of these technologies, fostering
interdisciplinary collaborations between chemists, biologists,
pharmacologists, and data scientists will be essential. By
combining expertise from various fields, the medicinal chemistry
community can tackle the multifaceted challenges of drug discovery
more effectively.

In conclusion, as we embrace these emerging strategies, there is a
clear opportunity to inspire new research directions that not only
advance our understanding of medicinal chemistry but also lead to
the development of innovative therapeutic solutions. The
integration of novel methodologies holds the potential to reshape
the landscape of drug discovery, ultimately improving patient
outcomes and addressing the pressing healthcare challenges of
our time. By continuing to explore and refine these approaches,

we can enhance our ability to combat a wide array of diseases,
making significant strides towards more effective and
targeted therapies.
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