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Aim: Nimodipine has shown neuroprotective effects in several studies; however,
the specific targets and mechanisms remain unclear. This study aims to explore
the potential targets and mechanisms of nimodipine in the treatment of
neurodegenerative diseases (NDDs), providing a theoretical foundation for
repurposing nimodipine for NDDs.

Methods: Drug-related targets were predicted using SwissTargetPrediction and
integrated with results from CTD, GeneCards, and DrugBank. These targets were
then cross-referencedwith disease-related targets retrieved fromCTD to identify
overlapping targets. The intersecting targets were imported into STRING to
construct a protein-protein interaction (PPI) network. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses
were performed using the R package ClusterProfiler. Molecular docking was
carried out using AutoDock Vina, and the ligand-receptor complexes with the
highest binding affinities were further simulated using GROMACS to assess the
dynamic structural stability and interactions between the ligand and receptor in
the dynamic system.

Results: A total of 33 intersecting drug-disease targets were identified. After
constructing the PPI network and removing isolated targets, the network
contained 28 nodes and 69 edges. Network degree analysis combined with
enrichment analysis highlighted 12 key targets: CASP3, TNF, BAX, BCL2, IL1B,
GSK3B, IL1A, MAOB, MAOA, BDNF, APP, and GFAP. Molecular docking analysis
revealed binding energies greater than −6 kcal/mol for MAOA, GSK3B, MAOB,
CASP3, BCL2, IL1B and APP. MAOA, with the highest binding energy
of −7.343 kcal/mol, demonstrated a stable structure in a 100ns dynamic
simulation with nimodipine, exhibiting an average dynamic binding energy
of −52.39 ± 3.05 kcal/mol. The dynamic cross-correlation matrix (DCCM) of
nimodipine resembled that of harmine, reducing the interactions between
protein residues compared to the apo state (regardless of positive or negative
correlations). Furthermore, nimodipine induced new negative correlations in
residues 100-200 and 300-400.

Conclusion: Nimodipine binds to the internal pocket of MAOA and shows
potential inhibitory effects. Given its brain-enrichment characteristics and
proven neuroprotective effects, it is hypothesized that nimodipine may exert
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therapeutic effects on NDDs by inhibiting MAOA activity and modulating cerebral
oxidative stress. Thus, MAOA emerges as a promising new target for nimodipine in
the treatment of NDDs.
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nimodipine, calcium channel blocker, neurodegenerative disease, network analysis,
molecular docking, molecular dynamics simulation

1 Introduction

Neurodegenerative diseases (NDDs) refer to a group of
disorders that damage the nervous system, leading to cognitive
decline, memory loss, and motor dysfunction. The symptoms
vary depending on the brain region affected (Wilson et al., 2023).
Common NDDs include Amyotrophic Lateral Sclerosis (ALS),
Multiple Sclerosis (MS), Parkinson’s Disease (PD), Alzheimer’s
Disease (AD), and Huntington’s Disease (HD), with AD and PD
being particularly prevalent (Erkkinen et al., 2018). As of 2019, AD
affected an estimated 50 million people worldwide (Monfared et al.,
2022), and this number is projected to rise to 150 million by 2050
(Lanctôt et al., 2024). This increasing prevalence poses significant
challenges to the physical and mental wellbeing of the elderly (Hou
et al., 2019), as well as to global healthcare systems.

The therapeutic strategies for NDDs primarily focus on the
neurotransmitters and pathways associated with these diseases,
aiming to restore abnormal factors to near-normal levels, though a
complete cure remains elusive (Oskar, 2021). For example, PD is
characterized by abnormal dopamine levels in the brain. Medications
such as levodopa or carbidopa are used to replenish dopamine in the
central nervous system, alleviating Parkinsonian symptoms
(Armstrong and Okun, 2020). NDD patients are generally elderly,
and many also suffer from cardiovascular diseases such as
hypertension, coronary artery disease, and cerebral infarction, all
of which are known risk factors for NDDs (Medina-Remón et al.,
2018). These patients often require long-term administration of
antihypertensive or anticoagulant medications. Clinical
observations have noted that patients with both NDDs and
cardiovascular diseases who are treated with calcium channel
blockers (CCBs) experience alleviation of NDD symptoms,
particularly in terms of reduced cognitive and motor impairments
(Nimmrich and Eckert, 2013; Pasternak et al., 2012; Correa et al.,
2023). However, the precise targets and mechanisms underlying these
effects remain unclear. Some studies suggest that the vasodilatory
effects of CCBs, which improve cerebral blood flow, may play a role.
Other studies have demonstrated the neuroprotective effects of CCBs
through both in vivo and in vitro experiments (Bork et al., 2015;
Daschil and Humpel, 2014; Boltz et al., 2022; Kusakabe and
Hasegawa, 2021; Leisz et al., 2019; Topcu et al., 2023). CCBs can
be structurally classified into dihydropyridines, benzothiazepines, and
phenylalkylamines, with verapamil and diltiazem representing the
latter two classes. Notably, reports have suggested that these
medications may induce Parkinsonian symptoms. Most research
has focused on dihydropyridine CCBs. Despite belonging to the
same class, these drugs differ significantly in their pharmacokinetic
and pharmacodynamic properties due to structural variations. Some
dihydropyridines predominantly exert peripheral effects, while others,
which possess better lipophilicity, can cross the blood-brain barrier

and act within the brain. From a mechanistic perspective, the latter
group holds greater potential as therapeutic agents for NDDs
(Colbourne and Harrison, 2022).

Nimodipine is considered the ideal candidate due to its superior
permeability across the blood-brain barrier and its selective targeting of
L-type calcium channels in cerebral blood vessels, promoting their
relaxation. This property makes nimodipine an essential medication
not only for the treatment of mild to moderate hypertension but also
for the prevention and management of cerebral vasospasm, localized
ischemia, and subarachnoid hemorrhage (Clough et al., 2022;
Guangzhi et al., 2022; Carlson et al., 2020). In recent years,
nimodipine has garnered attention as a potential neuroprotective
agent, with its use in preventing and treating neurological
dysfunction in patients with aneurysmal subarachnoid hemorrhage
(aSAH) receiving approval from the US Food and Drug
Administration (FDA). Additionally, studies have suggested that
nimodipine may enhance cognitive function in patients with AD
and PD (Hu et al., 2023; Lin et al., 2024; Ton et al., 2007), although
the precise mechanisms underlying these effects have yet to be fully
elucidated. Therefore, this study aims to investigate the potential targets
and mechanisms of nimodipine in the treatment of neurodegenerative
diseases using network analysis and molecular dynamics simulations.

2 Materials and methods

2.1 Screening of potential targets

The initial phase of the research involves querying and
integrating drug and disease targets from various databases to
identify the intersectional targets for subsequent analysis. Drug
targets are identified through structural prediction methods and
correlated with existing research findings. Disease targets are
primarily selected based on experimental validation, with a focus
on those implicated in disease progression or treatment.

The SMILES structure of nimodipine was obtained from the
PubChem database (https://pubchem.ncbi.nlm.nih.gov) and input
into the SwissTargetPrediction (Daina et al., 2019) platform
(http://www.swisstargetprediction.ch/) for target prediction. Targets
with a probability greater than zero were selected. Nimodipine-related
targets were identified using the CTD (Davis et al., 2021) (https://
ctdbase.org/), DrugBank (Knox et al., 2024) (https://go.drugbank.
com/), and GeneCards (Stelzer et al., 2016) (https://www.
genecards.org/) databases. From the GeneCards results, only
targets with a “Relevance Score” above the median (0.475,787)
were chosen. All identified targets were combined, deduplicated,
and standardized using the UniProt (UniProt Consortium, 2025)
database (https://www.uniprot.org/). In the CTD database, the
following keywords were used for the search: Alzheimer’s Disease,
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Parkinson’s Disease, Huntington’s Disease, Amyotrophic Lateral
Sclerosis, Dementia, Motor Skills Disorders, Cognitive Disorders,
Learning Disabilities, and Amnesia. Only targets with direct
evidence of mechanism and treatment were considered. The
resulting targets were then integrated, deduplicated, and
standardized with the UniProt database. Ultimately, the
intersectional targets were identified as potential therapeutic targets
for further investigation.

2.2 Network and enrichment analysis

The identified potential targets were imported into the STRING
(Szklarczyk et al., 2023) database (https://string-db.org/) to construct
a protein-protein interaction (PPI) network. The “Multi-protein
Association Analysis” option was selected, with the species set to
“Homo sapiens” and the confidence level set to 0.7. The network was
exported to Cytoscape (Paul et al., 2003) (https://cytoscape.org/) for
visualization, and the CytoHubba (Chin et al., 2014) package was used
to calculate the network’s topological parameters. The Bioconductor R
package ClusterProfiler (Yu et al., 2012) was utilized to perform GO
and KEGG enrichment analysis on all potential targets, and the R
package ggplot2 (Wickham, 2016) was employed to generate
visualization charts and images of the enrichment results. For
enhanced graphical presentation, the OmicShare platform (https://
www.omicshare.com/) was used to refine the visuals.

2.3 Molecular docking

Significant targets identified through network and enrichment
analyses were selected for molecular docking simulations. Protein
models of these targets were retrieved from the Protein Data Bank
(PDB) (https://www.rcsb.org/), while the structure file of nimodipine
was sourced from the PubChem database. The preprocessing of
proteins and ligands was conducted using a sequential approach.
Initially, PrankWeb (Jendele et al., 2019) (https://prankweb.cz/) was
employed to predict the binding pocket, which informed the
adjustment of the grid box size and position. Subsequently,
AutoDockTools (Forli et al., 2016) was used to add missing
hydrogen atoms, calculate molecular charges, and finalize the grid
box settings for the protein docking region. Following these steps, a
configuration file for Vina was generated. AutoDock Vina (Eberhardt
et al., 2021) was then employed to conduct 100 docking simulations,
with the complex conformation exhibiting the most favorable binding
energy being retained in PDB format. Discovery Studio Visualizer
(Dassault Systèmes, 2024) was subsequently utilized to analyze the
interactions between the ligand and receptor and to export visual
representations of the results.

2.4 Molecular dynamic simulation

Previous complex with highest binding energy was then
subjected to molecular dynamics simulations. The pdbqt file was
imported into PYMOL (Odinger, 2024) software (https://pymol.org/)
and converted into pdb format. The nimodipine molecule was pre-
processed by adding missing hydrogen atoms, saved in mol2 format,

and the molecule topology file was generated using Sobtop (Lu,
2024) software. Molecular dynamics simulations were subsequently
carried out using GROMACS (James Abraham et al., 2015) 2024.
4 software. The simulation system was set up in a dodecahedron box,
utilizing the Amber99sb-ildn force field. All components were
solvated in the TIP3P water model, and Na+ and Cl− ions were
added to neutralize the system charge.

The energy minimization (EM) phase used the steepest descent
integrator, terminating when the maximum force dropped below
10.0 kJ/mol. For the NVT (constant number of particles, volume, and
temperature) and NPT (constant number of particles, pressure, and
temperature) equilibration phases, the velocity Verlet algorithm was
employed as the integrator. Temperature couplingwasmanaged using
the V-rescale method, and pressure coupling was handled via the
C-rescale method, with each phase undergoing an initial simulation
duration of 100 ps. Notably, during the temperature coupling phase,
the index groups Protein_MOL and Water_and_ions were fitted
separately to avoid potential system instabilities. In the molecular
dynamics (MD) phase, time step was set to 2 fs, and the total
simulation duration spanned 100 ns. Trajectories were recorded
every 10 ps, resulting in a dataset of 10,000 frames. The simulation
was performed at a constant temperature of 300 K. Additionally,
during the simulations, positional restraints of 1,000 kJ/mol/nm2 were
applied to the ligand to preserve its configuration.

Structural analyses, including the calculation of root-mean-
square deviation (RMSD) and root-mean-square fluctuation
(RMSF), along with hydrogen bond analysis, were performed
using the built-in commands of the GROMACS software suite.
For calculating and visualizing the dynamic cross-correlation matrix
(DCCM), the covar command was first used to generate
eigenvectors. Subsequently, the gmx_corr script (https://github.
com/busrasavas/gmx_corr) was employed for comprehensive
analysis and figure generation. Binding energy assessment during
the equilibrium phase was conducted with the gmx_MMPBSA
(Valdés-Tresanco et al., 2021) tool, complemented by the gmx_
MMPBSA_ana utility for visualization. All xvg files resulting from
these procedures were visualized using the qtGrace software (https://
sourceforge.net/projects/qtgrace/).

3 Results

3.1 Target screening

The results from all selected databases were integrated and
deduplicated, yielding a total of 231 drug-related targets
(Supplementary Table S1) and 332 disease-related targets
(Supplementary Table S2). Among these, 33 intersection targets
(Supplementary Table S3) were identified as potential therapeutic
targets of nimodipine for NDDs andwere selected for further analysis.

3.2 Network and enrichment analysis

The 33 potential targets were imported into the STRING
database to construct the PPI network. After excluding five
unconnected targets, the resultant network consisted of 28 nodes
and 69 interaction edges, with an average node degree of 4.93 and an
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average local clustering coefficient of 0.535. These metrics indicate a
strong interconnectivity among adjacent nodes, highlighting the
network’s cohesive structure. The PPI enrichment P-value is
extremely low (<10−16), underscoring the non-random nature of
this protein interaction network, thereby affirming its biological
relevance and the interrelation of the involved proteins. The targets
were ranked according to their degree values (Figure 1), and the top
five were selected for further investigation: (1) BDNF, (2) APP, (3)
CASP3, (4) GFAP, and (5) BCL2. It is noteworthy that TNF and
IL1B share the fifth rank in terms of degree value.

Gene Ontology (GO) enrichment analysis results were categorized
into three domains: cellular components, molecular functions, and
biological processes. The top five annotations for cellular components
(Figure 2A) are: soma-dendritic region; cell body; neuronal cell body;
dendrite; and dendritic tree. The top five annotations for molecular
functions (Figure 2B) are: signal receptor binding; homotypic protein
binding; molecular function regulator; protease binding; and
dopamine neurotransmitter receptor activity via Gi/Go coupling.
The top five annotations for biological processes (Figure 2C) are:
regulation of biological quality; response to nitrogen compounds;

synaptic signaling; response to nicotine; and transport regulation.
The top five KEGG enrichment results (Figure 2D) include:
neurodegenerative disease pathways (multiple diseases); cocaine
addiction; the role of AGE-RAGE signaling pathways in diabetic
complications; dopaminergic synapses; and Parkinson’s disease.

The KEGG enrichment analysis results (Supplementary Table
S4) reveal that 29 targets are significantly enriched in 64 pathways,
with 9 targets occurring frequently (>10 times), highlighting their
pivotal role in the enriched pathways. These targets include: CASP3,
TNF, BAX, BCL2, IL1B, GSK3B, IL1A, MAOB, and MAOA. Based
on their functional significance, these proteins can be grouped into
apoptosis-related, inflammation-related, and oxidative stress-related
categories. Figure 3 illustrates the network interactions between the
top 25 pathways and targets.

3.3 Molecular docking

The targets identified through the degree and enrichment
analyses were integrated and deduplicated, resulting in a final list

FIGURE 1
Protein-protein interaction network, rank by degree value.
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of 12 targets: CASP3, TNF, BAX, BCL2, IL1B, GSK3B, IL1A, MAOB,
MAOA, BDNF, APP, and GFAP. These proteins were subjected to
molecular docking with nimodipine to assess their binding affinity
(Supplementary Table S5). Seven targets exhibited binding energies
below −6 kcal/mol with nimodipine, indicating relatively stable
binding. The targets were ranked by binding affinity as follows:
MAOA, GSK3B, MAOB, CASP3, BCL2, IL1B, and APP.

MAOA, with the highest binding energy, was selected for an
in-depth analysis of its interactions. To compare the effect of
nimodipine on MAOA, docking results of harmine, a known
MAOA inhibitor with a binding energy of −8.476 kcal/mol,
were used as a reference. The PDB model 2Z5Y inherently
includes the small molecule harmine. Utilizing this ligand
directly provides the best fit for the receptor model without
inducing any adverse effects, ensuring reliable comparative
results with nimodipine. Nimodipine’s interaction with MAOA
is characterized as follows: the amino oxygen atom forms two
hydrogen bonds with MAOA residues 67GLY and 406CYS; the
nitrogen atom on the dihydropyridine ring forms a hydrogen bond
with 69TYR; the amide ring engages in an amide-pi stacking
interaction with 66GLY; and alkyl interactions, such as pi-sigma
and pi-alkyl interactions, are also observed (Figure 4A). In

contrast, harmine’s three rings form pi-pi bonds with 407TYR,
while the benzene ring forms a pi-pi bond with 444TYR, resulting
in a total of four pi-pi stacks. Additionally, some weak alkyl group
interactions are noted (Figure 4B). According to relevant literature
(Maurice Geha et al., 2002; Son et al., 2008), residues 305LYS,
397TRP, 407TYR, and 444TYR are functionally critical for
MAOA. Residues 305LYS, 397TRP, and 407TYR are likely
involved in non-covalent binding with FAD, while 407TYR and
444TYR may form aromatic stacking to stabilize substrate binding
(similar to harmine). Although nimodipine does not directly bind
to these residues in the static docking results, it forms spatial
hindrances near these residues, which may influence their normal
physiological functions.

3.4 Molecular dynamic simulation

3.4.1 Structural analysis
RMSD of the receptor’s backbone tends to reach stability after

approximately 20 ns in the simulation with both ligands (Figure 5).
Therefore, the last 80 ns of trajectories were selected for calculating
the RMSF. As illustrated in Figure 6, the RMSF values of most Cα

FIGURE 2
GO and KEGG enrichment analysis results. (A) Top 25 cellular components. (B) Top 25 biological processes. (C) Top 25molecular functions. (D) Top
25 KEGG pathways. The color intensity represents varying p-value thresholds, while the dot size reflects the number of genes associated with each term.
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atoms in the MAOA-nimodipine complex are generally higher than
those in the MAOA-harmine complex, indicating that these regions
of the molecule exhibit greater mobility during the simulation. The
residues after position 500 correspond to the tail of the protein,
where fluctuations are more pronounced.

3.4.2 Dynamic cross-correlation matrix
Figure 7 presents the DCCM of Cα atoms in MAOA for three

different states: the APO state, bound to harmine, and bound to
nimodipine. In these images, red indicates positive correlations,
while blue indicates negative correlation. Harmine appears to
weaken some correlations, both positive and negative, and can
even convert positive correlations into negative correlations at
specific positions. The effect of nimodipine is similar to that of
harmine but more pronounced, with a stronger weakening effect.
Specifically, nimodipine induces more new negative correlations,
particularly in the NO.100-200 and NO.300-400 regions, suggesting
a more significant alteration in the dynamic behavior of MAOA.

3.4.3 Hydrogen bond analysis
While the static molecular docking results indicated that

nimodipine formed three hydrogen bonds with the protein,
whereas harmine formed none, the dynamics simulation revealed
a different scenario. In approximately 80% of the total
10,000 frames, nimodipine exhibited no hydrogen bonds
(Figure 8F), while harmine maintained one or more hydrogen
bonds in about 60% of the time frames (Figure 8C). Regarding
hydrogen bond angles, nimodipine typically formed larger angles
(Figure 8D), whereas harmine showed more consistent and average
angles (Figure 8A). The distributions of hydrogen bond distances for
both ligands were similar (Figures 8B, E), indicating that, despite
differences in hydrogen bond formation and geometry, both ligands
exhibited comparable distance characteristics in their interactions.

3.4.4 Dynamic energy analysis
The analysis results (Figure 9; Table 1) reveal that nimodipine

exhibits a higher binding energy (−52.39 ± 3.05 kcal/mol)

FIGURE 3
Target-pathway network. The quadrilateral represents the pathway, the circle represents the target, and the intensity of red indicates the
degree value.
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with MAOA compared to harmine (−26.66 ± 2.75 kcal/mol),
indicating a more stable association between nimodipine and
MAOA during the simulation period. The key distinction
between the two ligands lies in the van der Waals forces.
Additionally, an analysis of the energy contributions of

residues within a 4 Å radius indicates that nimodipine involves
more residue interactions, including functionally critical residues
of MAOA, such as 305LYS, 407TYR, and 444TYR, previously
highlighted in the docking section. Although these residues do not
directly bind to nimodipine in the docking conformation,

FIGURE 4
Interactions of MAOA with (A) nimodipine and (B) harmine, in 3D and 2D formats.
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FIGURE 5
Root mean square deviation of the protein backbone of MAOA with nimodipine (NIM) and harmine (HRM).

FIGURE 6
Root mean square fluctuation of MAOA Cα in the last 80 ns.
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interactions with nimodipine are observed during the dynamic
simulation process.

4 Discussion

NDDs are frequently associated with inflammation in the
central nervous system (CNS) (Chatterjee, 2016). Inflammatory

factors encompass a broad and complex concept, as disruptions
in multiple pathways can potentially trigger inflammatory responses
(Zhang et al., 2023). The activity of monoamine oxidase A (MAOA)
is capable of modulating the levels of inflammatory factors within
the nervous system. In neuroinflammatory conditions, such as when
microglia are activated by interleukin-1β (IL-1β), there is an
induction of pro-inflammatory cytokine release, including tumor
necrosis factor-α (TNF-α) and interleukin-6 (IL-6), along with an

FIGURE 7
Dynamic cross-correlation matrix of Cα of MAOA in (A) unbound, (B) harmine-bound, and (C) nimodipine-bound states. Red indicates positive
correlation, blue indicates negative correlation, and the intensity of color indicates the degree of correlation.

FIGURE 8
Hydrogen bond analysis of MAOAwith harmine and nimodipine. (A) The probability of the angle for hydrogen bonding between harmine andMAOA.
(B) The probability of hydrogen bonding distance between harmine and MAOA. (C) The frequency of hydrogen bonds number per frame between
harmine and MAOA during the entire simulation. (D) The probability of the angle for hydrogen bonding between nimodipine and MAOA. (E) The
probability of hydrogen bonding distance between nimodipine and MAOA. (F) The frequency of hydrogen bonds number per frame between
nimodipine and MAOA during the entire simulation.
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increase in the expression and activity of MAOA (Pallio et al., 2021).
During the oxidative deamination of neurotransmitter amines,
MAOA generates harmful byproducts such as ammonia,
peroxides, and aldehydes. These substances can exacerbate
oxidative stress and further damage neurons, thereby intensifying
neuroinflammatory responses (Shoaib and Hoda, 2020). In

Alzheimer’s disease, the activation of MAOA is directly
correlated with altered concentrations of biochemical
neurotransmitters in the brain. The oxidative stress it induces
contributes to cholinergic neuronal damage and dysfunction of
the cholinergic system, promoting the aggregation of
neurofibrillary tangles and cognitive decline (Behl et al., 2021).
MAOA plays a crucial role in neuronal apoptosis and autophagy,
with its byproducts, such as hydrogen peroxide, generally inducing
apoptosis. Additionally, the interaction between toxins and MAOA,
leading to the opening of the mitochondrial permeability transition
pore, is considered a potential mechanism of cell death. Inhibiting
excessive MAOA activity can protect neurons from death (Lin
et al., 2017).

Nimodipine is notable for its distinct pharmacokinetic profile
and is primarily indicated for the prevention and treatment of
delayed ischemic neurological disorders and other
cerebrovascular conditions. Its mechanism of action involves
enhancing cerebral blood flow by dilating small cerebral arteries,

FIGURE 9
Software-predicted components of binding energy and residue contributions to binding energy. (A) Components of Harmine-MAOA binding
energy. (B) Residue contributions to Harmine-MAOA binding energy, showing residues within 4Å. (A)Components of Nimodipine-MAOA binding energy.
(B) Residue contributions to Nimodipine-MAOA binding energy, showing residues within 4Å. GGAS, Generalized Gradient Approximation for Solids;
GSOL, Generalized Solid State Solvation Model; VDWAALS, Van der Waals forces; EEL, Electrostatic Energy; EGB, Electrostatic Energy of the Gas
phase; ESURF, Electrostatic Energy of the Surface; TOTAL, total energy.

TABLE 1 Dynamic energy analysis of MAOA with nimodipine and harmine.

Energy components Nimodipine Harmine

Van der Waals −63.86 ± 2.73 −30.06 ± 2.16

Electrostatic −4.13 ± 1.75 −4.55 ± 2.48

Polar salvation 23.47 ± 1.83 12.02 ± 1.66

SASA energy −7.87 ± 0.20 −4.07 ± 0.24

Binding energy −52.39 ± 3.05 −26.66 ± 2.75

Note: The unit of energy is kcal/mol.
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thereby offering therapeutic potential in a range of cerebrovascular
diseases. Despite its efficacy, nimodipine’s clinical application is
somewhat constrained by its low bioavailability, a challenge that has
been addressed through the development of sustained-release
formulations, such as enteric solid dispersions, to improve drug
solubility. In comparison to other dihydropyridine calcium channel
blockers (DHP-CCBs) like amlodipine and felodipine, which are
primarily used for managing hypertension and coronary heart
disease by targeting L-type calcium channels, nimodipine extends
its effects beyond calcium channel blockade. It also enhances
collateral blood flow and exerts direct anti-ischemic actions,
providing additional neuroprotective benefits (Edraki et al.,
2009). In contrast to non-dihydropyridine calcium channel
blockers (NDHP-CCBs) like verapamil and diltiazem, which are
employed in arrhythmia treatment by modulating cardiac
electrophysiological properties and exerting negative
chronotropic, dromotropic, and inotropic effects, DHP-CCBs,
including nimodipine, are more selective in their arterial action
and are preferred for treating volume-dependent hypertension and
atherosclerosis (Triggle, 2007). Overall, nimodipine’s
pharmacokinetic properties and its specific role in
cerebrovascular protection underscore its unique position among
calcium channel blockers. While its low bioavailability presents a
limitation, this can be mitigated through formulation
improvements, and its neuroprotective effects are especially
significant in the prevention and treatment of delayed ischemic
neurological disorders (Tomassoni et al., 2008).

Based on the static results of molecular docking, the binding of
nimodipine to MAOA creates steric hindrance to the coenzyme
riboflavin (FAD), which is crucial for activating MAOA. This
suggests that nimodipine may inhibit MAOA activity,
subsequently reducing oxidative stress. The DCCM further
confirmed that the effect of nimodipine on MAOA closely
resembles that of the inhibitor harmine. This similarity implies
that nimodipine may share a comparable mechanism with
harmine. Such findings are significant for understanding the
therapeutic potential of nimodipine in neurodegenerative
diseases, as they suggest that nimodipine could regulate MAOA
enzymatic activity, thereby contributing to its neuroprotective
effects. It is important to note, however, that the positive and
negative correlations in the DCCM do not directly correlate to
positive or negative biological effects; rather, the inference is
drawn by comparing nimodipine with harmine, the
known inhibitor.

Since the late 20th century, nimodipine has been studied for
the treatment of mental illnesses and neurodegenerative diseases.
Numerous clinical and experimental studies have shown that
nimodipine, either alone or in combination with other
treatments, can alleviate symptoms of neurodegenerative
diseases. A meta-analysis (López-Arrieta and Birks, 2000)
involving thousands of patients demonstrated that nimodipine
provides short-term benefits for primary, vascular, and mixed
dementia, with good tolerability and a low incidence of adverse
reactions. Several clinical studies (Wang et al., 2019; Han et al.,
2014; Hui and Zi, 2019; Cui and Tan, 2021; Wang et al., 2018)
suggest that combining nimodipine with standard medications
can more effectively alleviate cognitive impairment caused by
various factors. Most studies have focused on symptom relief or

the in vitro protective effects on neuronal cells, attributing these
effects to the additional benefits of calcium channel blockade,
while overlooking specific molecular mechanisms. Our
study, grounded on the hypothesis that nimodipine may have
target effects beyond L-type calcium channels, aims to discover
new modes of action within the nervous system, thereby
providing novel interpretative insights into its neuroprotective
effects. More importantly, our research emphasizes molecular
interactions, adopting a research approach that spans from the
microscopic to the macroscopic. In the context of numerous
studies identifying associations between targets, diseases, and
drugs, we conducted docking and dynamic simulation studies
on the key target MAOA. By utilizing existing computational
techniques, we aim to elucidate the interaction modes and binding
sites of nimodipine and compare them with harmine, an
MAOA inhibitor, to infer the underlying mechanism of
nimodipine’s action.

It is crucial to recognize that nimodipine primarily functions as a
calcium channel blocker. While exploring its potential novel effects,
one must not overlook its inherent side effects, particularly in elderly
patients with neurodegenerative diseases (NDDs). Notably,
nimodipine can induce hypotension, thereby increasing the risk
of orthostatic hypotension, syncope, and falls in this vulnerable
population (Das and Zito, 2025). Moreover, in certain cases, its use
may even exacerbate NDD symptoms. Calcium influx plays a vital
role in maintaining normal neuronal excitability and
neurotransmitter release. By blocking calcium channels,
nimodipine inhibits this influx, subsequently reducing
neurotransmitter release and impairing inter-neuronal
communication (Saghian and Wang, 2022). Under pathological
conditions such as ischemia, trauma, and epilepsy, calcium
channel blockers may alter neuronal excitability, rendering
neurons more susceptible to excitatory amino acids like
glutamate, potentially leading to excitotoxicity (Arundine and
Tymianski, 2003). Furthermore, the blockade of voltage-gated
calcium channels (VGCCs) can disrupt synaptic plasticity, a
fundamental process for learning and memory formation. Such
disruption may impair the encoding, consolidation, and retrieval
of memories (Mansvelder et al., 2019).

Despite its potential side effects, nimodipine’s novel
mechanisms of action in neurodegenerative diseases present
promising therapeutic opportunities. Repositioning existing drugs
to explore novel mechanisms of action represents a promising and
valuable strategy in drug development (Bibhuti et al., 2022), and this
approach can be well-supported by existing evidence in the case of
nimodipine. Initially, nimodipine has been shown to alleviate
mitochondrial dysfunction in mice, protecting them from 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced PD (Singh
et al., 2016). This finding suggests that nimodipine may reduce
cellular calcium overload, a common pathological feature observed
in neurodegenerative diseases. In AD models, nimodipine has been
found to relax pericytes, improve cerebral blood flow, and reduce
immune cell stalling and hypoxia, indicating that it may exert
neuroprotective effects by enhancing cerebral blood flow and
mitigating ischemic damage (Korte et al., 2024). Furthermore,
our computational studies suggest that nimodipine can interact
with MAOA, a key enzyme involved in the regulation of
monoamine neurotransmitters, providing an additional
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mechanism through which nimodipine may exert its therapeutic
effects. Together, these findings offer a theoretical foundation and
valuable insights into the potential targets and mechanisms of
nimodipine in the treatment of neurodegenerative diseases.
However, further experimental validation of these targets and
specific interactions is necessary in future studies to fully
elucidate the therapeutic potential of nimodipine in this context.

5 Conclusion

Nimodipine has the potential to inhibit the activity of the
MAOA enzyme and modulate cerebral oxidative stress. This
effect, combined with previous findings related to calcium
channel blockade, enhancement of cerebral blood flow, and
modulation of neurotransmitter metabolism, collectively supports
the multifaceted mechanisms through which nimodipine operates in
NDDs. These findings highlight nimodipine’s potential as a
therapeutic agent for NDDs. Accordingly, MAOA emerges as a
promising novel target for nimodipine in the therapeutic
management of these disorders.

6 Limitations

While this study has provided valuable insights into the
potential mechanisms of nimodipine in NDDs through molecular
docking and dynamics simulations, several limitations should be
acknowledged. These include the reliance on computational
methods, which require further experimental validation; the
exclusive focus on MAOA, which may overlook other potential
targets; and the relatively short simulation time, which might not
fully capture the nuances of ligand-receptor interactions. Future
research should aim to validate these computational findings
through extensive in vitro and in vivo studies to assess the
therapeutic efficacy and underlying mechanisms of nimodipine in
various neurodegenerative disease models. Additionally, future
studies should explore nimodipine’s comprehensive treatment
effects in comorbid scenarios involving both cardiovascular and
neurodegenerative conditions and employ high-throughput
screening to identify adjunctive therapies that could enhance
nimodipine’s neuroprotective effects.
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