ORIGINAL RESEARCH article
Front. Pharmacol.
Sec. Pharmacology of Infectious Diseases
Volume 16 - 2025 | doi: 10.3389/fphar.2025.1549288
This article is part of the Research TopicMultidrug Resistant Bacteria: New Therapeutic Approaches for a Challenging ProblemView all 4 articles
Antibacterial activity of tamoxifen derivatives against methicillinresistant Staphylococcus aureus
Provisionally accepted- 1Andalusian Center for Development Biology, Spanish National Research Council (CSIC), Seville, Spain
- 2Department of Food, Environmental and Nutritional Sciences,University of Milan, Milano, Italy
- 3Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Tuscany, Italy
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
The development of new antimicrobial therapeutic strategies requires urgent attention to prevent the tens of millions of deaths predicted to occur by 2050 as a result of multidrug-resistant (MDR) bacterial infections. This study aimed to discover new tamoxifen derivatives with antimicrobial potential, particularly targeting methicillin-resistant Staphylococcus aureus (MRSA). The minimum inhibitory concentration (MIC) of 22 tamoxifen derivatives was determined against S. aureus reference and MRSA strains using microdilution assays. The antibacterial effects of selected tamoxifen derivatives against MRSA (USA7 strain) were assessed through bacterial growth assays. Additionally, bacterial membrane permeability and molecular dynamics (MD) simulation assays were performed. The MIC of the tamoxifen derivatives against reference S. aureus and MRSA strains ranged from to 16 to >64 μg/mL. Bacterial growth assays demonstrated that tamoxifen derivatives 2, 5, and 6, the only compounds bearing the electron-donating hydroxyl group in the para position on both phenyl rings of the tamoxifen skeleton, dose-dependently reduced the growth of the USA7 strain. Moreover, treatment of MRSA with derivatives 2 and 5 resulted in a slight increase of membrane permeabilization. Extensive MD simulations on the interaction between 5 and 6 and the S. aureus membrane model suggest that the compounds do not act by destabilizing the membrane integrity. These findings suggest that tamoxifen derivatives exhibit antibacterial activity against MRSA, potentially broadening the spectrum of available drug treatments for combating antimicrobial-resistant S. aureus.
Keywords: Staphylococcus aureus, Tamoxifen derivatives, Resistance, Infection, Treatment
Received: 20 Dec 2024; Accepted: 11 Apr 2025.
Copyright: © 2025 Molina Panadero, Falcón Torres, Hmadcha, Princioto, Cutarella, Mori, Dallavalle, Christodoulou and Smani. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Younes Smani, Andalusian Center for Development Biology, Spanish National Research Council (CSIC), Seville, Spain
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.