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Theunique properties of sericin and silk fibroin (SF) favor their widespread application
in biopharmaceuticals, particularly inwound treatment and bone repair. The immune
response directly influences wound healing cycle, and the extensive
immunomodulatory functions of silk-based nanoparticles and hydrogels have
attracted wide attention. However, different silk-processing methods may trigger
intense immune system resistance after implantation into the body. In this review, we
elaborate on the inflammation and immune responses caused by the implantation of
sericin and SF and also explore their anti-inflammatory properties and immune
regulatory functions. More importantly, we describe the latest research progress in
enhancing the immunotherapeutic and anti-inflammatory effects of composite
materials prepared from silk from a mechanistic perspective. This review will
provide a useful reference for using the correct processes to exploit silk-based
biomaterials in different wound treatments.
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1 Introduction

Silk is a natural fiber with a long history. It is formed by the solidification of the silk liquid
secreted by themature silkwormduring the cocoonphase. Silk ismainly composed of hydrophobic
silkfibroin (SF), which forms the corefiber, and hydrophilic sericin, a globular protein that binds to
SF (Johari et al., 2022; Silva et al., 2022). SF is rich in glycine, alanine and serine,while sericinmainly
contains serine and threonine (Silva et al., 2022; Takahashi et al., 1999).

Initially, sericin was often discarded in large quantities as textile waste, resulting in
environmental pollution and wastage of natural resources (Aramwit et al., 2012). With the
rapid development of biomaterials, the use of sericin in medicines has received increasing
attention. Sericin possesses outstanding antioxidant, anti-inflammatory, antibacterial, antiviral,
and biological characteristics that promote tissue regeneration, making it important in curing
diseases such as hypertension, cancer, and diabetes (Hu et al., 2022). In addition, sericin
biomaterials exhibit good biocompatibility and low immunogenicity, and have been engineered
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into various biomaterials, including films, hydrogels, scaffolds, fiber
pads, particles, coatings, conduits, and nanoparticles for tissue repair,
regeneration, and disease cure (Qi et al., 2018; Shah et al., 2019; Li et al.,
2020; Wang et al., 2021; Xu et al., 2022; Deng Y. et al., 2022; Ghensi
et al., 2019; Fu et al., 2022). Over the past decade, sericin-based
biomaterials have developed rapidly in drug-delivery and tissue
engineering.

SF has superior biocompatibility, marked mechanical properties,
controlled biodegradation rates, and ideal cellular-SF interactions
(Gholipourmalekabadi et al., 2020; Wani et al., 2022; Wang et al.,
2008). The application of silk in the textile industry has a long history
and the preparation technology for silk is very mature; therefore, the
source of SF is rich (Huang W. et al., 2018). These characteristics have
made SF emerge among biomaterial applications in recent years. SF can
be transformed into scaffolds, hydrogels, films, microspheres, and
nanoparticles alone or in combination with other materials for tissue
engineering such as nerves, bone and muscles, and can also be used in
drug delivery systems for skin wound treatment, tumor
immunotherapy, and other medical treatments (Cui et al., 2020;
Wang D. et al., 2022; Wenhao et al., 2020; Del Bianco et al., 2022;
Cai et al., 2023; Hassan et al., 2024).

The body possesses intricate and precise protective mechanisms.
When silk is used as a medical material, the immune system often
faces challenges. Silk medical materials require different processing
techniques before implantation into the body, which can cause
significantly alteration of the protein structure of the original silk,
resulting in varying levels of immune system activation. This
difference may be due to surface chemistry, protein
conformation, and polymer formation with other proteins in the
treated silk-based materials (Majumder et al., 2024). This has
expanded the application of silk in the medical field and has
extended the proinflammatory effects to anti-tumor, antibacterial,
and vaccine adjuvant fields, although a low immune response
contributes to bone, skin, and vascular repair. In this review, we
aimed to provide profound discussion of the activation of a wide
range of immune responses in vivo using silk-based biomaterials and
describe the rigorous and accurate processing methods required for
different clinical applications in subsequent research.

2 Immune responses induced by silk
material in mammals

One of the most important characteristics of biomaterials is their
biocompatibility, the initiation of the innate immune cells is the decisive
factor in the biocompatibility of biomaterials. This process usually
causes an inflammatory response, and the degree of the response resides
mainly on the properties of the biomaterial (Ekdahl et al., 2011). In this
section, we summarize and discuss the biosafety, immunogenicity and
immunomodulatory properties of sericin and SF.

2.1 Sericin

2.1.1 Favorable biocompatibility and low
immunogenicity

The biosafety of sericin has long been controversial. Studies have
confirmed that sericin has good biocompatibility from the three

standpoints of inflammation, allergy, and immunogenicity: (i)
sericin only causes low response of inflammatory cells in vivo
(macrophages and neutrophils) (Jiao et al., 2017; Li et al., 2015)
(Figures 1A, B); (ii) neglected allergens (Jiao et al., 2017) and (iii)
sericin only causes mild innate and adaptive immune responses (Jiao
et al., 2017; Zhang et al., 2006; Zhang Y. et al., 2021; Panilaitis et al.,
2003). Furthermore, the addition of sericin to a mixture of chitosan
and silver nanoparticles (AgNPs) can reduce their immunogenicity
(Nayak et al., 2021). Various forms of materials such as
nanoparticles, hydrogels, scaffolds, sponges and films prepared
from sericin have also not been found to cause marked immune
responses or inflammatory reactions (such as mast cell
degranulation) (Hassan et al., 2024; Ampawong and Aramwit,
2016). An important reason for the low immunogenicity of
serine is that it is rich in hydrophilic amino acids. Inspired by
this, poly-β-homoserineand poly-DL-serine materials can
substantially reduce foreign body reactions and are expected to
replace polyethylene glycol as an ideal implantable biological
material (Zhang et al., 2020; Zhang D. et al., 2021) (Table 1).

2.1.2 Anti-inflammatory properties
Inflammation is the body’s defense response to injury or

infection and involves a variety of cellular and molecular
mechanisms. In the process of tissue healing, inflammatory cells
such as macrophages and neutrophils are first recruited to the injury
site and release pro-inflammatory factors such as interleukin-1 beta
(IL-1β), IL-6, tumor necrosis factor α (TNF-α), etc. These factors
promote vascular dilation and increased permeability, attracting
more immune cells to participate in the inflammatory response. It
also activates the degradation and remodeling of extracellular
matrix. Subsequently, anti-inflammatory factors such as IL-4 and
IL-10 begin to play a role, inhibiting the production of pro-
inflammatory factors, reducing the activity of inflammatory cells,
and promoting tissue repair and regeneration (Eming et al., 2017).
The balance of inflammation and inflammatory factors is crucial for
tissue healing. Excessive inflammatory response may lead to
increased tissue damage, while insufficient anti-inflammatory
factors may delay the healing process.

Sericin preparations have found application in skin repair, blood
sugar reduction, and treatment of acute myocardial infarction
(Wang D. et al., 2022; Aramwit et al., 2013; Tuentam et al., 2022;
Song et al., 2016) (Figure 1C). There are three main mechanisms
through which sericin inhibits the inflammatory response: (i)
inhibits infiltration and proliferation of inflammatory cells
(Zhaorigetu et al., 2003; Chlapanidas et al., 2013); (ii) inhibits
expression of IL-1β, IL-6, IL-23, etc (Song et al., 2016;
Chlapanidas et al., 2013; Deenonpoe et al., 2019; Kumar J. P.
et al., 2018; Dong et al., 2020; Farajdokht et al., 2021); and (iii)
increases the expression of IL-4 andIL-10, etc (Seyedaghamiri et al.,
2021; Aramwit et al., 2018) (Figures 1D, E). Notably, Sun et al.
revealed the mechanism of sericin inhibiting lipopolysaccharide
(LPS) induced inflammation by multi omics integration: (i)
sericin inhibits LPS-activated PRRs, Toll-like receptors and
NOD-like receptors pathways; (ii) sericin significantly
downregulates the expression of the MyD88 and NOD1; (iii)
sericin decreases the expression of IL-1β, IL-6, INOS, etc (Sun
et al., 2022). Interestingly, I-sericin is induced by γ-irradiation of
sericin, and exhibits potent anti-inflammatory activities as the
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parent molecule, including reduction of oxidative stress-induced
inflammatory cytokines cyclooxygenase-2 (COX-2), inducible nitric
oxide synthase (iNOS), TNF-α, IL-1β and alleviation of LPS-induced
inflammation (Choi et al., 2023; Song et al., 2020).

2.1.3 Good immune regulatory function
Sericin reportedly modulates epidermal immune responses in

patients with psoriasis by reducing cytokine production by
Th17 cells, upregulating galectin-3 (Lgals3) and down-regulating
sphingosine-1-phospholyase 1 (Sgpl1) (Rujimongkon et al., 2021).
As recently shown, low molecular weight (LMW) sericin (<10 kDa)
enhances immune regulation in vitro: LMW-sericin (0.1 mg/mL) can
upregulate the expression of CXCL9, IL-12A, BMP-7, and IL-10 in
macrophages; balance Th1 and Th2 levels; and induce M2 polarization
of macrophages. Sericin regulates macrophage proliferation to achieve
immune regulation (Cherng et al., 2022) (Figure 1F). In addition,
I-sericin has immune-enhancing effects, manifested as a significant
increase in lymphocyte proliferation and activation of NK cells (Song
et al., 2020). In addition, biosynthetic sericin 1-like protein can induce
tolerant dendritic cells (DCs), which have excellent immunomodulatory
capabilities. The purity of sericin 1- like protein is positively correlated
with the anti-inflammatory effect of sericin; therefore, it is expected to
be developed as an immune modulator (Song et al., 2020; Ritprajak
et al., 2021).

In summary, the good biocompatibility and low
immunogenicity of sericin are now widely recognized, making it
a new avenue for drug delivery and tissue engineering (Wang C.
et al., 2022; Sapru et al., 2021). Moreover, the anti-inflammatory
properties and good immune regulatory functions of sericin will
greatly expand its clinical applications.

2.2 Silk fibroin (SF)

SF exhibits good biocompatibility and low immunogenicity;
therefore, it is favored for application in biological materials.
Many studies have explored inflammatory processes in vitro or in
vivo of SF-based biomaterials in the form of hydrogels, scaffolds,
films, and nanoparticles (Table 2).

2.2.1 SF hydrogel induce only a mild
inflammatory response

SF can achieve solution-gel transition by altering the pH,
temperature, and solvation state, or by increasing biopolymer
dynamics (Matsumoto et al., 2006). Studies on the
biocompatibility and low immunogenicity of hydrogels are often
based on the histological evaluation of tissue reactions, with the
main focus of observing changes in inflammatory markers, such as

FIGURE 1
Sericin presents characteristics of good biocompatibility, low immunogenicity, inhibition of inflammatory responses, and good immune regulatory
function. (A) Hematoxylin and eosin (H&E) staining following 10 days of implantation of AL, SF, SS1 and CH. AL, alginate; SF, silk fibroin; SS, sericin; CH,
chitosan; MU,mousemuscles; HY, hydrogel-implanted sites. (B) ELISA resultsmeasuring total IgE, allergen-specific IgE, IgG (total) and induced by sericin,
fibrinogen, PBS, and ovalbumin (OVA). Reprinted with permission from (Jiao et al., 2017). Copyright (2017) Wiley-VCH. (C) mRNA expression and
cytokine production of proinflammatory factor in hPBMC from the psoriasis patients, who exposure to naringin (20 μg/mL), sericin (100 μg/mL), or
sericin/naringin. Reprinted with permission from (Deenonpoe et al., 2019). Copyright (2019) BMC. (D) Expression of microphthalmia-associated
transcription factor (MITF) and IL-4, IL-10, and TGF-β onmelanocytes and DC 48 h after allergy induction treated with PEG or sericin (5, 10 and 20 μg/mL)
+ PEG. Reprinted with permission from (Aramwit et al., 2018). Copyright (2018) BMC. (E)Western blotting results of IL-10, IL-1β, and TNF-α in the young
mice, adult mice, and older adult mice + oral sericin treatment groups (250 mg/kg, 21 days). Reprinted with permission from (Seyedaghamiri et al., 2021).
Copyright (2021) Springer nature. (F) Arg-1 and iNOS immunofluorescence staining of macrophage treated with 0.1 mg/mL, 1 mg/mL LMW-sericin
(<10 kDa) and 10 ng/mL lipopolysaccharide (LPS). Reprinted with permission from (Cherng et al., 2022).Copyright (2022) Frontiers.
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neutrophils, eosinophils, and macrophages, in the SF hydrogel and
the surrounding tissues (Fu et al., 2022; Etienne et al., 2009; Maity
et al., 2022) (Figure 2A). However, these methods are not sufficiently
precise to determine the biocompatibility and low immunogenicity
of SF hydrogels. Therefore, advanced equipment and technical
means are required to explore the inflammatory reaction caused
by SF hydrogels in detail. Recently, using noninvasive
bioluminescence imaging, Gorenkova et al. demonstrated that SF
hydrogels elicited an acute but mild local inflammatory response in
vivo, which elicited an innate immune response similar to that
elicited by polyethylene glycol (PEG) hydrogels (Gorenkova et al.,
2021) (Figure 2B). The Forster/fluorescence resonance energy
transfer (FRET)-based sensor experiment developed by Kambe
et al. first exposed the initial immune response of SF hydrogels.
SF hydrogels are surrounded or invaded by matrix
metalloproteinases (MMP) within 24 h after implantation and
undergo biodegradation within 3 h after implantation, which
may favor immune cells (macrophages, foreign body giant cells)
to achieve major degradation of the hydrogel over a period of weeks
(Kambe and Yamaoka, 2021; Janani et al., 2022) (Figure 2C).

2.2.2 SF scaffolds have low immunogenicity
The surface morphology, physical structure, and chemical

structure of the scaffold play a decisive role in the reaction with
immune cells, and these features also regulate macrophage
polarization at the host tissue implant interface (Antmen et al.,
2021). The SF scaffold reportedly has good biocompatibility and low
immunogenicity through histological and immunofluorescence
staining analysis (Fu et al., 2022; Wang et al., 2008; Guan et al.,

2013; Yang et al., 2021; Ge et al., 2012; Suzuki et al., 2019; Singh et al.,
2018). Recent studies have revealed the effects of SF scaffolds on
macrophages. SF scaffold implants can inhibit classical activated
macrophages (M1) and stimulate alternatively activated
macrophages (M2) to regulate local inflammatory responses
(Janani et al., 2022; Yang et al., 2021). Mast cells, an important
type of immune cells, can be activated by biomaterials, which can
trigger inflammation by releasing histamine, cytokines and other
mediators, promote recruitment and activation of macrophages and
other immune cells, and affect the immunemicroenvironment at the
transplant site of biomaterials. Garg K et al. found that SF scaffolds
were not conducive to mast cell adhesion and proliferation,
suggesting that they were largely immune inert (Garg et al.,
2011). The origin, protein conformation, amino acid sequence,
fiber thickness, and porosity of SF play important roles in
determining the macrophage phenotype, monocyte
responsiveness, and T-cell activity (Janani et al., 2022; Yang
et al., 2021; Bhattacharjee et al., 2013). Therefore, it is necessary
to consider factors that affect the immune response when designing
SF scaffolds.

2.2.3 SF nanoparticles/nanofilaments have anti-
inflammatory properties and low immunogenicity

Evaluation of the innate and adaptive immunity of SF
nanoparticles (SFNPs) in vivo demonstrate low immunogenicity
and anti-inflammatory properties (Zhang Y. et al., 2021). SFNPs
play an anti-inflammatory role and immunomodulatory properties
in intestine of trinitrophenyl sulfonic acid-induced experimental
colitis in rats, which is specifically manifested as reducing

TABLE 1 Application of sericin in the pharmaceutical field and induced immune responses.

Biomaterial Bio-medical
field

Immune cellular response Effect Reference

Nanomicelles Tumor
immunotherapy

Promote T cell recruiting; induce DC maturation Induce anti-tumor immunity Guo et al. (2022)

Hydrogels Cancer chemotherapy Enhance the phagocytic capacity of liver macrophages
and promote the proliferation of splenic lymphocytes

Alleviate chemotherapy-induced
immunosuppression

Xu et al. (2021)

Microparticles Psoriasis Increase the level of TNF-α secreted by LPS-induced
human peripheral blood mononuclear cells (hPBMC)

Treat middle-stage psoriasis Chlapanidas et al.
(2014)

Scaffolds Periodontitis Downregulate the MMP-9 and MMP-3, upregulate the
IL-10 in LPS-stimulated macrophages

Stable anti-inflammatory effect on periodontal
disease treatment

Chachlioutaki et al.
(2022)

Scaffolds Chronic nerve
compression

Downregulate TNF-α and IL-1β mRNA levels in
macrophages

Achieve significant nerve functional recovery
in a preclinical CNC animal mode

Zhang et al. (2017)

Hydrogels Wound repair Reduce inflammation and TNF-α secretion by
macrophages

Promote wound healing Jiang et al. (2021a)

Nanoparticles Carrageenan-induced
paw edema

Significantly decrease the infiltration of
polymorphonuclear cells

Inhibit inflammation induced by carrageenan Khampieng et al.
(2015)

Nanocarriers Ulcerative colitis Reduce the infiltration of inflammatory cells in the liver
and kidneys

Relieve symptoms of DSS induced UC Wang et al. (2022b)

Hydrogels Diabetic wounds Reduce the infiltration of inflammatory cells at the
wound site

Promote the healing of diabetic wounds El-Samad et al.
(2022)

Nanospheres Ulcerative colitis Inhibite the LPS-induced inflammatory response of the
macrophage cells

Achieve effective therapeutic effects on
ulcerative colitis

Xu et al. (2022)

Hydrogels Ulcerative colitis Inhibit IL-6 and IL-12 secreted by macrophages Alleviate UC via wound healing, inhibit
inflammation, and inhibit oxidation pathway

Ma et al. (2019)
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TABLE 2 Application of SF in the pharmaceutical field and induced immune response.

Biomaterial Bio-medical
field

Immune cellular response Effect Reference

Nanoreactors Cancer Initiate M1 activation; therapy-triggered ICD Beneficial for systemic tumor
clearance

Yu et al. (2023)

Nanomotors Cancer Mature dendritic cells, enhance immune cell
infiltration, polarize macrophages from
M2 to M1, and inhibit Tregs

Causing changes in
immunosuppressive TME and
activating tumor suppressive
immunity

Zhang et al. (2022a)

Nanocomposites Cancer Polarize macrophages towards M1, alter
immunosuppressive TME

Promote immunotherapy for PD1/
PD-L1 checkpoint

Tan et al. (2020)

Nanomotors Cancer Reduce the percentage of
immunosuppressive Treg cells, activate and
recruit tumor-infiltrating lymphocytes

Inhibit the proliferation and growth
of primary and metastatic tumor
cells

Cao et al. (2022)

Nanofibrous mats Transcutaneous
immunization

Induce effective Th1 and Th2 cellular and
humoral immune response

Activation response to OVA Yang et al. (2020)

Nanofibrous patches Transcutaneous
immunization

Promote the infiltration of T cells Promote the apoptosis of tumor cells Hong et al. (2021)

Hydrogels Diabetes Promote anti-inflammatory M2 macrophage
polarization

Locally regulate the inflammatory
response in vivo

Kumar et al. (2018b)

Microneedles Vaccine Increase B cell responses Greatly enhanced the humoral
immune response of subunit
vaccines

Boopathy et al. (2019)

Microneedles Vaccine Generate stronger antigen-specific cellular
immune responses

Improve protection against lethal
influenza challenge in mice

Stinson et al. (2021)

Microneedles Vaccine Promote the proliferation of antigen-specific
T cells and increase the level of antigen-
specific CD8 T cells

Generate stronger cellular and
humoral immunity than the initial
vaccine

DeMuth et al. (2014)

Nano-adjuvants Vaccine Trigger Th1 and Th2 immune responses Efficient protect to bladder and
kidneys

Hasanzadeh et al. (2020)

Nano-adjuvants Vaccine Promote the proliferation and differentiation
of CD4 TRM cells

Enhance the local immunity of the
stomach

Xu et al. (2019)

Hydrogels Vaccine Promote the expansion of CD4+TRM cell
distribution within the gastric epithelium

Enhanced immune response against
Helicobacter felis

Hu et al. (2020)

Nanoparticles Immunotherapeutic
agents

Enhance the capacity of macrophages to
secrete immune cytokines

Notably improve CpG ODN delivery Zhang et al. (2019)

Hydrogels Rheumatoid arthritis Reduce the capacity of THP-1 cells
differentiated with Phorbol 12-myristate 13-
acetate (PMA) and stimulated with LPS to
secrete immune cytokines

Improve rheumatoid arthritis more
effectively

Oliveira et al. (2020)

Hydrogels Skin wounds Promote M2 macrophage polarization Accelerate wound healing Chouhan et al. (2018), Pang et al.
(2021), Mei et al. (2022), Qian
et al. (2022b), Chen et al. (2023a)

Nanoparticles Bone regeneration and
repair

Promote M2 macrophage polarization Promote osteoporotic fracture repair Wang et al. (2022a)

Scaffolds Bone regeneration and
repair

Promote M2 macrophage polarization Enhance bone regeneration Xiang et al. (2021), Patel et al.
(2022)

Nanoparticles Ulcerative colitis Promote M2 macrophage polarization Alleviate immune response, retard
progression and treat UC

Liu et al. (2022)

Nanoparticles Ulcerative colitis Increase the CD8 T and B cells, promote
M2 macrophage polarization

Regulating innate immune response
and enhancing the therapeutic effect
of acute colitis

Du et al. (2022)

Nanoparticles Ulcerative colitis Promote M2 macrophage polarization Substantially relieve UC symptoms Ma et al. (2022)

Nanoparticles Ulcerative colitis Promote the secretion of proinflammatory
cytokine in macrophages

Significant relief of symptoms of UC
disease

Gou et al. (2019)

(Continued on following page)
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neutrophil infiltration, decreasing the expression of IL-1β and
promoting the expression of IL-10, while functionalization of
arginine–glycine–aspartic acid (RGD) peptide can significantly
improve its anti-inflammatory properties (Rodriguez-Nogales
et al., 2016) (Figure 2D). In addition, a SF nanosilk solution
reportedly reduces gene expression of the proinflammatory

factor IL-6 accompanied by a tendency to reduce inflammatory
cell infiltration early in the healing process (Niemiec et al.,
2020) (Figure 2E).

SF films are also biocompatible, have low immunogenicity, and
can reduce the infiltration of inflammatory cells. SF films are mainly
used in wound healing and tissue repair (Ge et al., 2012; Arthe et al.,

TABLE 2 (Continued) Application of SF in the pharmaceutical field and induced immune response.

Biomaterial Bio-medical
field

Immune cellular response Effect Reference

Nano-micro fibrous
woven scaffolds

Tendon tissue
engineering

Regulating macrophage polarization
towards M2

Notably facilitated Achilles tendon
regeneration

Cai et al. (2023)

Scaffolds Tendon adhesion Promote M2 polarization of macrophages Greatly mitigate tendon adhesion Dong et al. (2021)

Engineering meshes Pelvic organ prolapse Promote M2 polarization of macrophages Enhance tissue repair Wu et al. (2022)

Hydrogels Skin wounds Reduce inflammatory cells Promote skin appendage formation Yin et al. (2022)

Scaffolds Spinal cord injury Reduce the macrophage/microglia
(CD68 positive cells)

Facilitate regeneration of injured
spinal cord

Li et al. (2016b)

FIGURE 2
Biomaterials constructed with SF causes a modest inflammatory response and has low immunogenicity and anti-inflammatory properties. (A) The
H&E staining of skin tissue from the backs of mice subcutaneously transplanted with SF after 12 weeks. Reprinted with permission from (Etienne et al.,
2009). Copyright (2009)Wiley-VCH. (B)Non-invasive imaging of the acute and chronic inflammatory response towards implanted SF and PEG hydrogels.
Reprinted with permission from (Gorenkova et al., 2021). Copyright (2021) the ROYAL SOCIETY of CHEMISTRY. (C) Relative expression of
proinflammatory and pro-remodeling genes after exposure to degradation products of silk (Bombyxmori (BM) silk; Antheraea assamensi (AA) silk, and BA
silk and ECM (liver ECM (LECM) and small intestinal submucosa ECM (SIS)) bioscaffolds on proinflammatory activated macrophages. Reprinted with
permission from (Janani et al., 2022). Copyright (2022) Elsevier. (D) H&E staining of colon in non-colitic, colitic control, SFNs and RGD-SFNs
group. Reprinted with permission from (Rodriguez-Nogales et al., 2016) Copyright (2016) Dovepress. (E) Proinflammatory gene expression of diabetic
wounds treated with PBS, nanosilk (made from SF), and nanosilk + cerium oxide nanoparticle-microRNA146a (CNP-miR146a) after 7 days. Reprintedwith
permission from (Niemiec et al., 2020). Copyright (2020) Frontiers. (F)H&E and Masson trichrome staining were performed on the control group, porous
SF membrane group, and non porous SF membrane group at 1 and 4 weeks postoperatively. Reprinted with permission from (Yao et al., 2019). Copyright
(2019) Wiley-VCH.
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2020; Yao et al., 2019) (Figure 2F). In addition, the transparent
artificial dura made from SF effectively reduces the expression of IL-
1β, IL-6, and TNF-α (Kim et al., 2011).

Notably, peptides produced by SF hydrolysis exhibit anti-
inflammatory potential. SF peptide alone inhibits TPA-induced
increase in COX-2, IL-6, IL-1β, and TNF-α levels, and
significantly enhances the anti-inflammatory activity of Tat-SOD
and PEP-1-FK506 binding proteins (Kim et al., 2011; Kim et al.,
2012). γ-irradiated SF significantly enhances various aspects of the
immune systems by activating NK cells, T-cell proliferation, NO
production, and increasing cytokine levels (Byun et al., 2010). The
anti-inflammatory potential of the SF hydrolysate and irradiation
products suggests that further processing and treatment of SF will be
a new strategy to explore its value.

3 Strategies to reduce the
immunogenicity and foreign body
reaction (FBR) of sericin-based and SF-
based biomaterials

Compared with the current artificial materials, such as polylactic
acid, PEG, etc., the degradation products of sericin and SF are small
molecular amino acids, and possess lower inflammatory response
and better biocompatibility, while the degradation products of
artificial materials such as polylactic acid will produce obvious
inflammatory response by reducing the pH value of the
environment (Ma et al., 2024). Chemical crosslinking is an
important strategy to reduce the immunogenicity of biomaterials.
Based on the active groups on various amino acid residues in sericin
and SF, it can be chemically modified to meet the needs of different
applications. For instance, by introducing methacrylic acid group
into the amino acid side chain of SF protein, the water solubility of
SF protein can be improved, thus reducing the immunogenicity
(Kim et al., 2021). Reducing the antigenic epitopes exposed by
material surface modification is another important strategy to
reduce the immunogenicity. For example, the introduction of
specific bioactive molecules, such as PEG, on the surface of
fibroin proteins can reduce the immunogenicity of SF (Wei
et al., 2020).

Biomaterials implanted in the body will cause FBR, including
local aseptic inflammatory responses, such as inflammatory cell
infiltration, including macrophages, lymphocytes, neutrophils, etc.
Over time, foreign-body giant cell form and eventually lead to
fibrosis (Cai et al., 2024). In order to overcome the FBR, it is
necessary to pay attention to the following characteristics when
preparing sericin-based and SF-based biomaterials. Firstly, the
mechanical properties of the hydrogels should be suitable for the
implant site, and the lower stiffness helps to mitigate FBR (Blakney
et al., 2012). Secondly, preventing protein adsorption by binding
hydrogels with PEG or other novel anti-fouling biomaterials (such as
zwitterionic or hydroxyl-rich polypeptides) is another attractive
option (Zhou et al., 2024). Another method to mitigate FBR is to
use biomimetic materials (such as decellularized extracellular matrix
and mucins) mimic the extracellular matrix (ECM) of native tissues
(Bhunia et al., 2023;Werlang et al., 2024). In regard to nanoparticles,
surface functionalized by different chemical groups can affect the
intensity of the FBR (Huang Y. J. et al., 2018; Huang et al., 2015). It is

noteworthy that the membrane encapsulation to reduce the FBR of
the nanoparticle has become another novel way (Fan et al., 2018).

Finally, the composition and MW of sericin and SF also play a
key role in its immunogenicity. SF is a fibrous protein consisting of a
heavy chain (H chain) (390 kDa), a light chain (L chain) (26 kDa),
and a glycoprotein P25 (30 kDa), which are assembled in a ratio of 6:
6:1 (Inoue et al., 2000). Sericin is also a macromolecular protein,
with MW ranges from about 10 kDa to over 300 kDa (Zhang, 2002).
The MW of them is greatly affected by the extraction conditions.
LMW-sericin (below 10 kDa) not only displays good
biocompatibility, but also owns good anti-inflammatory ability to
regulate macrophage polarization towards the M2 phenotype
(Cherng et al., 2022). Therefore, it is another way to reduce the
immunogenicity of sericin-based and SF-based biomaterials by
optimizing the extraction and purification process to obtain the
appropriate MW of sericin and SF.

4 Application of sericin biomaterial
in medicine

Due to the good biocompatibility, low immunogenicity and
outstanding immunomodulatory properties, sericin is highly
favored in the biomedical field. Sericin-based biomaterials have
shown excellent effects in improving immunotherapy and anti-
inflammatory.

4.1 Improving immunotherapy

Immunotherapy is mainly a method of treating diseases by
artificially enhancing or inhibiting the body’s immune function.
It is suitable for treating various diseases, including cancer and
autoimmune diseases. Currently, the drug delivery system using
sericin as a biological material for immune agents become a very
promising method for immunotherapy.

4.1.1 Enhance anti-tumor immunotherapy
Small interfering RNA (siRNA) is essential for the effective

inhibition of tumorigenesis, targeting of tumor metastasis, and
activation of tumor-associated immune cells via silencing the
specific gene (such as p65 and PD-L1) responsible for different
cancer hallmarks (Ngamcherdtrakul and Yantasee, 2019). Using an
effective delivery system, siRNAs can be selectively targeted to
tumor microenvironment (TME), sent to regulatory T cells
(Tregs), macrophages, myeloid-derived suppressor cells, and
other cells to “silence” immunosuppressive cells, and enhance
therapeutic immunotherapy (Deng K. et al., 2022; Qian H. et al.,
2022; Li S. Y. et al., 2016; Hossain et al., 2015). Currently, sericin as a
biological material has been designed as a delivery system for
targeted delivery of siRNA. For example, a system consisting of
superparamagnetic iron oxide nanoparticles (SPIONs) modified
with sericin can target triple-negative breast cancer, accelerate
tumor necrosis, and inhibit tumor proliferative growth (Shirangi
et al., 2022). Furthermore, hyaluronic acid/poly-L-lysine-siRNA/
albumin-sericin (2:1) nanoparticles can be used as siRNA delivery
system for laryngeal cancer treatment (Yalcin et al., 2019).
Therefore, it is expected that, in the future, serine will be
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increasingly used as a biological material to design a drug delivery
system to target siRNA to immunosuppressive cells in the TME,
which will be a potential new direction for enhancing
immunotherapy.

Photothermal therapy (PTT) and photodynamic therapy (PDT)
are two novel cancer treatments. Their anti-tumor efficacy can be
improved by inducing non-invasive pyroptosis of cancer cells and
stimulating anti-tumor immune responses. For example, recently
prepared VB12-Sericin-PBLG-IR780 nanomicelles not only trigger
programmed pyroptosis in cancer cells but also activate DC
maturation, initiate T-cell recruitment, and play a key role in
anti-tumor processes (Guo et al., 2022) (Figure 3A).

In addition, during the treatment for tumors, although the
use of chemotherapy drugs inhibits tumor formation and
development, it can also have a negative impact on the
immune system. Lactoferrin (LF), a common iron-binding
glycoprotein, not only has the function of regulating iron
metabolism, but also plays a crucial role in antibacterial,
antiviral, anti-tumor and immune regulation (Jańczuk et al.,
2022). A sericin hydrogel system for the delivery of
recombinant human LF (SSH-rhLF) can prolong the
bioactivity and bioavailability of rhLF and may have a
therapeutic effect on the cyclophosphamide (CTX) induced

immunosuppression mice by enhancing the function of liver
macrophages, promoting the expression of immunoregulatory
factors (IL-2, IL-21, IL-18, and CD-3), and promoting the
proliferation of splenic lymphocytes (Xu et al., 2021). This
provides a new strategy for enhancing immunity in patients
undergoing cancer chemotherapy.

4.1.2 Involvement in immune regulation of
autoimmune diseases

Atopic dermatitis (AD) is a common chronic inflammatory
disease, for which immunotherapy is an important treatment (Li
and Man, 2022). Sericin prepared in emulsion gel and hydrogel
forms is very effective in correcting the abnormal immune response
caused by AD by loading levocetirizine (an antihistamine), anti-
RelA siRNA, and functional peptides (Pal et al., 2019; Kanazawa
et al., 2015) (Figure 3B). Intra-articular injection of sericin hydrogel
preparations containing anti-RelA siRNA also has great therapeutic
potential for the treatment of rheumatoid arthritis (RA) (Kanazawa
et al., 2017). Moreover, sericin-based microspheres loaded with
racemic flavanone naringenin (a TNF-α blocker) helped to
suppress LPS-induced serum TNF-α levels, which mediate
immune disorders in psoriasis, and thus are expected to be a new
modality for psoriasis immunotherapy (Chlapanidas et al., 2014).

FIGURE 3
Application of sericin-based biomedical composites in immune regulation. (A) The preparation process and mechanism of VB12-sericin-PBLG-
IR780 nanomicellesmediated pyroptosis are related toDCmaturation, T cell recruitment, and tumor inhibition efficiency. Reprintedwith permission from
(Guo et al., 2022). Copyright (2022) ACS. (B) Treatment of atopic dermatitis in mice with siRelA sericin (SC) hydrogel. Observation of ear swelling (HE
staining) andmast cell infiltration (TB staining) in tissue sections through optical microscopy. Reprintedwith permission from (Kanazawa et al., 2015).
Copyright (2015) MDPI. (C) Se-CuSrHA@EGCG Preparation and functional model diagram of nanoplatforms, including clearance of ROS, regulation of
immune response, angiogenesis, and bone formation. Reprinted with permission from (Ming et al., 2025). Copyright (2025) Elsevier. (D) Chitosan (CS) -
NPs gel, CS Lupeol (L) - NPs gel, CS Ag NPs gel and CS Ag L-NPs gel were used to treat skin wounds. The expression of TNF - α and IL-1 β in tissues was
detected by immunohistochemistry. Reprinted with permission from (Chu et al., 2023). Copyright (2023) Elsevier. (E) Treated with IL-4 and alginate/
sericin/graphene oxide (Alg/Ser/GO) hydrogel, the frequency of CD206+CD163+and CD11b+CD80+cells was analyzed by flow cytometry. Reprinted with
permission from (Jiang et al., 2021a). Copyright (2021) Elsevier.
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4.2 Role in anti-inflammatory activity

Sericin has good adhesion and hydrophilicity, which helps to
regulate the mechanical properties of biomaterials, enhance their
degradation ability, promote cell adhesion and proliferation, and
facilitate the sustained release of anti-inflammatory drugs, thereby
enhancing their anti-inflammatory effects. From a mechanistic
perspective, the drug delivery system and composite biomaterials
involved in sericin play an anti-inflammatory role, mainly by
promoting the M2 polarization of macrophages, inhibiting the
proliferation and infiltration of inflammatory cells, and regulating
the secretion of inflammatory mediators.

4.2.1 Inhibition of inflammation by promoting
M2 polarization of macrophages

Macrophages are among the first cells to arrive at and interact
with implanted materials and involved in regulating the resolution
of inflammation, promoting tissue repair and regeneration. Mature
macrophages are polarized into M1 or M2 subtypes. Classically
activated M1 induced by IFN-γ, exhibit a proinflammatory
phenotype. Activated M2 induced by IL-4 or IL-13 exhibit an
anti-inflammatory phenotype (Kumar et al., 2016). During tissue
repair, excessive and prolonged activation of proinflammatory
M1 macrophages in the early stages of inflammation can lead to
increased inflammation, thereby impairing tissue repair and
regeneration (Martin and García, 2021; Bessa-Gonçalves et al.,
2023). Therefore, accelerating the change in the macrophage
from M1 to M2 is an important strategy in both biomaterial
development and tissue repair/regeneration.

The polarization response of macrophages to biomaterials is
currently being explored in three main approaches: (i)
immunofluorescence staining using M1 surface markers (such as
chemokine receptors 7, CCR7) and M2 surface markers (such as
CD206) and observing results (Wang et al., 2020); (ii) determining
cytokine secretion profiles of macrophages, which indirectly reflect
macrophage phenotype (Wang et al., 2020; Chachlioutaki et al.,
2022); (iii) examining the expression of M1 and M2 genes (Wang
et al., 2020; Zhang et al., 2017; Jiang et al., 2021a). Sericin composite
biomaterials in the form of scaffolds, films, hydrogels, and other
treatments combined with drugs such as ketoprofen (an anti-
inflammatory agent), nerve growth factor, and exosomes inhibit
inflammatory responses by promoting macrophage M2/
M1 conversion, which is exploited for tissue and peripheral nerve
repair (Chachlioutaki et al., 2022; Zhang et al., 2017; Jiang et al.,
2021a). Recently, the bone immune microenvironment, in which
macrophages play a key role in reprogramming of the bone
regeneration and immune microenvironment, has attracted
increasing attention. Sericin released in an injectable alginate/
serin/graphene oxide (Alg/Ser/GO) hydrogel promotes
M2 polarization and migration through nuclear factor kappa-B
(NF-κB) and mitogen-activated protein kinase (MAPK) signaling,
inducing osteogenic differentiation and bone regeneration (Jiang
et al., 2021a). Se-CuSrHA@ (epigallocatechin -3- gallate) EGCG
(Figure 3C), a sericin-based nanoplatform, increases mRNA level of
Arg-1 and CD206, increases the secretion of anti-inflammatory
cytokines, inhibit M1 while promoting the polarization of M2,
balanced immune homeostasis, and accelerating bone
regeneration (Ming et al., 2025). In another study, serine

incorporated into a gelatin sponge polarizes M1 macrophages
and promotes bone morphogenetic protein 2(BMP-2) secretion
to enhance osteogenesis (Jo et al., 2021). Therefore, the factors
through which sericin materials determine macrophage phenotypes
may be complex and require further exploration.

4.2.2 Inhibition of the infiltration and proliferation
of inflammatory cells

Sericin-composite biomaterials can also inhibit inflammatory
cell proliferation and infiltration in the treatment of inflammatory
diseases. Sericin-loaded alginate nanoparticles significantly reduce
polymorphonuclear cell (PMN) infiltration and inhibit carrageenan-
induced paw edema (Khampieng et al., 2015). The sericin/
proanthocyanidin (PAC) composite reverses histological damage,
including inflammatory cell infiltration and goblet cell loss, slowing
disease progression and is a promising alternative therapeutic
strategy for dextran sulfate sodium (DSS) -induced ulcerative
colitis (UC) (Wang C. et al., 2022). In addition, the reduction of
inflammatory cells in the surrounding tissues was observed at the
initial stages of implantation of the alginate/sericin/graphene oxide
(Alg/Ser/GO) hydrogel, which is conducive to bone regeneration
(Jiang et al., 2021a). Sericin can promote chondrocyte differentiation
and growth by activating the Smad2/3/TGF-β pathway and regulate
local proinflammatory responses (Fongsodsri et al., 2024).

4.2.3 Regulate the release of inflammatory factors
In terms of wound treatment, carboxymethyl cellulose/sericin-

based hydrogel dressing can downregulate the IL-1β, IL-6, and TNF-
α to improve the pro-inflammatory response at the diabetic wound
site (El-Samad et al., 2022; Bai et al., 2023). Hydrogels made of
fibroin and sericin are excellent at promoting wound healing and
reducing inflammation (Zhang D. et al., 2024; Ashraaf et al., 2023).
Using sericin as a biological template, CuS@Ser NPs stimulate
angiogenesis and inhibited inflammation, thereby facilitating
rapid wound healing (Guo et al., 2023).

Another bacterial cellulose wound dressing made from sericin/
polyhexamethylene biguanide has a strong ability to promote tissue
secretion of IL-4 and TGF- β, thereby achieving a more efficient
regulatory ability to promote wound treatment (Napavichayanun
et al., 2018). In terms of psoriasis treatment, the combination of
naringin and sericin in equal proportions significantly reduced the
production IL-6, TNF-α and IL-23 in patients (Deenonpoe et al.,
2019). Sericin-based poly (vinyl) alcohol (SS/PVA) hydrogel
alleviates the development of psoriasis symptoms by up-
regulating nuclear factor erythroid 2 related factor 2 (Nrf2), IL-
10, and down-regulating TNF-α and IL-20 (Tuentam et al., 2022). In
terms of colitis treatment, sericin composite biomaterials can
alleviate UC by reducing the levels of proinflammatory cytokines
TNF-α, IL2, IL-6, IL-17, and IL-12 and upregulating the levels of the
anti-inflammatory cytokine IL-10 (Xu et al., 2022; Fongsodsri et al.,
2024; Ma et al., 2019). The mixture of sericin and curcumin can
inhibit carrageenan-induced foot edema in mice by suppressing the
release of IL-1 β, promoting the secretion of IL-4 and IL-10 (Ashraaf
et al., 2023).

The sericin composite biomaterials loaded with drugs can be
used to treat inflammatory diseases by reducing the release of
proinflammatory mediators, upregulating anti-inflammatory
cytokines and macrophage polarization (Jiang et al., 2021a; Chu
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et al., 2023) (Figures 3D, E). Sericin base biomaterial is a new and
gradually emerging therapeutic strategy for wound treatment.

5 Application of SF in medicine

Compared with sericin, SF is more widely used in the field of
tissue engineering and regenerative medicine attributed to its better
mechanical properties and versatile processing capabilities. SF-based
biomaterials have also played an outstanding role in enhancing
immunotherapy and anti-inflammatory.

5.1 Improving immunotherapy

5.1.1 Enhanced anti-tumor immune response
SF has biocompatibility, controlled-release characteristics, and

excellent mechanical and biological properties, such as
immunomodulatory and anti-inflammatory properties, making it
an excellent choice for the construction of composite biomaterials
for tumor immunotherapy. Surface-engineered SF nanocomposites
not only exhibit excellent anti-tumor functions but can also be

combined with different types of tumor therapies to enhance tumor
immunotherapy. The related mechanisms mainly include: (i)
reversal of the immunosuppressive TME, including inducing the
transformation of tumor-associated macrophages from M2 to
M1 and reducing the number of Tregs (Zhang X. et al., 2022; Yu
et al., 2022a; Tan et al., 2020; Yu et al., 2023) (Figures 4A, B); (ii)
induction of immunogenic cell death (ICD) to stimulate anti-tumor
immunity (Zhang X. et al., 2022; Yu et al., 2022a; Tan et al., 2020; Yu
et al., 2023; Tkach et al., 2017); and (iii) promotion of the maturation
of DCs, the formation of effector T cells and effector memory T cells
to improve immune activation and promote immune memory
(Zhang X. et al., 2022; Yu et al., 2022a; Tan et al., 2020; Tkach
et al., 2017; Cao et al., 2022) (Figures 4A–C).

Transcutaneous immunization (TCI) enhances tumor
immunotherapy by delivering antigens to DCs through skin.
Compared to traditional oral or injection vaccinations, it has the
advantages of excellent immunogenicity, avoidance of the liver first-
pass effect, good compliance, safety, high efficiency, non-
invasiveness, and ease of use (Karande and Mitragotri, 2010).
However, the presence of a cuticular barrier leads to a low
transdermal delivery efficiency of TCI, thereby limiting its large-
scale clinical application. SF has good biocompatibility, air

FIGURE 4
Application of SF-based biomedical composites in anti-tumor immune response and enhancing the immune response to vaccines. (A) Flow
cytometry analysis showing the frequency of M1 and M2 macrophages after various treatments: ultrasound (US), bovine serum albumin (BSA)+US, SF +
US, Au/SF@Cu2-xS nanoreactor (ASC), and ASC+US. Reprintedwith permission from (Yu et al., 2022). Copyright (2023) Elsevier. (B) Schematic illustration
of the synthetic route of NST NPs (metal-organic framework nanosystem (NMOF)+SF + tirapazamine (TPZ)) and the mechanism of synergistic
induction of strong immune response by deoxygenation driven chemotherapy in the treatment of tumor specific redox imbalance. Reprinted with
permission from (Yu et al., 2022a). (C) Impact of different types of oral nanomotors (NMs)-embedded hydrogel plus anti-PD-L1 on DC maturation, the
ratio of CD8+/CD4+ T cells and changes, central memory cells (TCM), effector memory T cells in the mouse spleen and variations in cytokine levels (e.g.,
TNF-α and IFN-γ) in the mice serum. Reprinted with permission from (Cao et al., 2022). Copyright (2022) Wiley-VCH. (D) (a) Schematic of the fabrication
and application to skin of SF/poly (acrylic acid) (PAA) composite microneedles. (b) ELISA analyses of anti-trimer-His serum IgG responses over time.
Reprinted with permission from (Boopathy et al., 2019). Copyright (2018) PNAS. (E) Kaplan–Meier survival curves showing that MIMIX (SF-based
microneedle patch) reduced mortality relative to control, whereas bolus vaccination vaccines did not significantly improve survival rates. Reprinted with
permission from (Stinson et al., 2021). Copyright (2022) Elsevier. (F) Immunofluorescence staining in acute or steady-state conditions: Adding SF to
vaccines can induce stronger immune responses and increase the distribution of CD4+T cells in the gastric mucosa. Reprinted with permission from (Hu
et al., 2020). Copyright (2020) Taylor and Francis.

Frontiers in Pharmacology frontiersin.org10

Tian et al. 10.3389/fphar.2025.1548837

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1548837


permeability, and skin affinity, and can mimic the extracellular
matrix, making it a good biological material for constructing
transdermal drug delivery systems. Composite biomaterials
constructed using SF can Stimulate cellular and humoral immune
responses and induce systemic anti-tumor response by improving
the transdermal properties of transdermal carriers, targeting, and
inducing DCs maturation (Yang et al., 2020; Song et al., 2022).
According to recent researches, the combination of SF-constructed
percutaneous tumor immune materials and immune checkpoint
blockers, such as programmed cell death protein 1 monoclonal
antibody (aPD-1) which can enhance T-cell responses and mediate
preclinical antitumor activity by blocking the binding of PD-1 on
T cell with PD-L1 on cancer cells, may be a new strategy for
effectively enhancing tumor immunotherapy. The involved
mechanisms include: (i) promotion of the infiltration of CD4 and
CD8 T cells into the tumor tissue, and (ii) promotion of the
expression of IL-12, IFN-γ, and TNF-α (Song et al., 2022; Hong
et al., 2021).

It is also of interest that SF has been used as a vaccine carrier for
cancer immunotherapy. For example, Lei et al. recently developed an
injectable SF microsphere loaded with an antigen and an immune
adjuvant. Its macroporous structure is conducive for the recruitment
of immune cells and can promote the activation of DCs to forms a
favorable immune microenvironment. In turn, strong humoral
and cellular immunity is induced. In addition, an enhanced
vaccine modified by adsorbing antigens on SF microspheres
effectively inhibits tumor growth by improving the cytotoxic
T lymphocyte (CTL) response (Lei et al., 2022), properties that
encourage a new approach for the future development of tumor
immunotherapy vaccines.

5.1.2 Enhanced immune response to vaccines
Antigen delivery dynamics can influence the immune response

to vaccines. For example, vaccine antigens can induce sustained
humoral immunity after they are delivered to the lymph nodes to
trigger naïve B cell response, whereas traditionally injected
immunization can rapidly eliminate antigens, which is not
conducive to the establishment of humoral and cellular
immunity. Improving the immunogenicity of vaccine antigens
and maintaining their slow release are new strategies for
enhancing vaccine efficacy. The ability of the SF matrix to
enclose and release intact and bioactive immunologically active
materials has attracted much attention in the construction of
slow-release novel vaccines (Reeves et al., 2015; Guziewicz et al.,
2011; Kumar M. et al., 2018) (Figure 4D). The microneedle patch
combined with the SF matrix can achieve the continuous release of
vaccine antigens, enhance the immunogenicity of the vaccine, and
thereby significantly enhance the degree, duration, and breadth of
the humoral and cellular immune responses caused by the vaccine.
Therefore, this represents a promising vaccine delivery strategy at
present (Boopathy et al., 2019; Stinson et al., 2021; DeMuth et al.,
2014) (Figure 4E).

SFNPs can enhance antigen target delivery, immunogenicity,
and stability and can release antigens slowly and continuously,
making them a promising new vaccine preparation. SFNPs was
used as nanoadjuvants to deliver recombinant hepatitis B surface
antigen (HBsAg) and FimH-IutA antigen, with the resulting vaccine
significantly increasing the content of specific antibody IgG and

promoting humoral and cellular immune responses (Rezaei et al.,
2021; Hasanzadeh et al., 2020). Similarly, SF, which presents the
advantages of sustained release, absorption, and in situ gelation in
various tissues, has been used as a mucosal vaccine carrier. This
vaccine carrier not only alleviates gastric injury but also leads to
significant infiltration and generation of CD4 tissue-resident
memory T (TRM) cellsin gastric epithelial tissues, which are the
key mediators of anti-infection immunity in various tissues and have
recently been shown to boost local stomach immunity (Schenkel
et al., 2014; Xu et al., 2019; Hu et al., 2020) (Figure 4F).

5.1.3 Enhanced efficacy of immunotherapy drugs
CpG oligodeoxynucleotides (CpG ODNs) are short single-

stranded synthetic DNA molecules which are designed to mimic
bacterial DNA. These molecules are recognized by Toll-like receptor
9 (TLR9), which is expressed in certain immune cells such as
myeloid cells, thus possess potent immune-stimulatory properties
(Hekmatshoar et al., 2019). SFNPs have been used as effective
carriers of CpG ODNs, which can significantly improve the
delivery of CpG ODNs, as shown by the significantly enhanced
cellular uptake and significantly increased levels of cytokines and
nitric oxide produced following CpG ODN stimulation (Zhang
et al., 2019).

SF has particularly excellent biocompatibility and can slowly
degrade in vivo, has an excellent mechanical strength, and increases
cell adhesion. Injectable hydrogels prepared by combining SF with
other materials achieve controlled biodegradation and low mass loss
and can be loaded with immunosuppressive agents such as
methylprednisolone and betamethasone for cartilage regeneration
and the treatment of rheumatoid arthritis (Phan et al., 2022; Oliveira
et al., 2020).

Human bone marrow mesenchymal stem cells (hBMSC) are
widely used in cell therapy because of their powerful proliferative
and immune-regulatory abilities. SF films reportedly preserve not
only the immunosuppressive effects of hBMSCs on T-cell
proliferation and cytokine release, but also IL-6 secretion, and
the immunophenotypes of hBMSCs (Luan et al., 2009).

5.2 Anti-inflammatory properties

5.2.1 Inhibition of inflammation via promotion of
M2 polarization of macrophages

M2 macrophage polarization is an important immune
regulatory event that reduces inflammation during wound repair,
bone regeneration and repair, and colitis repair. Many composite
biomaterials targeting this key event have been developed based on
the excellent mechanical properties, biocompatibility, and
bioactivity of SF. For example, Silk-6/ε-PL@Exo (constructed
from SF/poly-L-lysine hydrogel) controls inflammation, inhibits
glycolysis and lactic acid accumulation by targeting
M1 macrophages, and promotes the polarization of macrophages
from M1 to M2 (Jin et al., 2024). The inflammatory response
induced by SF is not fixed: SF/nano-hydroxyapatite scaffolds
trigger a proinflammatory response by M1 macrophages on the
first day, whereas SF degradation products induce an anti-
inflammatory response by M2 macrophages on the day 24 of
treatment (Wong et al., 2024). Lv et al. found that SF treated
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with reagents such as acetic acid and sodium hydroxide increased
the expression of proinflammatory cytokines in rats and accelerated
their degradation in vivo. Overall, most studies suggest that SF has
good biocompatibility and anti-inflammatory properties.

Owing to the dissolution of the scaffold by protease K in the
body, the secondary/tertiary structure of SF is altered, leading to
significantly different immune responses. Maintaining the stability
of SF in the body is of great clinical value, and bioactive gold cluster
sutures (clusters assembled on the SF surface) ensure the structural
stability of SF for 15 months without degradation in vivo (Tian
et al., 2024).

5.2.1.1 Wound treatment and macrophage polarization
Wound treatment promotes M2 polarization of macrophages to

establish anti-inflammatory niche required for tissue healing, which
is critical for skin wound treatment. SF hydrogels can significantly
increase the expression of the anti-inflammatory marker CD163 in
M2 macrophages in the early stage, accelerating the transition from
inflammation to the proliferation stage of wound repair (Chouhan
et al., 2018). Considering that the SF hydrogel system has a
controlled drug delivery capacity, good mechanical properties,
skin tissue adhesion, and bioactivity, the combination of other
biomaterials and therapeutic drugs will not only be beneficial for
promoting angiogenesis in the wound area but will also induce
M2 polarization in the wound area to create a pro-healing anti-

inflammatory microenvironment. For example, after in situ
photocuring, methacrylonyloxylated SF hydrogel showed good
adhesion and sealing properties. Currently, two
methacryloxylated SF hydrogel systems loaded with borosilicate
and metformin have been prepared, both of which can regulate
inflammation by inducing macrophage polarization towards the
anti-inflammatory phenotype M2 and support diabetic wound
treatment (Pang et al., 2021; Mei et al., 2022; Wu et al., 2021;
Wang et al., 2023; Li et al., 2023). In addition, novel glycyrrhizic acid
and inorganic zinc in the immunoregulatory SF/novel glycyrrhizic
acid/inorganic Zn2+ (SF/GA/Zn) hydrogels synergistically reduce
the activation of M1-type macrophages, induced an M2 phenotype
shift, and accelerate the three stages of diabetic wound repair (Qian
Y. et al., 2022) (Figure 5A).

SF can co-self-assemble with VEGF-mimicking peptides to
construct an immunoregulatory hydrogel, QK-SF, which supports
tissue repair and wound healing by regulating macrophage
polarization and promoting angiogenesis (Chen Z. et al., 2023).
Similarly, gelatin methacrylate/silk fibroin glycidyl methacrylate/
mesoporous silica NP-resveratrol/platelet-derived extracellular
vesicles (GelMA/SFMA/MSN-RES/PDEVs) hydrogels have
appropriate mechanical properties and swelling ratios, which allow
sustainable release of MS-RES and PDEVs to regulate macrophage to
M2 phenotype conversion, promote angiogenesis, and accelerate the
diabetic wound treatment process (Zhu et al., 2022).

FIGURE 5
Application of SF-based biomedical composites in inhibiting inflammation. (A) Preparation of SF/GA/Zn hybrid hydrogel and its immunomodulatory
mechanism in wound treatment of diabetes. Reprinted with permission from (Qian Y. et al., 2022). Copyright (2022) Wiley-VCH. (B) Schematic of the
osteo-immunomodulatory effects of three-dimensional-printed biodegradable cellulose nanoparticles-reinforced chitosan/silk fibroin (CS/SF/CNPs)
scaffolds. Reprinted with permission from (Patel et al., 2022). Copyright (2022) Elsevier. (C) The CD68 antibody fluorescence staining image
confirmed the inhibitory effect of the hybrid poly (glycolide-co-ε-caprolactone) (PGCL)/SF-Tubasatin A (TUBA) multi-channel bioactive filament
nanofiber catheters on inflammation after SCI. Reprinted with permission from (Liao et al., 2022). Copyright (2022) Elsevier. (D) RT-PCR displays the
expression levels of genes MMP-1, MMP-13, iNOS, and TNF-α2 activated by IL-1β, were dramatically lower in the silk-chondroitin sulfate (CS) scaffolds
compared with the silk scaffold. Reprinted with permission from (Zhou et al., 2017). Copyright (2017) Elsevier. (E) The expression of IL-6, TNF-α, and IL-10
showed that the implantation of collagen/SF scaffold combined with human umbilical cord mesenchymal stem cells (hUCMSCs) regulated systemic
inflammatory factor levels in the acute and chronic stages of traumatic brain injury. Reprintedwith permission from (Jiang J. et al., 2021). Copyright (2021)
Theranostics.
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5.2.1.2 Bone regeneration and repair
During the process of fracture healing, the first stage is acute

inflammation, followed by a transition to repair and regeneration.
Therefore, the development of bone immunoregulatory biomaterials
that favor polarization of the M2-phenotype macrophages is a novel
strategy for bone regeneration and repair (Hu et al., 2018). SFNPs
improve the bioavailability of hydrophobic anti-inflammatory
drugs. Ti-MAO/Sr/LBLWNP prepared according to this strategy
can continuously release wogonin, which can transform
M1 macrophages into M2 macrophages, regulate the ratio of M1/
M2 macrophages, and promote osteoblast differentiation (Wang D.
et al., 2022). SF also has the ability to release cytokines locally and
can be used for the local release of sitagliptin to induce macrophages
to polarize to the M2 phenotype and effectively recruit
M2 macrophages to the titanium implant site to support bone
regeneration (Xiang et al., 2021). In addition, the addition of SF/
cellulose nanofibrils (CNFs) makes three-dimensional printing of
chitosan/SF/cellulose nanoparticle scaffolds, and on activation of the
M2 phenotype, macrophage polarization and immune regulation
contribute to bone regeneration (Patel et al., 2022) (Figure 5B). A
composite hydrogel composed of photoresponsive methacrylate SF,
laponite nanocomposite, and tannic acid has the ability to resist
oxidation and inflammation and induce bone formation (Wang
et al., 2024). SF/black phosphorus/lycrhizic acid nanocomposite
hydrogels can weaken the damage caused by oxygen free radicals,
promote macrophage polarization towards M2, inhibit
proinflammatory effects, and enhance the repair of damaged
bone marrow (Zhang B. et al., 2024). Multilayered regenerated SF
(RSF) on the surface of PET artificial ligaments regulates the
inflammatory response and promotes the maturation of intra-
articular grafts (Chen N. et al., 2023).

5.2.1.3 Colitis
Oral nanoparticles have been used to treat ulcerative (UC) as

they can deliver drugs directly to the colonic region and are more
convenient, achieving high patient compliance and safety (Zu et al.,
2021). Therapeutic strategies for the treatment of UC include
enhancing inflammation resolution, alleviating oxidative stress,
promoting colonic mucosal repair, and regulating the intestinal
flora. Macrophage M2 polarization is conducive to resolving
inflammation and promoting mucosal healing, and has recently
been shown to involved in the treatment of inflammatory bowel
disease (IBD) (Koelink et al., 2020; Sun et al., 2020). At present,
improving the targeting and co-treatment of UC from multiple
aspects is the most recent strategy for preparing UC therapeutic drug
delivery systems. Specific ideas include (i) modifying oral
nanoparticles with ligands that specifically target colonic
epithelial cells or macrophages (Li et al., 2022) and (ii) using
drugs with multiple therapeutic functions (Zu et al., 2021). In
line with this strategy, SFNPs have been designed as oral
nanodrug delivery systems to exert multiple therapeutic effects
(such as promoting macrophage M2 polarization) by the targeted
delivery of therapeutic agents to the colonic mucosa and to
significantly alleviate UC symptoms (Liu et al., 2022; Du et al.,
2022; Ma et al., 2022; Gou et al., 2019).

In addition, the prepared SF composite biomaterials with
immune regulatory functions can regulate macrophage
M2 polarization, which is used to promote tendon repair,

prevent tendon adhesion, and promote pelvic floor tissue repair
(Cai et al., 2023; Dong et al., 2021; Yin et al., 2022).

5.2.2 Inhibition the infiltration and proliferation of
inflammatory immune cells

Composite biomaterial systems in the form of hydrogels,
scaffolds, and nanoparticles prepared using SF can be loaded
with anti-inflammatory drugs, endowing them with anti-
inflammatory activity by inhibiting the infiltration and
proliferation of inflammatory immune cells. For example, SF
hydrogels loaded with EGCG, rhein, and glycyrrhizic acid can
effectively reduce the infiltration and proliferation of
inflammatory cells (Qian Y. et al., 2022; Yin et al., 2022; Lee
et al., 2022; Zhang F. et al., 2022). For the scaffold system, a
gelatin sponge scaffold modified with neurotrophin-3 (NT-3)/SF
can achieve a controlled-artificial release system with significant
inflammatory inhibitory activity in the rat spinal cord injury (SCI)
model, as shown by a significant reduction in the number of IBA-1
positive and CD68 positive macrophages/microglia (Li et al., 2018;
Li G. et al., 2016). SF NP drug delivery systems loaded with
bromelain and ZnO NPs, EGCG and Tubasatin A is effective in
reducing the massive infiltration and proliferation of inflammatory
cells (Liu et al., 2022; Hasannasab et al., 2021; Xie et al., 2022; Liao
et al., 2022) (Figure 5C).

In particular, it is worth noting that SFNPs have anti-
inflammatory properties, which can inhibit the infiltration and
proliferation of inflammatory immune cells and can cooperate
with anti-inflammatory drugs to exert anti-inflammatory effects.
Therefore, SFNPs are a suitable choice for the preparation of anti-
inflammatory composite biomaterials.

5.2.3 Repair of immune homeostasis bymodulating
the release of inflammatory factors
5.2.3.1 Wound treatment and induction of
inflammatory factors

SF exhibits excellent biocompatibility, very low
immunogenicity, great modification potential, and can regulate
wound treatment process through the NF-κB signaling pathway,
and thus, it has attracted much attention (Chouhan and Mandal,
2020). However, SF materials are brittle and have rapid enzymatic
biodegradability, which limits their application in wound healing.
Therefore, they are usually complemented with other polymers to
optimize their effects for wound treatment (Shen et al., 2022). SF
hydrogels, scaffolds, and nanofibrous membrane systems have been
developed to promote wound treatment by loading anti-
inflammatory drugs and regulating the release of inflammatory
factors to repair immune homeostasis. The SF hydrogel system
can reduce the expression of IL-1, IL-6, IL-8 and TNF-α, and can
increase the expression of IL-10, TGF-β, and Arg-1 by loading
resveratrol, novel glycyrrhiza, CNP-miR146a, and borosilicate (BS).
Inhibition of inflammation in the wound microenvironment
accelerates the transition from the inflammatory to proliferative
phase, thereby accelerating diabetic wound treatment (Niemiec
et al., 2020; Pang et al., 2021; Qian Y. et al., 2022; Zhu et al.,
2022; Yang et al., 2024). In addition, SF composite biomaterials
loaded with rhein and puerarin promote the inflammatory stage of
the wound by reducing the levels of IL-6, Inos, COX-2 and TNF-α,
and correspondingly increasing the levels of IL-10, thereby
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promoting wound treatment process (Liu et al., 2022; Yin
et al., 2022).

5.2.3.2 Articular cartilage repair
IL-1β is a proinflammatory factor, which induces inflammation

and hinders articular cartilage repair (Wojdasiewicz et al., 2014).
Therefore, it is an effective therapeutic strategy to use SF composite
biomaterials system to deliver anti-inflammatory drugs to inhibit IL-
1β and create an anti-inflammatory microenvironment to promote
the repair of articular cartilage. At present, ginsenoside Rb1/TGF-
β1-loaded biodegradable SF-gelatin scaffolds, SF-chondroitin sulfate
scaffolds and injectable SF hydrogels containing articular
chondrocytes (ACs) and hypoxic preconditioned exosomes
(H-Exos) (SF/ACs/H-Exos) have been developed, all of which
can reduce the inflammatory response of chondrocytes induced
by IL-1β and support cartilage regeneration (Shen et al., 2022; Zhou
et al., 2017; Wu et al., 2020) (Figure 5D).

5.2.3.3 Colitis and delivery of anti-inflammatory drugs
As a non-toxic drug carrier with good biocompatibility,

immunogenicity, and low biodegradability, SF can effectively
treat colitis by preparing a NP system to deliver anti-
inflammatory drugs to the inflamed parts of the colon. It is
reported that SFNPs system loaded with pluronic F127 (PF127)
-modified resveratrol (RSV), EGCG, patchouli alcohol (PA), and
curcumin (CUR) can downregulate proinflammatory cytokines such
as IL-1β, IL-6, IL-12, and TNF-α, upregulate anti-inflammatory
cytokines such as IL-10, thus effectively alleviating the inflammatory
response (Liu et al., 2022; Du et al., 2022; Gou et al., 2019; Xie
et al., 2022).

5.2.3.4 Nerve regeneration
Stem cell transplantation and biological scaffold implantation

are considered effective methods for nerve regeneration. Safety and

biocompatibility are two key factors in material selection for nerve
regeneration research. SF is an excellent carrier for cell and growth
factor delivery, a natural material with good biocompatibility, good
mechanical properties, and biodegradability, and is reportedly a
favorable choice for the repair of SCI and traumatic brain injury (Xu
et al., 2016; Jiang et al., 2020). The inflammatory response in the
injured area of the nervous system will inhibit nerve regeneration;
thus, SF scaffolds with anti-inflammatory effects have also been
developed, mainly by reducing the proinflammatory cytokines IL-6
and TNF-α, and increasing the anti-inflammatory cytokines IL-10 to
inhibit inflammation and promote nerve regeneration (Li G. et al.,
2016; Jiang J. et al., 2021) (Figure 5E).

SF hydrogel significantly improves skin penetration and the
anti-keratinization ability of curcumin-loaded NPs (CUR-NPs), and
can prolong the release of curcumin-loaded NPs; thus, inhibition of
inflammatory cytokines (TNF-αand IL-6) is achieved to a greater
extent with improvements in the therapeutic efficacy of curcumin on
psoriasis mouse model (Mao et al., 2017). In addition, neutrophil
membrane-coated SF-NPs can enhance the bioavailability and
solubility of ferulic acid (FA), improve its pharmacological
characteristics and targeted delivery, thereby significantly
reducing proinflammatory cytokines IL-6, IL-1β and TNF-α
(Hassanzadeh et al., 2021). Similarly, liquid SF along with the
RES-SFN treatment achieved better results than each of these
treatments used separately, and showed a more significant
reduction in the proinflammatory cytokines IL-1β and TGF-β
(Giménez-Siurana et al., 2020).

6 Conclusion

SF and sericin have been widely used in wound treatment, tissue
engineering, and other fields in the form of hydrogels, scaffolds,
films, and nanoparticles in recent decades. These different

FIGURE 6
Immune response induced by (A) sericin/(B) SF-based biomaterials in vivo and their application.
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processing methods enable them to play different roles in the wound
treatment process (proinflammatory and antibacterial stage or anti-
inflammatory and healing promoting stage).

Our review focused on the anti-inflammatory and
immunoregulatory effects of SF and sericin as biomaterials,
particularly in the field of wound treatment. SF and sericin have
been shown to be safe, biocompatible, and to exhibit low
immunogenicity, and can elicit appropriate and acceptable
immune responses in vivo, including innate and adaptive
immune responses, when used alone or prepared in various
forms of biomaterials. The anti-inflammatory and immune
regulatory properties of sericin and SF make them widely used in
skin wound treatment, UC, articular cartilage repair, and psoriasis.
In addition to individual applications, they can also be combined
with other materials to make composite materials using their
modifiability, controllable biodegradability, and good mechanical
properties, which can not only be used to improve the properties of
single anti-inflammatory drugs, but also give full play to their own
immune regulation and anti-inflammatory ability. These composites
can improve existing immunotherapy methods, such as delivery of
siRNA, enhancement of cellular immunity, and can be exploited as
vaccine carriers to exert immune regulation. SF and sericin
composites can also exert anti-inflammatory effects by promoting
M2 polarization of macrophages, inhibiting the proliferation and
infiltration of inflammatory cells, and regulating the release of
inflammatory factors (Figure 6).

There are still many challenges to be faced regarding the
application of sericin-based and SF-based biomaterials in the
field of medical biomedicine. For instance, due to the lack of
standardized methods for assessing immune responses, it is
difficult to make a comprehensive assessment of implant-induced
immune responses (Kaprin et al., 2022). Additionally, it has also
been well-known that epithelial cells and other types of immune cells
(such as mast cells) equally play a significant role in the direct
immune responses. However, there are few researches have explored
their inflammatory response to sericin-based and SF-based
biomaterials. Last but not least, there are some limitations of
sericin-based and SF-based biomaterials in wound applications:
(i) The extraction and purification process of SF and sericin is
complicated, and other substances are easy to remain, which affects
the purity and properties of the biomaterials; (ii) Compared to
sericin, SF lacks antibacterial and antioxidant properties, so it is not
effective in preventing wound infection.

In conclusion, SF and sericin exhibit good biocompatibility,
low immunogenicity, controllable biodegradability, good
mechanical properties, and excellent anti-inflammatory and
immunomodulatory properties. A profound understanding of
the different ways in which SF/sericin acts as a biomaterial and
induces either proinflammatory or hypoinflammatory responses

in the body will greatly improve utilization rate of silk
biomaterials, especially in the field of wound treatment.
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