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The process of drug discovery and development is both lengthy and intricate,
demanding a substantial investment of time and financial resources.
Bioinformatics techniques and tools can not only accelerate the identification
of drug targets and the screening and refinement of drug candidates, but also
facilitate the characterization of side effects and the prediction of drug resistance.
High-throughput data from genomics, transcriptomics, proteomics, and
metabolomics make significant contributions to mechanics-based drug
discovery and drug reuse. This paper summarizes bioinformatics technologies
and tools in drug research and development and their roles and applications in
drug research and development, aiming to provide references for the
development of new drugs and the realization of precision medicine.
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1 Introduction

Drug development begins with the discovery of a disease and its changes. When a
disease threatens human health and reduces the quality of life, drugs are created. The ideal
drug should not only reduce symptoms and treat the disease, but also have a high safety
profile, few side effects, and low research costs. However, this is undoubtedly a huge
challenge. The process of drug development is both lengthy and intricate, demanding a
substantial investment of time and financial resources. Bioinformatics shows great potential
in drug discovery. Bioinformatics is an interdisciplinary science, which uses computer
science, information technology, applied mathematics and statistics methods to gather,
process, store, disseminate, analyze and interpret biological information in life science
research. In May 1985, American scientist Robert Sinsheimer first proposed the Human
Genome Project, which is expected to determine the entire DNA sequence of the human
genome within 15 years, decode about 25,000 genes in the human body, and map the
human genome. After unremitting efforts, finally in April 2003, the Human Genome
Project was officially completed, and the composition of the human genome was
determined: 46 chromosomes, 3 billion bases and 30,000 protein-coding genes. The
completion of this project marked the beginning of the rapid development of
bioinformatics.

The origins of modern drug development can be traced back to the observation that
certain natural substances of plant or animal origin are beneficial to human health and can

OPEN ACCESS

EDITED BY

Zhe-Sheng Chen,
St. John’s University, United States

REVIEWED BY

Yuquan Tong,
The Scripps Research Institute, United States
Larisa Ivanova,
University of Tartu, Estonia

*CORRESPONDENCE

Xinyu Gu,
hkdguxy@163.com

Xinjun Hu,
hxj5129@163.com

†These authors have contributed equally to
this work

RECEIVED 17 December 2024
ACCEPTED 27 January 2025
PUBLISHED 13 February 2025

CITATION

Zhang S, Liu K, Liu Y, Hu X and Gu X (2025) The
role and application of bioinformatics
techniques and tools in drug discovery.
Front. Pharmacol. 16:1547131.
doi: 10.3389/fphar.2025.1547131

COPYRIGHT

© 2025 Zhang, Liu, Liu, Hu and Gu. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Review
PUBLISHED 13 February 2025
DOI 10.3389/fphar.2025.1547131

https://www.frontiersin.org/articles/10.3389/fphar.2025.1547131/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1547131/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1547131/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2025.1547131&domain=pdf&date_stamp=2025-02-13
mailto:hkdguxy@163.com
mailto:hkdguxy@163.com
mailto:hxj5129@163.com
mailto:hxj5129@163.com
https://doi.org/10.3389/fphar.2025.1547131
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2025.1547131


be used to treat diseases (Pina et al., 2009). Advances in organic
chemistry have made it possible to extract active molecules, while
compounds with similar properties have been synthesized from their
structural knowledge. With the synthesis of a large number of
compounds and their testing for biological activity in laboratory
models of human diseases based on cells, tissues, and organs,
“phenotypic screening” is increasingly becoming an important
means of drug development (Moffat et al., 2017). Bioinformatics
provides a new research direction and innovative method for drug
development. For example, in cancer research, bioinformatics can
analyze large-scale cancer genomic data to discover new
mechanisms of tumorgenesis, novel targets, and potential drugs.
Bioinformatic analysis can expedite the identification of drug
targets, enhance the screening and optimization of drug
candidates, and facilitate the characterization of side effects and
prediction of drug resistance. High-throughput data, such as
genomic, transcriptomic, proteomic, and metabolomic data, make
important contributions to mechanics-based drug discovery and
drug reuse. By analyzing large amounts of biological data,
researchers can better understand the pathogenesis of diseases
and discover diagnostic markers and therapeutic targets, thereby
supporting the development of personalized and precisionmedicine.
With the increasing amount of biological data and the advancement
of computing technology, the position of bioinformatics in medical
research will be further enhanced.

In this review, we summarized the bioinformatics technologies
and tools in drug development and their roles and applications in
drug development, providing references for disease treatment and
the development of new drugs.

2 Bioinformatics in drug discovery

2.1 Biological database

Biological data is the basis of bioinformatics technology,
including genome data, protein sequence data, gene expression

data and biomarker data. These data are derived from biological
experiments and research, and their collection, storage,
management and analysis constitute the key links of
bioinformatics technology. As a result, many biological databases
have emerged to store, manage and share biological data, while
integrating existing resources such as research results and technical
information. Table 1 shows some commonly used biological
databases that enable researchers to search for information about
biological research to facilitate the development of new drugs.

Over the past decade, bioinformatics tools, such as computer
methods and high-throughput screening techniques, have played an
important role in accelerating drug discovery. These methods
effectively support the screening and development of natural,
synthetic and semi-synthetic compounds, and provide an
important boost for the research of potent drugs or lead
molecules. In-depth research into natural products and their
derivatives has successfully contributed to about 34% of newly
approved drugs (Patil and Masand, 2021). As one of the major
diseases threatening human health, the precision treatment of tumor
has been broken through due to the development of targeted
therapy. Given the complexity of cancer pathogenesis and the
difficulty of anticancer drug development, we need to expand
chemical and biological resources to provide more potential
molecular scaffolds for anticancer drug discovery and
development. The establishment of databases can efficiently
manage and analyze relevant data information, such as
SuperNatural (Dunkel et al., 2006), NPACT (Rosita and Begum,
2020), TCMSP (Ru et al., 2014), CancerHSP (Tao et al., 2015),
TCMID (Xue et al., 2013) and Phytochemica (Pathania et al., 2015),
etc. It covers multi-dimensional information such as chemical
structure, physical and chemical properties, target protein
interaction, distribution, absorption, metabolism, excretion,
toxicity and biological activity. Table 2 summarizes databases of
value for cancer drug development that have included more than
100,000 anticancer compounds, although the information may be
incomplete. In addition, databases have been found to be useful for
identifying lead compounds against pharmacological targets

TABLE 1 Commonly used biological database in drug discovery.

Type Database Content References

Genomic database NCBI RefSeq
NCBI GenBank
EMBL
DDBJ

store genome sequence data O’Leary et al. (2016), Sayers et al. (2022), Thakur et al. (2024), Fukuda et al. (2021)

Protein sequence
database

UniProtKB/Swiss-
Prot
TrEMBL
UniParc
UniRef
World-2DPAGE
wwPDB

store protein sequence data Boutet et al. (2007), Kriventseva et al. (2003), Leinonen et al. (2004), Suzek et al. (2007),
Hoogland et al. (2008), Behzadi and Gajdács (2022)

Gene expression
database

NCBIGEO
ArrayExpress

store gene expression chip
data

Bartha and Győrffy (2021), Sarkans et al. (2021)

Biomarker database HumanMetabolome
Database
KEGG
BioCyc
ChEMBL

store biomarker data Kanehisa et al. (2023), Paley and Karp (2021), Wishart et al. (2022), Karp et al. (2019)
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(Barlow et al., 2012). The information provided by the database not
only facilitates drug discovery, but can also be used to generate
computational models such as quantitative structure-activity
relationships (QSAR), pharmacophore models, and protein-ligand
interactions (docking studies) to further screen for biologically
active natural and synthetic molecules (Tung, 2014).

2.2 Molecular docking computing tools in
drug discovery

Drug discovery is a formidable endeavor, with the identification
of the optimal lead compound being a critical determinant of a
project’s success. In 2016, the Tufts Center for the Study of Drug
Development noted that while the average time for drugs to enter
clinical trials has decreased over the past decade, the success rate of
winning approval from the U.S. Food and Drug Administration
(FDA) has declined (DiMasi et al., 2016). Scientific advances have
changed the way new bioactive molecules are generated in drug
research. Computer aided drug design (CADD) can more quickly
guide experimental studies to find the best compounds, helping to
reduce the cost and time of drug discovery. In CADD, techniques
like molecular docking and virtual screening (VS) serve as invaluable
complements to the resource-intensive and costly high-throughput
screening (HTS) experimental process.

Advances in computational technology and parallel hardware
have enabled computer methods, particularly structure-based drug
design (SBDD) methods, to accelerate the selection of new targets by
identifying hit points in the drug discovery process, thereby
optimizing the screening of lead compounds. Molecular docking
is a widely employed computational, structure-based method in
drug design, extensively used since the early 1980s, and its main goal
is to achieve molecular recognition by predicting binding patterns
and affinity (Kuntz et al., 1982). Significant improvements in
computer performance and the abundance and ease of use of

small molecule and protein structure data have promoted the
wide application of molecular docking technology. Initially,
molecular docking was mainly used for binding between small
molecules and target proteins, but in the last decade, molecular
docking techniques have expanded to protein-protein docking,
nucleic acid (DNA and RNA) -ligand docking, and nucleic acid-
protein-ligand complex docking studies. The molecular docking
process usually consists of two key steps: predicting the
conformation of the ligand and its orientation and orientation at
the protein binding site (i.e., pose), and evaluating the pose quality
using a scoring function. Figure 1 shows the key steps of the
molecular docking process. The docking process requires the
active compound to have a higher score than the known inactive
compound. However, achieving this level of accuracy is challenging
and is frequently influenced by numerous factors in the protein’s
external environment. Therefore, the current docking algorithms are
mainly concerned with correctly predicting the pose of ligands and
evaluating the quality of pose.

Fragment-based screening is designed to identify small chemical
fragments that exhibit weak binding affinity to the target protein,
thereby helping to determine the point of interaction where the
protein binds to the ligand. This approach allows for more efficient
sampling of chemical Spaces than using larger, more complex
molecules, allowing for a broader and more diverse exploration
of chemical Spaces. In addition, small fragments typically do not
contain interfering groups and are therefore less likely to impede
favorable ligand-protein interactions so that the optimal binding site
is not obscured by non-binding elements. In theory, virtual fragment
screening using molecular docking is feasible, but smaller virtual
fragments present significant challenges to the docking process.
Because fragments form fewer critical interactions with binding
sites, resulting in low docking scores, potential fragment hits may be
missed if they interact weakly with proteins. The disparity in free
energy between various binding modes of fragments is significantly
less than that between larger compounds, thereby making it

TABLE 2 Some databases of value for anticancer drug discovery.

Name Website Role References

CancerResource http://data-analysis.charite.de/care/ (1) Provides cancer-related drug-target relationships, genomics (mRNA, non-
synonymous mutations), cellular fingerprints, mutation data, and drug sensitivity
information
(2) Regularly updates on tumor heterogeneity, tumor response to anticancer
therapy, and tumor stratification

Gohlke et al. (2016)

CancerHSP http://lsp.nwsuaf.edu.cn/CancerHSP.php (1) Consists of six parts: herbal medicine, herbal ingredients, target of action mode,
biological activity for different cell lines, primary site of cell lines and
pharmacokinetic properties
(2) Evaltates and studies protein targets for each compound at the molecular level

Tao et al. (2015)

canSAR http://cansar.icr.ac.uk/ (1) The world’s largest public database of pharmacability evaluation and cancer drug
discovery for identifying and validating targets
(2) Provides detailed information on chemical probes, biological activity, target
engagement biomarkers, and drug combinations

Micco et al. (2023)

NPACT http://crdd.osdd.net/raghava/npact/ (1) Provides information on the anti-cancer characteristics evaluated in vivo and
in vitro experiments of various cancer cell lines
(2) Provides information on protein targets and drug receptor/target interactions

Mangal et al. (2013)

NPCARE http://crdd.osdd.net/raghava/npact/ A database of about 6,500 unique natural compounds and 2,566 isolated extracts
collected from literature and online resources

Choi et al. (2017)

PharmacoDB https://pharmacodb.pmgenomics.ca/ Provides information on cancer data sets, tissues, cell lines, compounds, and genes Smirnov et al. (2018)
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increasingly challenging to differentiate the correct binding modes
from the incorrect ones due to the inherent inaccuracies in the
current scoring function. In addition, due to the relatively small size
of the fragments, their docking postures may be mixed, and the
fragments may bind to multiple subregions and exhibit similar
physico-chemical properties within a binding pocket. In such
instances, interpreting docking results proves challenging, and
post-processing resuits can be quite time-consuming (Bian and
Xie, 2018).

The applications of molecular docking in drug discovery are
extensive, including structure-activity studies, virtual screening of
potential lead compounds, lead optimization, provision of
hypotheses in combination to facilitate mutation prediction, and
support in X-ray and cryo-EM crystallography to align substrates
and inhibitors with electron density (Stanzione et al., 2021).
Computational screening has successfully identified highly
concentrated subpopulations of potentially active compounds by
identifying large libraries of compounds that are similar to known
inhibitors or complementary to target structures, from which their
activity can then be further experimentally verified (Ripphausen
et al., 2010). Molecular docking can predict the optimal location,
orientation and conformation of drug candidates when they bind to
proteins, thus providing effective support for future lead
optimization (Joseph-McCarthy et al., 2007). A precise
comprehension of ligand binding sites and mechanisms aids in

the rational design of structural modifications to enhance protein-
ligand interactions, boost activity, and prevent alterations that may
cause conflicts between proteins and ligands.Molecular docking has
achieved remarkable success in structure-based drug design
(SBDD), where several marketed drugs, such as Nelfinavir
(Kaldor et al., 1997), zanamivir (von Itzstein et al., 1993),
imatinib (Druker and Lydon, 2000), and Eldafitinib (Squires
et al., 2011), as well as several clinical drug candidates, have been
discovered or optimized with the help of computational methods
(Talele et al., 2010). Although docking technology is at a mature
stage, there is still a lot of room for improvement. At present, the
application of molecular docking computing tools in drug discovery
faces the problem of lack of suitable scoring function and search
algorithm, which is the main shortcoming of current docking
technology.

2.3 Omics in drug development

The process of drug discovery and development is both lengthy
and intricate, demanding substantial investments of time and
financial resources. Against the backdrop of declining
productivity, the rapid increase in drug development costs could
adversely affect the sustainability of the pharmaceutical industry.
There are many factors that influence drug discovery and

FIGURE 1
A standard docking workflow demonstrates the essential steps shared by all docking protocols. First, the three-dimensional structures of the target
macromolecule and small molecule need to be selected and prepared in accordance with the chosen docking method. The binding site, identified
through computational tools or experimental data, may incorporate water molecules or structured water. After docking is completed, the results should
be analyzed, and the highest-scoring binding modes should be selected and evaluated.
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development, Includes Medicinal Objective, The Ability of
Medicinal Chemists, Screening Facilities, Drug Development
Facility and Cost of New Drugs, etc., (Sharma et al., 2023).
Traditional drug discovery processes are cumbersome, expensive
and time-consuming. The pharmaceutical industry faces
unprecedented challenges, especially a general shortage of late-
stage R&D channels. Reversing current trends will necessitate a
multifaceted strategy, including rigorous and dependable target
selection and validation, enhanced animal model systems, and
the identification of reliable biomarkers and alternative
endpoints. Reversing current trends will necessitate a
multifaceted strategy, including rigorous and dependable target
selection and validation, enhanced animal model systems, and
the identification of reliable biomarkers and alternative
endpoints. The advent of the era of omics application provides a
powerful technical resource for further understanding of disease
complexity and drug development. With the advent of multi-omics
technologies, encompassing genomics, transcriptomics, proteomics,
and metabolomics, our comprehension of diseases continues to
expand profoundly. These multi-omics technologies build a
progressive analysis framework from genetic basis to
environmental exposure effects, in-depth analysis of disease
pathogenesis, pathophysiological processes and molecular basis,
and provide strong support for scientific formulation of precision
treatment strategies.

2.3.1 Genomics in drug discovery
As the support of the basic structure and function of life, genes

carry the complete information of the whole life process, including
race, blood type, pregnancy, growth and apoptosis. Human genome
data plays an important role in drug research and development,
which is reflected in the identification and validation of drug targets,
the effectiveness and specificity evaluation of the combination of
compounds and targets, and the selection of clinical trial endpoints.
The successful completion of the Human Genome Project in
2003 triggered a revolutionary progress in the field of
biotechnology and gave birth to the rapid development of
“omics,” a comprehensive and diverse discipline. Breakthroughs
in high-throughput sequencing technology have led to the successful
identification of thousands of genes, while the significant decline in
sequencing costs has pushed the scope of research beyond the
human genome to a wider range of areas, making comparative
genomics an important tool for identifying pathogen-specific
targets. The proliferation of genome sequencing technology has
made it easier for researchers to access and apply this technology.
With these advances, it has come to be understood that the proteins
encoded by the genome are not only the main proximal effector
molecules in biology, but also the core of drug targets (Finan
et al., 2017).

By examining DNA sequences and deciphering the genetic
information in the genome, genomics enables scientists to
precisely identify specific genetic mutations and identify potential
drug targets to develop precise targeted therapies. The maturity of
genomics technologies indicates that the data generated by system
integration will significantly accelerate the drug discovery and
development process. Genomic research has profoundly
enhanced our comprehension of disease biology and diagnostic
practices. For example, the discovery of Cathepsin K as a

molecular target in osteoporosis and the sequencing of all
members of the gene superfamily (e.g., G protein-coupled
receptors, ion channels, nuclear hormone receptors, proteases,
kinases, etc.) has important implications for drug discovery
(Lappano and Maggiolini, 2011). The availability of large
amounts of genomic sequence information on pathogenic and
non-pathogenic bacteria has made it possible to detoxify
mechanisms and develop treatments that specifically target the
metabolic pathways of pathogens (Land et al., 2015). In addition,
genomics helps us understand the effects of drugs. For example, the
spider venom protein PcFK1 impedes the proliferation of
Plasmodium falciparum, though the underlying mechanism
remains elusive. Through sequence analysis, it was found that
PcFK1 was homologous to the substrate sequence of
PfSUB1 protein of Plasmodium falciparum enzyme, and it was
speculated that PcFK1 played an antimalarial role by inhibiting
PfSUB1. Further docking predictions and in vitro experiments
confirmed the hypothesis that PfSUB1 could be used as a drug
target (Bastianelli et al., 2011). Genomic analysis can also help
change the use of existing drugs. Galactosyl urea sugar (Galf) is a
crucial element on the cell surface of numerous bacterial pathogens,
and its synthesis depends on UDP-galactopyranose mutase (UGM)
(Kincaid et al., 2015; Gruber et al., 2009). Due to the lack of UGM in
the human body, UGM has been used as an ideal drug target
(Pedersen and Turco, 2003). UGM encoded by the GLF gene was
later found in eukaryotic single-cell pathogens and nematodes. Due
to the significant difference between eukaryotic UGM and
prokaryotic UGM, drugs developed against bacterial pathogens
cannot be used against eukaryotic pathogens, leading to
difficulties in drug reuse. Nevertheless, should an efficacious drug
be formulated against a specific eukaryotic UGM through genomic
analysis, it is highly probable that this drug could be repurposed to
combat another eukaryotic pathogen.

In the targeted drug development process, bioinformatics
approaches typically involve three basic steps. First, key genes in
the pathogen need to be identified as potential drug targets. Second,
check whether there are homologous genes of these genes in the
host; Finally, drugs should target specific pathogens to minimize the
development of resistance. Through the analysis of large amounts of
genomic data, bioinformatics can help researchers identify genes
associated with the development of diseases and develop drugs that
target these genes. In addition, the development of personalized
treatment plans based on individual genomic information will help
promote the development of precision medicine.

2.3.2 Transcriptomics in drug discovery
RNA interference can regulate a variety of cellular processes, and

RNA has been regarded as a novel drug. Thus, digging deeper into
transcriptomic data may reveal more RNA molecules with potential
drug or drug target functions (Xia, 2017). Using bioinformatics
tools, functionally important Rnas can be identified in millions of
different transcripts. Any RNA fragment with an important function
can be a potential drug target. Bioinformatics methods are used to
analyze all the collections of RNA in a particular cell or tissue under
specific conditions, known as transcriptome data, which can help
identify changes in the expression of disease-related genes, thereby
providing potential biomarkers for diagnosis and treatment of
diseases. Transcriptomic data are increasingly employed to
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identify differentially regulated genes, alternative splicing isoforms,
and divergent transcription start and end sites between patients and
controls (Arvaniti et al., 2016; Mlera et al., 2016). The role of
transcriptomic data analysis in drug discovery is primarily
twofold: first, it aids in the identification and optimization of
drug candidates through phenotypic screening; second, it
facilitates the identification of potential drug targets.

With the enhanced capability to synthesize vast quantities of
compounds and evaluate their biological activity in laboratory
models of human diseases using cells, tissues, and organs,
phenotypic screening has emerged as a pivotal approach in drug
development (Moffat et al., 2017). Phenotypic screening evaluates
the impact of compounds on cells, tissues, or model organisms,
identifying effective agents based on their capacity to modify
biochemical, physiological, or pathological processes within the
model. This approach allows the compound to be further studied
as a potential drug even if the molecular mechanism of its action is
not fully understood. Phenotypic screening has significant
advantages in the identification of active ingredients, and the
discovery of artemisinin is a classic application case, which has
become one of the most effective drugs against malaria (Miller and
Su, 2011). Target-based approaches are generally suitable for drug
development for relatively simple diseases such as monogenic
inherited diseases, while phenotypic screening has shown better
results in drug development for multi-etiological diseases such as
polygenic inherited diseases (Swinney, 2013; Swinney and Anthony,
2011). In cancer research, due to the high genetic diversity among
tumor cells, phenotypic screening has great potential for application
in cancer drug development (Shoemaker, 2006). In addition,
phenotypic screening of FDA-approved drugs for drug reuse is
cost-effective. For example, this approach has led to the discovery of
promising enterovirus inhibitors, anticancer agents, anti-aging
agents, and variant Bcr-Abl inhibitors against chronic myeloid
leukemia (Ulferts et al., 2016; Ozsvári et al., 2016; Snell et al.,
2016; Singh et al., 2017). In the screening process of anticancer
drugs, phenotypes are often defined as gene expression profiles or
metabolomics profiles. Therefore, two approaches are usually taken
when researching anti-cancer drugs: one is to restore abnormally
expressed genes in cancer cells to normal levels, and the other aims
to eradicate cancer cells by inducing apoptosis (Moffat et al., 2014).
The process of phenotypic screening generally involves screening a
large number of compounds as drug candidates, monitoring the
phenotypic changes of each compound, developing desirable criteria
and sequencing compounds, and finally selecting compounds that
produce desirable biological effects for further testing and validation
(Eder et al., 2014). In phenotypic screening studies utilizing gene
expression profiles, bioinformatics can advance drug discovery by
developing objective and rational indicators of drug desirability
(IDDs). Idds can complement therapeutic metrics based on
various pharmacokinetic models to evaluate efficacy and safety at
different drug concentrations. Some scholars believe that the lack of
clear Idd may be one of the reasons for the low success rate of
phenotypic screening methods in drug discovery (Eder et al., 2014).

When the mechanism of action and therapeutic targets are
obscure, forecasting drug effects becomes challenging, and it
constrains the potential to develop enhanced compounds
grounded in the mechanism of action. With the deepening
understanding of the molecular mechanism of disease, target-

based drug development methods have been widely used. Unlike
phenotype-based approaches, target-based approaches begin with
the pathogenesis of the disease, and potential drug targets have been
shown to be closely related to the disease process. In target-oriented
models, drug development begins by identifying proteins associated
with disease onset and progression, known as drug targets, which are
suitable for the study of small molecule drugs or monoclonal
antibodies. The method necessitates experimental validation to
establish the causal relationship between the target and the
disease. However, a growing number of studies have shown that
using this method for drug research is less efficient and less
successful. Further analysis shows that the failure of target-based
drug development is due to the weak ability of laboratory models to
predict the pathogenesis of human diseases. Poor external validity of
preclinical human disease models; Isolated cells and tissues may not
accurately represent the entire organism, and animal models often
fail to simulate human pathophysiological processes well. In
addition, there is a high rate of false findings in preclinical
science (Hingorani et al., 2019). It has been estimated that using
genome-wide association studies as the primary source of
information for drug target identification, replacing traditional
preclinical studies, is expected to reduce the risk of later failure.
Through large-scale genetic studies, combined with genomics and
electronic health record data in the healthcare system, it is possible
to significantly improve the resolution of disease endpoints, which
may radically improve the success rate of drug development.

2.3.3 Proteomics in drug discovery
Proteins are essential molecules in almost all living things. They

provide scaffolds for cells and play key roles in metabolism,
biological signaling, gene regulation, protein synthesis, and solute
transport across membranes. The abnormal regulation of protein
function is one of the important factors in the pathology of many
diseases. Therefore, understanding how the proteome is disturbed
by disease is a central goal of biomedical research. Bioinformatics
tools are able to predict the three-dimensional structure of proteins,
which is critical for understanding their function and drug design. In
addition, bioinformatics can also help explain the function of
proteins, providing important clues to study their role in disease.

The proteins encoded by the genome are not only the main
effector molecules in biology, but also constitute the main class of
drug targets. Almost all small molecule drugs and biological
therapies work by disrupting the function of proteins. Therefore,
drug development is based on the identification of proteins or targets
associated with the disease. Once the targets are identified, specific
compounds for those targets need to be developed. Because a
transcribed gene may or may not be translated differentially (Xia
et al., 2011; Xia, 2015; Gilbert et al., 2007), and because different
proteins degrade at different rates, transcriptomic data are generally
not good predictors of protein abundance (Swinney and Anthony,
2011, Hughes et al., 2011). Conversely, the characterization and
comparison of proteomic data between patients and controls often
prove more efficacious in identifying potential drug targets.
Recently, Cifani et al. (2018), Kwok et al. (2023) proposed
ProteomeGenerator, a hybrid proteomic framework. The method
used sample specific control to calibrate the matching results of
target decoy database, and significantly improved the accuracy of
isomer identification in atypical proteome.
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The bioinformatics tools used for proteomic data analysis closely
resemble those employed for transcriptomic data analysis, as both
facilitate phenotypic screening and drug target discovery through
proteomic insights. Traditional methods usually focus on one or a
few proteins; However, with the continuous advancement of sample
separation technology and mass spectrometry technology, today’s
research is able to analyze complex biological systems as a whole.
Typical proteomic experimental strategies based on mass
spectrometry (MS) can be divided into top-down and bottom-up
methods according to the size of the protein. In top-down
proteomics, complete protein molecules are analyzed directly by
mass spectrometry (Doudna and Charpentier, 2014); In the bottom-
up approach, the protein sample is first hydrolyzed and digested into
peptides, which are then analyzed in a mass spectrometer (Wang
et al., 2014). The swift advancement of proteomics has led to an
array of downstream bioinformatics analysis techniques, elucidating
the intricate relationship between protein regulatory mechanisms
and phenotypic behavior at the molecular level (Renaud et al., 2016).
Currently, proteomic data comes from almost all model organisms
and is stored in public databases such as PaxDB (Wang et al., 2012).
These data have greatly promoted the application and development
of indicators such as prediction of translation efficiency
(Prabhakaran et al., 2015; Chithambaram et al., 2014).

2.3.4 Metabolomics in drug discovery
Metabolic abnormalities can disruptmetabolic pathways, leading to

either the accumulation or depletion of metabolites, which are
increasingly recognized as key indicators of disease. Metabolite
signatures that are highly correlated with the subject’s phenotypic
information dimension can be used to predict disease diagnosis,
prognosis, and to monitor treatment. Metabolomics, centered on
small molecule metabolites, has emerged as a crucial tool for
uncovering the potential mechanisms of various human diseases and
exploring therapeutic possibilities. It not only identifies functional
biomarkers linked to phenotypic variations but also characterizes
alterations in biochemical pathways as early indicators of
pathological dysfunction and impairment prior to disease onset.
Detecting and identifying changes in small molecule metabolites or
metabolic pathways enhances the understanding of disease
pathophysiology and aids in identifying therapeutic targets.

Advances in metabolomics technology offer a non-invasive, high-
throughput tool, often categorized into targeted and non-targeted
analyses, demonstrating significant value in metabolite
characterization. This enables researchers to conduct comprehensive
analyses of small molecule metabolites via mass spectrometry to gain
insights intometabolic functions. Non-targetedmetabolomics uncovers
extensive unknown metabolic information, while targeted approaches,
focusing on specific sets of metabolites, are generally more sensitive and
reproducible. Metabolomics, the science of characterizing both known
and unknown small molecule metabolites, serves as an ideal tool for
disease characterization and monitoring, as well as for studying the
pathophysiology and biochemical features of diseases within body
systems. The primary methods encompass metabolic phenotyping,
metabolic fingerprinting, metabolic analysis, and targeted metabolite
analysis. The metabolic phenotype reflects the characteristic alterations
inmetabolic responses to pathophysiological stimuli at a givenmoment.
Metabolomics, based on small molecule metabolites, offers distinct
advantages over other omics approaches. While genomics may have

limited influence on the expression of protein functions, metabolomics
directly captures biochemical reactions to stimuli (Li et al., 2021;
Wozniak et al., 2020; da Silveira et al., 2020). Unlike genomics,
transcriptomics, and proteomics, metabolomics provides a dynamic
and detailed analysis of metabolic functions within living systems
(Keshavan, 2021). As the downstream product of the genome,
transcriptome, and proteome, the metabolome encompasses small
molecule metabolites linked to specific metabolic phenotypes. The
process of metabolomic analysis for small molecules includes
experimental design, selection of biological subjects, sample
collection and preparation, metabolite extraction, data acquisition
and processing, data analysis, and ultimately, deriving insights
through biomarker discovery and functional interpretation (Qiu
et al., 2023).

Metabolomics provides patients with more precise tools than
traditional biomarkers. Technological advancements have unveiled
novel opportunities to examine the metabolic aspects of disease.
Primary analytical techniques for endogenous molecules encompass
nuclear magnetic resonance (NMR) and mass spectrometry. Mass
spectrometry is able to identify low-abundance metabolites, while
NMR helps reveal metabolic changes in key pathways. Recent
studies have concentrated on mapping the spatial distribution of
small molecule metabolites, identifying their active constituents, and
conducting trend analysis and characterization (Yuan et al., 2021;
Fan et al., 2021). Mass spectrometry (MS) has become a pivotal tool
in detecting small molecule metabolites, offering a comprehensive
framework for understanding metabolic changes, from systemic to
single-cell levels. Metabolomics-based mass spectrometry methods
enable the rapid discovery of small molecule metabolites, advancing
our understanding of metabolic mechanisms in a variety of diseases
and enhancing our ability to monitor metabolic changes in clinical
Settings. Mass spectrometry, when integrated with liquid
chromatography, significantly enhances the versatility and
sensitivity of metabolite identification and quantification. This
powerful combination facilitates the comprehensive exploration
of numerous small molecule metabolites in biological samples,
thereby mapping key metabolic alterations associated with
disease. Currently, no single analytical method or instrument is
capable of identifying the entire metabolome. Some studies suggest
maximizing the potential of metabolomics data through joint
platforms (Xuan et al., 2020; Garcia-Perez et al., 2020). Recently,
scientists have progressively developed a comprehensive metabolic
profile to uncover potential mechanisms and metabolic networks for
exploring biomedical therapeutic targets.

3 Application of bioinformatics in drug
development

3.1 Bioinformatics and anticancer
drug research

The discovery of new drugs is crucial for cancer treatment and
precision medicine. Conventional drug discovery methods
predominantly depend on in vivo animal testing and in vitro drug
screening, yet these approaches are frequently expensive and
challenging. The explosion of omics data over the past decade has
opened up new opportunities for cancer drug research, significantly
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increasing the efficiency of drug discovery. The integration of high-
throughput transcriptome data with drug response data has become a
cornerstone in biomarker identification and drug efficacy prediction.
Furthermore, biological network theories and methodologies have
proven effective in anticancer drug discovery, exemplified by studies
leveraging protein-protein interaction networks, drug-target networks,
and disease-gene networks. One of bioinformatics’ pioneering
contributions to drug target identification was the discovery of
sequence homology between the anthroposarcoma virus gene and
platelet-derived growth factor (PDGF) through straightforward
string matching (Waterfield et al., 1983; Doolittle et al., 1983). This
discovery makes PDGF a target for cancer drugs (Pietras et al., 2003;
Papadopoulos and Lennartsson, 2018; Zou et al., 2022) and leads to two
new approaches. Firstly, viral transformation factors may solely
function by converting transient growth factor expression into
sustained expression, indicating that growth factors are crucial
targets for anticancer drug development. Secondly, any factor that
modulates gene expression patterns is likely to induce cancer. This novel
conceptual framework for cancer biology has facilitated mechanism-
based advancements in anticancer drug development in
subsequent years.

Small cell lung cancer (SCLC) is an exceptionally aggressive
neuroendocrine malignancy characterized by rapid proliferation,
extensive metastasis, significant drug resistance, and a poor
prognosis (Megyesfalvi et al., 2023). By integrating mRNA,
protein, and phosphorylation data from 107 SCLC tumors, Liu
et al. employed an unsupervised clustering approach based on non-
negative matrix factorization (NMF) to categorize SCLC into four
distinct subtypes: NMF1, NMF2, NMF3, and NMF4 (Liu et al.,
2024). Multi-omics analysis revealed that the NMF1 subtype was
predominantly associated with processes such as the cell cycle, DNA
damage repair, chromatin remodeling, and epigenetic regulation,
exhibiting a robust response to ATR and TOP1 inhibition. The
NMF2 subtype is characterized by the highest level of NOTCH
ligand delta-like protein 3 (DLL3) protein, suggesting that this
subtype may benefit from DLL3-targeted therapy. Further
phosphorylated proteomic analysis revealed that the RTK
signaling pathway is significantly upregulated in the
NMF3 subtype, so targeting RTK could represent a promising
strategy for treating the NMF3 subtype. The NMF4 subtype is
distinguished by elevated MYC expression and a predominant
enrichment of RNA metabolic pathways, and amplification of the
gene AURKA is highly correlated with this subtype, further
supporting the potential of AURka-targeted therapies. A multi-
omics analysis of SCLC enhances our comprehension of the
molecular mechanisms underlying this aggressive malignancy and
offers innovative strategies for more effective clinical interventions.

Furthermore, methods based on bioinformatics and omics
analysis have played a critical role in the research and
development of targeted drugs for a variety of cancers such as
breast cancer (Neagu et al., 2023), triple-negative breast cancer
(TNBC) (Kudelova et al., 2022), gastric cancer (Hou et al., 2023),
lung cancer (Yan et al., 2024; Rosenquist et al., 2023), and
hematological malignants, greatly accelerating the discovery of new
drug targets. In 2022, Alam et al. (2022) identified seven differentially
expressed core genes while studying the molecular mechanisms of
breast cancer progression. Through further multivariate survival
analysis and regulatory network analysis, they proposed three

reusable drugs guided by KGS (tramitinib, serumetinib, and
RDEC119) for breast cancer treatment, and verified the effective
binding ability of these drugs through molecular docking analysis.
The genomic instability and high mutation rate of TNBC may lead to
the production of neoantigens, thereby enhancing its
immunogenicity, which poses great challenges for treatment.
Current research focuses on the combination of immune
checkpoint inhibitors with chemotherapy, PARP inhibitors, cancer
vaccines, or natural killer cell therapies. In recent years, significant
progress has been made in clinical studies of TNBC treatment, and
based on these results, several effective drugs have been approved to
benefit TNBC patients. These include the PARP inhibitors olaparib
and talazoparib for the treatment of germ-line BRCA gene mutation-
associated breast cancer (gBRCAm-BC), and immunotherapy for
advanced TNBC with programmed cell death ligand-1 positive
(PD-L1+), Combined use of the checkpoint inhibitor atezolizumab
with albumin-binding paclitaxel (Shen et al., 2020). In addition,
immunotherapies, which reshape the host immune system to
destroy tumor cells, may lead to new treatment strategies. In
immunotherapy for gastric cancer, accurate identification of
predictive biomarkers holds promise for optimizing patient
selection and improving treatment outcomes. With the
advancement of bioinformatics technology, more biomarkers have
been discovered and applied in immunotherapy for gastric cancer,
such as PD-L1, MSI-H, dMMR, tumor mutation load (TMB) and
Epstein-Barr virus (EBV) (Hou et al., 2023). In 2017, the U.S. Food
andDrug Administration approved Bologlizumab for the treatment of
unresectable or metastatic solid tumors in the MSI-H/dMMR state
(Dudley et al., 2016). By integrating multi-omics techniques and
establishing a progressive analysis framework from genetic basis to
environmental exposure, the pathogenesis, pathophysiological process
and molecular basis of immunotherapy of lung cancer can be deeply
analyzed, thus providing strong support for immunotherapy of lung
cancer (Yan et al., 2024). In the precision treatment of hematological
malignancies, the combination of in vitro drug screening and multi-
omics technology can provide a new treatment option for advanced
patients (Rosenquist et al., 2023). Guo et al. (2024) revealed the
mechanism of TiaoPi AnChang Decoction (TPACD) treating
colorectal cancer by integrating UHPLC-Q-TOF-MS/MS, network
pharmacology and bioinformatics techniques, and its anti-cancer
effect was realized by targeting MMP3. It is reported that
Esketamine can negatively regulate the proliferation and metastasis
of cancer cells, and through further bioinformatics analysis, it was
found that esketamine may show anti-esophageal squamous cell
carcinoma properties by affecting the expression of ERCC6L, AHR
and KIF2C proteins (Li et al., 2023). In summary, the rapid
development of bioinformatics technology is of significant help to
the development of new drugs and targets, as well as the clarification of
the anti-cancer mechanism of existing drugs, and has greatly
accelerated the development process of cancer targeted drugs.

3.2 The role of bioinformatics in drug
research for epidemic diseases

Bioinformatics tools and multi-omics combined analysis have
played an important role in responding to new disease outbreaks
and developing new drugs. By analyzing the genomic information of
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pathogens, researchers can track the spread, evolution, and drug
resistance of pathogens, which has important implications for
controlling infectious diseases. Coronavirus disease (COVID-19),
caused by severe acute respiratory syndrome Coronavirus 2 (SARS-
CoV-2), has become a major global concern (Bala et al., 2021). At
that time, drugs and vaccines were urgently needed to effectively
combat the disease. Because of the huge challenges of new drug
discovery, reusing existing drugs can reduce time and cost compared
to developing new drugs from scratch. Haseeb Nisar et al.
constructed a protein-protein interaction (PPI) network by
analyzing differentially expressed genes (DEGs) in the RNA-seq
transcripome dataset and integrating COVID-19 related genes from
different databases (Nisar et al., 2024). Drug reuse analysis of the
identified genes/proteins was conducted through the relevant
information in the database, and finally the drug candidates
(picetanol, CKD-712, and PMID26394986-Compound-10) were
identified. Finally, by molecular docking analysis of drug-gene
interactions, and verified by molecular dynamics simulation of
80 ns, PMID26394986-Compound-10 was identified as the only
potential drug. But its effectiveness has yet to be assessed.

SARS-CoV-2 is highly contagious, so there is an urgent need to
develop a vaccine for effective prevention. Since SARS-CoV-2 was
first identified, scientists have rapidly analyzed its genome sequence
using sequencing techniques (Wu et al., 2020). On this basis, Jin et al.
(Jin et al., 2020) soon entered the first structure of SARS-CoV-2 into
the protein database, and then the structure of SARS-CoV-2 protein
was also broken through. With the help of bioinformatics
technology, the structural study of SARS-CoV-2 has made
remarkable progress, and numerous potential drugs and vaccines
against SARS-CoV-2 have been developed (Wu et al., 2022). At that
time, the 128 COVID-19 vaccines and vaccine candidates
announced by the World Health Organization to enter clinical
trials can be divided into three categories: first, protein vaccines,
which produce target antigens in vitro, such as inactivated virus
vaccines, virus-like particles and protein subunit vaccines; Second,
genetic vaccines, such as viral vector vaccines, DNA vaccines and
mRNA vaccines, deliver the genes encoding viral antigens into the
host cells for in vivo production; A third class combines protein and
gene approaches to produce protein antigens in and out of the body,
typically represented by live attenuated vaccines. The RBD-dimer-
based COVID-19 vaccine ZF2001 has shown excellent safety and
efficacy in Phase 3 clinical trials, showing protection against
symptomatic and severe COVID-19 for at least 6 months after
complete vaccination (Dai et al., 2022). Other vaccines, such as
BNT162b2, mRNA-1273, AZD1222, Ad26.COV2-S, Sputnik V,
Covaxin, CoronaVac, BBIBP-CorV, and EpiVacCorona, have also
shown good efficacy in Phase III trials. It has been approved for use
in adults and, in some cases, in adolescents.

In addition, during the COVID-19 pandemic, bioinformatics
techniques are also being used in drug development for co-existing
diseases of other systems. Given the numerous overlapping clinical
symptoms between COVID-19 and systemic lupus erythematosus
(SLE), the potential existence of shared pathological mechanisms
between the two remains an area for further investigation,
particularly regarding the treatment of SLE patients infected with
COVID-19. Wu et al. extracted common differentially expressed
genes (DEGs) from datasets of both diseases and performed analyses
on functional enrichment, pathway identification, and drug candidate

screening. Their findings revealed that COVID-19 and SLE patients
share several key hub genes, associated pathways, and regulatory
networks (Wu et al., 2024). Building on these shared targets, they
also identified a range of promising drug candidates for the treatment of
patients with COVID-19, including those with concurrent SLE.

4 Conclusion and prospect

Bioinformatics tools and technologies in drug discovery include
biological databases, molecular docking computing tools and omics
techniques. In this paper, bioinformatics technology and its role and
application in drug development are summarized in detail.
Biological database is used to store, manage and share biological
data, and collect existing research results and technical information
for research workers to query and promote the development of new
drugs. Molecular docking computing tools assist in determining the
correct lead compound. Omics techniques such as genomics,
transcriptomics, proteomics, and metabolomics play a significant
role in drug research. By analyzing large amounts of genomic data,
genomics can help researchers identify genes associated with
diseases, develop targeted drugs, promote the development of
personalized medicine, and formulate treatment plans based on
an individual’s genomic information. Transcriptomics is used to
analyze transcriptome data, the collection of all RNA in a given cell
or tissue under a given condition, to help identify disease-associated
changes in gene expression, potential biomarkers for disease
diagnosis and treatment. By predicting the three-dimensional
structure of proteins, proteomics provides clues to their role in
disease and is critical to understanding protein function and drug
design. Metabolomics involves the study of small molecules that are
pivotal in identifying novel drug targets for cancer treatment. By
integrating multi-omics data, bioinformatics also shows great
potential in the treatment of cancer and epidemic diseases. In
cancer therapy, various omics techniques enable a comprehensive
study of the molecular characteristics of tumors and identify
potential drug targets. By analyzing the genomic information of
pathogens, multi-omics technology can track the spread, evolution
and drug resistance of pathogens, which is of great significance for
the control of infectious diseases.

Currently, we are experiencing a period of significant advances
in drug research, thanks to technological advances, especially
bioinformatic-based tools and methods. These advances have
greatly enhanced our understanding of the biological roles and
regulatory mechanisms of target molecules in disease. However,
these advances also present significant challenges in accurately
identifying target molecules in samples. How to accurately
identify drug targets at a lower cost, and how to effectively use
emerging artificial intelligence technologies to promote the
identification and characterization of target molecules are urgent
issues that need urgent attention.
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