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Background: 6-hydroxybenzothiazole-2-carboxamide is a novel, potent and
specific inhibitor of monoamine oxidase B (MAO-B), which can be used to
study the molecular structure and develop new neuroprotective strategies.

Objective: The aim of this study was to create an effective predictive model from
6-hydroxybenzothiazole-2-carboxamide derivatives to provide a reliable
predictive basis for the development of neuroprotective MAO-B inhibitors for
the treatment of neurodegenerative diseases.

Methods: First, the compounds were constructed and optimized using
ChemDraw and Sybyl-X software. Subsequently, QSAR modeling was
performed using the COMSIA method in Sybyl-X to predict the IC50 values of
a set of novel 6-hydroxybenzothiazole-2-carboxamide derivatives. The ten most
promising compounds were screened based on the IC50 values and tested for
molecular docking. Finally, the binding stability and dynamic behavior of these
compounds with MAO-B receptors were analyzed by molecular dynamics
simulation (MD).

Results: The 3D-QSAR model showed good predictive ability, with a q2 value of
0.569, r2 value of 0.915, SEE of 0.109 and F value of 52.714 for the COMSIAmodel.
Based on the model, we designed a series of novel 6-HBC derivatives and
predicted their IC50 values by the QSAR model. Among them, compound
31.j3 exhibited the highest predicted IC50 value and obtained the highest
score in the molecular docking test. MD simulation results showed that
compound 31.j3 was stable in binding to the MAO-B receptor, and the RMSD
values fluctuated between 1.0 and 2.0 Å, indicating its conformational stability. In
addition, energy decomposition analysis revealed the contribution of key amino
acid residues to the binding energy, especially Van der Waals interactions and
electrostatic interactions play an important role in stabilizing the complex.
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Conclusion: In this study, the potential of 6-hydroxybenzothiazole-2-
carboxamide derivatives as MAO-B inhibitors was systematically investigated by
3D-QSAR, molecular docking and MD simulations. The successfully designed
compound 31.j3 not only demonstrated efficient inhibitory activity, but also
verified its stable binding to MAO-B receptor by MD simulation, which provides
strong support for the development of novel therapeutic drugs for
neurodegenerative diseases. These findings provide important theoretical basis
and practical guidance for future drug design and experimental validation.

KEYWORDS

neuroprotective activity, 6-hydroxybenzothiazole-2-carboxamide, monoamine oxidase B,
QSAR, CoMSIA

1 Introduction

Neurodegenerative diseases (NDD) are a collection of illnesses
marked by the gradual deterioration of nerve cells in either the
central nervous system (CNS) or peripheral nervous system (PNS).
Parkinson’s disease and Alzheimer’s disease are the most prevalent
examples of such conditions. Parkinson’s disease is characterized by
the gradual degeneration of neurons, which causes motor system
impairments (ataxia). This leads to imbalances, movement
problems, and other symptoms such as resting tremor, muscular
stiffness, decreased postural reflexes, and difficulty walking. This
condition affects a significant number of individuals globally
(Wilson et al., 2023). As the world’s population ages, the
occurrence of neurodegenerative illnesses is steadily rising each
year on a worldwide scale. It affects around 1%–3% of those who
are 65 years old or older (Santos García et al., 2019). Presently, there
are few effective therapy alternatives available for NDD. Despite the
few therapeutic choices available, the success rate remains quite low.
To enhance the quality of life and increase the chances of survival for
individuals, it is essential to advance the development of novel
pharmaceuticals and implement innovative treatment approaches.

Monoamine oxidase (MAO) is situated on the external
mitochondrial membrane and consists of two isoforms, MAO-A
and MAO-B. MAO-B is mostly located in the brain, platelets, and
liver. The overall level of MAO in the brain is estimated to be
composed of around 20% MAO-A and 80% MAO-B (Hoy and
Keating, 2012; Teo and Ho, 2013). The primary role of MAO-B is to
break down phenylethylamine, tryptamine, and methylhistamine by
catabolism. MAO is crucial in the breakdown of neurotransmitters,
which in turn controls the quantities of monoamines in the brain
(Konradi et al., 1987). Heightened concentrations of these enzymes
may result in heightened generation of H2O2, which can induce
oxidative stress and contribute to various neurodegenerative
disorders (Lemke et al., 2019). Nevertheless, the presence of
H2O2 causes the oxidation of lipid peroxides and the consequent
formation of α-synuclein (α-syn) aggregates. These aggregates are
the primary constituents of Lewy bodies (LBs), which in turn
contribute to motor impairments in Parkinson’s disease (PD)
(Marotta et al., 2021). MAO inhibitors mitigate oxidative stress
by suppressing the synthesis of H2O2, hence facilitating the effective
control of stroke and tissue damage caused by hydroxyl radicals
resulting from hydrogen peroxide generation (Tipton et al., 2004).

Hyperphosphorylation of Tau proteins causes the development
of neuronal protofibrillary tangles (NFTs) within neurons, which is a

particular change in Parkinson’s disease (PD) (Seitz et al., 2002). Tau
is a protein that binds to microtubules and is mostly found in
neurons in the brain (Cleveland et al., 1977). MAO-B activity
contributes to the generation of Aβ peptides, which in turn leads
to tau phosphorylation (Behl et al., 2021). Alpha Synuclein (α-Syn)
and tau are significant neuropathogenic proteins that have a crucial
function in neurodegenerative disorders (Wilson et al., 2023;
Zbinden et al., 2020). Compounds containing MAO-B have
shown encouraging outcomes in the treatment of
neurodegenerative disorders such as Parkinson’s disease and
Alzheimer’s disease (Lu et al., 2013).

At present, a limited number of MAO inhibitors have been
approved for commercial use, such as selegiline (R-(−)-deprenyl)
and rasagiline, which act in an irreversible manner (Liu et al., 2015),
and safinamide, a reversible MAO inhibitor (deSouza and Schapira,
2017). However, these inhibitors are associated with various side
effects and limited efficacy. Recent studies have explored novel 6-
hydroxybenzothiazole-2-carboxamide derivatives as potential
MAO-B inhibitors, showing promising results in terms of
IC50 values (Al-Saad et al., 2024). Our study aims to conduct a
broader comparison, encompassing not only IC50 values but also
molecular docking scores, molecular dynamics simulations, binding
free energies, and key amino acid residue contributions, to
comprehensively demonstrate the advantages of our newly
designed compounds. Significantly, selegiline has been linked to
orthostatic hypotension and hallucinogenic adverse effects (Jiang
et al., 2020). Safinamide is known to cause birth defects and has also
been linked to an increased risk of retinal degeneration. Therefore, it
is not recommended to use safinamide during pregnancy or in those
with retinal illness (Bette et al., 2018).

6-hydroxybenzothiazole-2-carboxamide and its derivatives, as
inhibitors of monoamine oxidase B (MAO-B), exhibit remarkable
structural novelty and pharmacological activity. Compared with
existing MAO-B inhibitors on the market, such as selegiline and
rasagiline, 6-hydroxybenzothiazole-2-carboxamide derivatives
feature unique amide substituent modifications in their
structures. These modifications not only enhance their selective
inhibitory effect on MAO-B but also reduce the risk of side effects.
Particularly, by introducing different side chains, 6-
hydroxybenzothiazole-2-carboxamide derivatives achieve precise
regulation of MAO-B activity, which is uncommon among
current medications. Furthermore, 6-hydroxybenzothiazole-2-
carboxamide derivatives demonstrate favorable pharmacokinetic
properties and bioavailability in both in vitro and in vivo
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experiments, providing strong support for their potential use as
therapeutic agents for neurodegenerative diseases. The extreme
toxicity and adverse effects of these clinical studies have imposed
limitations. In order to tackle this issue more effectively, a range of
derivatives of the novel compound 6-hydroxybenzothiazole-2-
carboxamide have been discovered. These derivatives involve
modifications to the amide substituent, resulting in several
powerful compounds with various side chains. These compounds
have demonstrated distinct effects in selectively inhibiting MAO-B,
making them potential targeted therapeutic agents for
neurodegenerative diseases.

Quantitative Structure-Activity Relationship (QSAR) is a
scientific methodology that involves modeling and predicting the
biological activity of a molecule based on quantitative connections
between its structural characteristics (Cherkasov et al., 2014).
Computer-aided drug design has evolved into a mature and
promising field of study, focusing on quantitative structural
connections (Santos-Filho and Hopfinger, 2001). The
conventional approach to drug design is marked by inefficiency,
lengthy processes, and exorbitant expenses. Consequently, there is a
pressing need for novel research and development methodologies to
enhance the efficiency and effectiveness of drug design (Duch et al.,
2007). Computer-aided drug design, on the other hand, has been
widely recognized and applied in drug discovery and development
for its advantages of high efficiency, less time-consuming and low
cost (Zheng et al., 2013). Computer-aided drug design has gained
widespread recognition and use in the field of drug discovery and
development due to its notable benefits of increased efficiency,
reduced time requirements, and lower costs (Wang et al., 2021).
The current investigation included the development of a 3D-QSAR
model for novel derivatives of 6-hydroxybenzothiazole-2-
carboxamides. This was achieved by the use of comparative
molecular similarity indices analysis (COMSIA) and molecular
docking investigations. This approach has significantly facilitated
the comprehension of the correlation between the structure and
activity of the compounds. Based on the findings of QSAR and
molecular docking, we may enhance the activity of drugs by making
further structural modifications.

Understanding the underlying mechanisms that govern the
binding capabilities and stability of our compounds is crucial for
the rational design of novel therapeutic agents. Therefore, in this
study, we have not only presented the experimental results but
also conducted a thorough mechanistic analysis to elucidate
the factors contributing to the superior performance of the
identified compounds.

2 Materials and methods

2.1 Experimental

QSAR is a scientific method for predicting the biological activity
of molecules based on their structural features. Compared with
traditional QSAR methods, the 3D-QSAR approach employed in
this study offers significant advantages. Traditional QSAR methods
primarily rely on two-dimensional molecular descriptors, neglecting
conformational changes of molecules in three-dimensional space. In
contrast, the 3D-QSAR method takes into account the specific

conformations of molecules within the active site, thereby
enabling more accurate predictions of molecular biological
activity. Furthermore, the COMSIA method used in our study
enhances the predictive accuracy and reliability of the model by
comprehensively considering multiple molecular fields, including
steric, electrostatic, hydrophobic, hydrogen bond donor, and
hydrogen bond acceptor fields.

2.1.1 Analytical dataset
This research presented the structures and IC50 values of

36 newly discovered compounds of 6-hydroxybenzothiazole-2-
carboxamide (Table 1) (Al-Saad et al., 2024). To mitigate the
asymmetry of the dataset, the IC50 values of all the substances
were transformed to -log (IC50) + 6. Subsequently, the dataset was
meticulously split into a training set consisting of 29 compounds and
a test set consisting of 7 compounds using a random selection
process. The training set was utilized to develop the 3D-QSAR
model, while the test set was employed for model validation to
ensure its predictive accuracy and robustness.

2.1.2 Structural optimization
The construction of all compounds was carried out using

ChemDraw software. The designed compounds were then put
into Sybyl-X software for spatial structure optimization. The
Sybyl-X program used the Tripos force field and Powell gradient
methods, which are the default settings of the system, to reduce the
energies of all the compounds. The resulting minimized structures
were then employed as the starting conformations for the COMSIA
approach (Yu et al., 2015).

2.1.3 Compound superposition
Structural alignment of compounds is a critical step in 3D-

QSAR analysis, which directly affects the subsequent prediction of
drug activity (Patel et al., 2008). Compound alignment can be
divided into two approaches: one centered on ligand (ligand)-
based common structures and the other on receptor (receptor)-
based small molecule targets. In this study, we used the former
approach, which centers on the common structure of the most active
compound 31, to align all compounds to ensure consistency and
accuracy of the QSAR analysis.

Compound overlay is critical in 3D-QSAR analysis, ensuring
that all compounds involved in the modeling are spatially
comparable. Since QSAR modeling relies on a quantitative
relationship between a compound’s structure and its biological
activity, it is important to ensure that these compounds are
structurally correctly aligned and compared. By overlaying the
most active compounds (e.g., compound 31 in this study) as a
benchmark (Figure 1), we are able to more accurately identify which
structural features contribute to biological activity, which can guide
subsequent drug design and optimization.

2.1.4 Study conducted by COMSIA
In order to conduct COMSIA investigations, a grid was created

with a side length of 0.2A in all places where the molecules were
constructed. Additionally, a 4A border was used to identify all
sections of the stacked molecules. The steric, electrostatic,
hydrophobic, and hydrogen bonding fields, which include
hydrogen bond acceptors and hydrogen bond donors, were
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TABLE 1 The experimental and predicted data obtained from the COMSIA model.

Compound R1 IC50 (μM) Experimental Predicted Residual

1 0.279 ± 0.036 6.554 6.865 −0.214

2 0.622 ± 0.043 6.206 6.651 −0.173

3 0.397 ± 0.051 6.401 6.484 −0.06

4 0.146 ± 0.018 6.836 6.788 0.011

5 0.437 ± 0.053 6.360 6.682 −0.167

6 2.97 ± 0.50 5.527 6.342 −0.143

7 1.04 ± 0.02 5.983 5.982 −0.014

8 0.025 ± 0.001 7.602 7.249 0.237

9 0.033 ± 0.003 7.482 6.856 0.159

10 0.100 ± 0.011 7 7.056 −0.145

11 0.129 ± 0.012 6.889 6.838 −0.009

(Continued on following page)

Frontiers in Pharmacology frontiersin.org04

Xie et al. 10.3389/fphar.2025.1545791

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1545791


TABLE 1 (Continued) The experimental and predicted data obtained from the COMSIA model.

Compound R1 IC50 (μM) Experimental Predicted Residual

12 0.258 ± 0.088 6.588 6.376 0.101

13 1.94 ± 0.38 5.712 5.791 −0.148

14 0.147 ± 0.035 6.833 6.373 0.17

15 0.282 ± 0.080 6.550 6.177 0.156

16 2.16 ± 0.14 5.666 6.03 −0.112

17 1.22 ± 0.03 5.914 5.89 −0.032

18 3.21 ± 0.55 5.494 5.33 0.061

19 0.971 ± 0.107 6.013 5.966 0.007

20 1.80 ± 0.10 5.745 5.675 −0.056

21 0.230 ± 0.027 6.638 6.293 0.014

22 0.851 ± 0.123 6.070 6.163 −0.098

23 0.250 ± 0.001 6.602 6.364 0.119

(Continued on following page)
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TABLE 1 (Continued) The experimental and predicted data obtained from the COMSIA model.

Compound R1 IC50 (μM) Experimental Predicted Residual

24 0.944 ± 0.116 6.025 6.14 −0.013

25a 0.041 ± 0.005 6.5544 5.79 0.028

26a 2.09 ± 0.18 6.2062 6.01 0.015

27 1.18 ± 0.01 7.3872 7.566 0.009

28a 0.140 ± 0.015 6.401 6.624 0.04

29a 0.140 ± 0.016 6.836 6.571 −0.018

30a 0.842 ± 0.067 6.360 5.796 0.099

31 0.011 ± 0.005 5.680 5.783 −0.156

32 0.118 ± 0.005 5.928 5.998 0.109

33a 0.072 ± 0.008 5.983 6.18 0.046

Compound R2 IC50 (μM) Experimental Predicted Residual

34a -OCH3 0.428 ± 0.019 7.602 6.862 −0.041

(Continued on following page)
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computed for each grid point using the default probes given with
COMSIA. A quantitative correlation model between molecular field
characteristics and affinity was created using partial least squares
(PLS) after acquiring the molecular field at each grid point. The
statistical significance of the model was further assessed using Leave-
one-out and cross validation techniques, and the optimal number of

main components for the model was identified. A 3D-QSAR model
was constructed by using several main components that were
selected using the best interaction check results. The model was
built without interaction checks and then used to predict the affinity
of the compounds in the test set (Li et al., 2012a; Li et al., 2012b).

2.1.5 Verification of the 3D-QSAR model
Generally, greater values of q2, R2, and F, together with lower

values of SEE, indicate a good capacity to fit the data. Nevertheless,
relying just on these statistical metrics does not completely showcase
the model’s predictive capacity. Additional validation is necessary to
thoroughly assess the model’s dependability, resilience, and
predictive power (Yu et al., 2015). The COMSIA model was
validated using Leave-one-out cross-validation and the optimal
number of components was determined. The q2 value, calculated
as the cross-validation coefficient, yielded a value of 0.569, indicating
good predictive power of the model. Similarly, the r2 value, which
measures the goodness of fit between the model predictions and the
experimental data, was found to be 0.915, demonstrating a high
degree of fit. These statistical findings, along with the lower standard
error of estimate (SEE = 0.109) and higher F-value (52.714), confirm
the adequacy of the COMSIA model.

2.1.6 Verification of the 3D-QSAR model
Generally, greater values of q2, R2, and F, together with lower

values of SEE, indicate a good capacity to fit the data. However,
relying solely on these statistical metrics does not fully demonstrate
the model’s predictive capacity and reliability. Therefore, multiple
evaluation metrics have been employed to thoroughly assess
the model.

The 3D-QSAR model was developed using the training set,
which consisted of 29 compounds randomly selected from the entire
dataset. The remaining 7 compounds were used as the test set to
validate the model. The predictive performance of the model was
evaluated using both internal and external validation techniques.

TABLE 1 (Continued) The experimental and predicted data obtained from the COMSIA model.

Compound R2 IC50 (μM) Experimental Predicted Residual

35 -H 3.08 ± 0.25 6.854 6.895 0.013

Compound — IC50 (μM) Experimental Predicted Residual

36 — 0.779 ± 0.018 6.854 6.791 0.013

aThe test set data.

FIGURE 1
Compound 31 used as a reference to evaluate all the compounds
in the collection. (A) The bold wording signifies the universal structure
shared by all compounds. (B) All compounds are organized based on a
shared structure.
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2.1.6.1 Internal validation
Cross-validation coefficient (q2): This metric was used to assess

the model’s ability to predict the activities of compounds within the
training set. A q2 value of 0.569 was obtained, indicating good
predictive power of the model.

Coefficient of determination (r2): This metric measures the
degree of fit between the model predictions and the experimental
data for the training set. An r2 value of 0.915 was achieved,
demonstrating a high degree of correlation between the predicted
and experimental activities.

Standard error of estimate (SEE): This metric quantifies the
average deviation of the predicted values from the experimental
values for the training set. A low SEE value of 0.109 was obtained,
indicating the model’s accuracy in predicting compound activities.

F-value: This metric provides a measure of the statistical
significance of the model. A high F-value of 52.714 was obtained,
further confirming the adequacy of the model.

2.1.6.2 External validation
To further evaluate the predictive ability and reliability of the

CoMSIA model, external validation was performed. External
validation parameters, including the number of compounds in
the test set (ntest), the mean value of compound activity in the
training set (tr), the correlation coefficient between experimental
and predicted activity of compounds in the test set (R2

ext), and the
adjusted correlation coefficient (R2

m), were calculated. Typically, a
value of R2

ext greater than 0.5 is considered indicative of a
statistically reliable model with strong predictive capability. The
model exhibited R2

ext and R2
m values of 0.688 and 0.642,

respectively, clearly demonstrating its robustness and
predictive ability.

Therefore, we conducted external validation using the test set.
The following metrics were calculated:

There are two often used external validation techniques that
utilize the following formulas:

R2
ⅇxt � 1 −

∑ntest
i�1

yi − ~yi( )2
∑ntest
i�1

yi − �ytr( )2
The equation involves the variables ntest, �ytr, yi and ~yi. Ntest

represents the number of compounds in the test set, �ytr represents
the average value of compound activity in the training set, and yi and
~yi represent the experimental and anticipated values of compound
activity in the test set, respectively. Typically, a value of R2

ext greater
than 0.5 is seen as indicative of a statistically reliable model with
strong predictive capability (Mouchlis et al., 2012).

Furthermore, the parameter R2
m may be further validated to

assess the appropriateness of the model using the following equation:

R2
m overall( ) � R2

* 1 −
�������
R2 − R2

0

√( )
R2 in this equation denotes the squared value of the correlation

coefficient, which measures the degree of correlation between the
anticipated and experimental activity levels for all substances.
Conversely, R2

0 is the squared correlation coefficient between
predicted and experimental values when the intercept is
adjusted to 0.

R2
ext: This metric measures the correlation between the

predicted and experimental activities for the test set. A value of
R2

ext > 0.5 is generally considered indicative of a statistically reliable
model. In this study, an R2

ext value of 0.688 was obtained,
demonstrating the model’s predictive power on an
independent dataset.

R2
m: This metric is an adjusted correlation coefficient that takes

into account the number of compounds in the test set. A value of
R2

m > 0.5 further confirms the model’s appropriateness. An R2
m

value of 0.642 was obtained, indicating the model’s robustness.
In summary, the 3D-QSAR model developed in this study has

been thoroughly validated using multiple evaluation metrics,
including q2, r2, SEE, F-value, R2

ext, and R2
m. These metrics

collectively demonstrate the model’s reliability and predictive
power, providing confidence in its application for the
development of novel MAO-B inhibitors.

2.1.7 Molecular docking
Molecular docking is a computational technique that simulates

the interaction between a small molecule ligand and a biological
macromolecule receptor. Compared with traditional molecular
docking methods, the flexible docking approach employed in this
study better accounts for conformational changes of both the ligand
and the receptor during the binding process. By allowing a certain
degree of conformational adjustment for the ligand and receptor
during docking, the flexible docking method can more accurately
simulate the real biomolecular interaction process. Additionally, the
Sybyl-X software platform used in our study provides powerful tools
for molecular mechanics optimization and energy evaluation,
further enhancing the accuracy and reliability of the docking results.

2.1.8 Molecular dynamics study
Molecular dynamics (MD) simulations of the key screened

protein-ligand complex were conducted using the GROMACS
2023.2 package and the CHARMM 36 force field to examine
conformational changes and dynamic behavior at the atomistic
level (Guo and Liu, 2024; Tak et al., 2024). The ligand topology of
the compound was generated via the CGenFF web server, and
Na+/Cl-counter ions were added to neutralize the complex
structures (Fischer et al., 2015). The CHARMM-modified
TIP3P water model was selected, and the termini were
designated as “NH3+” and “COO-” due to the N-terminal
residue being methionine (MET), necessitating this interactive
selection to avoid pdb2gmx choosing an incompatible terminus
type intended for carbohydrates. Protein-specific termini were
therefore chosen.

The system’s energy was minimized initially using the steepest-
descent algorithm followed by the conjugate gradient method
(Donnelly et al., 2021). Long-range electrostatic interactions were
computed using the Particle Mesh Ewald (PME) method, while the
LINear Constraint Solver (LINC) algorithm was employed to
calculate Lennard-Jones and Coulomb interactions with a 10Å
cutoff distance (Hess, 2008). Temperature coupling was
maintained at 300K using the Berendsen thermostat (V-rescale)
coupling algorithm, and pressure coupling was maintained at 1 bar
using the Parrinello–Rahman pressure coupling algorithm
(Karwasra et al., 2020). Post-energy minimization, the system
was equilibrated for 100 ps each under NVT and NPT
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conditions to stabilize volume, pressure, and temperature. The
system then underwent a 50 ns MD production run with
coordinates saved at consistent intervals of 2 fs (Metwally and
Hathout, 2015).

From the final trajectory data, analyses including root mean
square deviation (RMSD) (Maruyama et al., 2023), root mean square
fluctuation (RMSF), and hydrogen bond (H-bond) analysis were
performed using GROMACS modules. The global motion of all
complexes was further analyzed with a free energy landscape (FEL)
study, as detailed in previous research (Abdelsattar et al., 2021).
Binding free energy calculations were performed using the
molecular mechanics/Poisson-Boltzmann surface area (MM-
PBSA) method, a computational technique used to estimate
binding free energies of biomolecular complexes lilce protein-
ligand interactions (Xue et al., 2019). This method integrates
molecular mechanics force fields, continuum solvent models,and
empirical solvation energy terms to estimate the thermodynamic
properties of protein-ligand interactions. MM-PBSA allows for the
decomposition of binding free energy into various components such
as van der Waals interactions, electrostatic interactions, solvation-
free energy,and entropy contributions. This decomposition aids in
understanding individual energetic contributions, which can inform
specific aspects of ligand optimization.

MM-PBSA results can be compared with experimental binding
affinities to validate the accuracy of computational predictions, an
essential step in building confidence in the computational approach
and its applicability in drug discovery. The binding-free energy of
the selected compound was calculated conceming the protease
protein from the last 50 ns of the MD trajectory using the gmx_
MMPBSA tool (Tan et al., 2024; Valdés-Tresanco et al., 2021).

3 Results

3.1 Statistical findings derived from the
COMSIA model

The COMSIA approach generates five distinct molecular force
fields with various levels of contribution. The proportions of these
five force fields are as follows: spatial force (17.2%), electrical force
(27.1%), hydrodynamic force (46.2%), hydrogen bonds donor
(4.5%), and the hydrogen bond acceptor (5.0%). By organizing
and merging all five of these molecules fields of force, a total of
10 sets of model were created. Upon careful analysis of these 10 sets
of models, it was concluded that the ESH model exhibited the
highest level of satisfaction, as shown by the findings presented in
Table 2. Figure 2 illustrates the effect of this model. The most
efficient COMSIA model yielded a q2 statistic of 0.569, a superior
r2 value of 0.915, an optimal group score of 3, a reduced ESHAD of
0.109, and an elevated F value of 52.714.

3.2 Results of COMSIA model validation

The COMSIA model was further validated through external
validation techniques. The cross-validation coefficient (q2) and the
coefficient of determination (r2) were calculated to assess themodel’s
predictive performance. The q2 value, given by the formula:

q2 � 1 −
∑n
i−1

yi − ~yi( )2
∑n
i−1

yi − �y( )2
yielded a value of 0.569, indicating good predictive power of the
model. Similarly, the r2 value, calculated using the formula:

r2 � 1 −
∑n
i−1

yi − ~yi( )2
∑n
i−1

yi − �y( )2
was found to be 0.915, demonstrating a high degree of fit between
the model predictions and the experimental data. These statistical
findings, along with the lower standard error of estimate (SEE =
0.109) and higher F-value (52.714), confirm the adequacy of the
COMSIA model.

The experimental values of themodel in Figure 3 exhibit a strong
linear correlation with the anticipated values.

3.3 Summary of external validation
parameters

In order to fully assess the predictive ability and reliability of the
CoMSIA model, we performed external validation and summarized
the key validation parameters. Table 3 lists the external validation
parameters of the model, including the number of compounds in the
test set (ntest), the mean value of compound activity in the training
set (tr), the correlation coefficient between experimental and
predicted activity of compounds in the test set (R2ext), and the
adjusted correlation coefficient (R2m). Together, these parameters
demonstrate the robustness and predictive ability of the
constructed model.

3.4 Contour maps generated with COMSIA

The contour plots of the COMSIA model provide insight into
the precise correlation between the compound’s structure and its
pharmacological action (Figure 4) (Xiao et al., 2021). The
experiment included creating several contour plots of molecular
steric field, electrostatic field, hydrophobic field, hydrogen bond
donor field, and hydrogen bond acceptor field using the StDev*Coeff
technique. The relationship between compound structure and
pharmacological action was discerned by the observation of color
variations in various areas of the contour plots (Liu et al., 2018).

Compound 31 was chosen as the reference structure in the
contour plot of the CoMSIA model seen in Figure 4. (Figure 4A)
displays a green contour in the vicinity of the R1 location, showing a
favorable spatial region where the presence of a large group
substituent improves the biological activity. Furthermore, the
presence of the yellow contour next to the R1 location suggests
that even minor group substitutions might have an impact on the
activity. Referring to (Figure 4B), the presence of a blue contour in
the vicinity of the R1 location indicates the presence of an
electrostatic field. Hence, the inclusion of cationic substituents at
this location would enhance the biological efficacy. The hydrophobic
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contour is shown by the yellow contour around the point of R1 in
(Figure 4C). This suggests that the presence of a hydrophobic group
at this location enhances the action. The presence of the white
contour line signifies that the hydrophilic group strongly promotes
the biological activity. The presence of a hydrophilic group at this
location enhances the action. Compound 31, with a moiety in the R1

position, had much superior activity compared to the other
compounds. Both (Figure 4D) and (Figure 4E) show contours at
the R1 position that suggest hydrogen bonding. These contours
provide direction for the incorporation or elimination of hydrogen
bond donor or acceptor groups. The contour maps depicting
hydrogen bond acceptors are shown with fuchsia and red
contours. Introducing hydrogen bond acceptor groups around
the fuchsia outlines enhances activity, but the red contours
indicate regions where hydrogen bond acceptor groups are
unnecessary. The hydrogen bond donor contour map is shown
using purple and blue-green contours. The incorporation of
hydrogen bond donor groups in close proximity to the purple
contour is advantageous for enhancing biological activity,

whereas the occurrence of hydrogen bond donor groups near the
blue-green contour is not anticipated.

3.5 Developed novel compounds and
forecasted IC50 values using the
3D-QSAR model

The neuroprotective efficacy of the targeted medicine in MAO-
B neurodegenerative illness was determined based on the primary
parameters impacting it. Structural alteration of the reference
molecule31 was conducted by following the contour lines and
combining distinct molecular fields in the contour plot. Upon
consolidating the contour findings, we designated the locations to
be altered as R1 and R2. Due to the fact that hydrophobic fields
increase the efficacy of the medicine, we used hydrophobic groups
for structural modification. Hydrophobic groups include several

TABLE 2 Statistical parameters of the COMSIA model.

No. Model q2 ONC r2 F value SEE r2pre

1 ESHAD 0.569 3 0.915 52.714 0.109 5.783

2 ESA 0.537 4 0.861 53.130 0.167 5.736

3 EHD 0.369 5 0.921 44.644 0.101 5.737

4 ESD 0.466 4 0.856 52.597 0.172 5.605

5 ESHA 0.551 3 0.915 52.720 0.109 5.654

6 ESHD 0.528 3 0.913 52.129 0.112 5.681

7 EHAD 0.339 4 0.922 54.834 0.101 5.729

8 SHAD 0.552 4 0.780 37.428 0.236 5.722

9 ESAD 0.499 5 0.857 42.624 0.171 5.601

10 ESH 0.516 4 0.912 51.785 0.113 5.658

S, steric; E, electrostatic; H, hydrophobic; D, hydrogen bond donor; A, hydrogen bond acceptor.

FIGURE 2
The force field contribution of the most optimal COMSIA model.

FIGURE 3
Plot comparing the predicted and experimental values of
COMSIA model compounds.
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types of compound groups, such as alkyl groups (including -CnH2n

+1, -CH = CH2, C6H5, etc.), halogen atoms (-X), and nitro (-NO2),
among others. Utilizing these modification principles, we have
successfully produced over 100 novel compounds. A total of over
100 compounds were optimized using SYBYL 2.1.1, and their
pIC50 values and overall scores were predicted. The top-
performing compounds, namely, compounds 31. a-31.j3, were
chosen for further investigations. Table 4 displays the molecular
structures of these 10 compounds together with their estimated
pIC50 values and overall scores. The data clearly indicates that
compound 31.j3 exhibits the greatest pharmacological activity
value, suggesting that it has significant potential for
neuroprotective action.

3.6 Molecular docking experiments

Before preparing for molecular docking, we performed the
necessary pre-processing of the MAO-B receptor fragment. First,
the crystalline water molecules in the receptor structure were
removed, as these water molecules are not present under
physiological conditions and may interfere with the proper
binding of the ligand to the receptor. Second, missing hydrogen
atoms were hydrogenated to restore the integrity and accuracy of the
receptor structure. These pre-processing steps are essential to ensure
the accuracy and reliability of molecular docking results.

Drug molecules were loaded into the Sybyl-X programme and
the molecular mechanics of the ligand small molecules were
improved using the conjugate gradient method. The optimisation
procedure was carried out using the Tripos force field with the
energy convergence criterion set at 0.01 kcal/(mol-A) and a
maximum iteration limit of 106. After molecular mechanics
optimisation, the best active conformation was selected for
molecular docking studies. To prepare for subsequent molecular
docking, a small fragment of the MAO-B receptor (crystal structure
of MAO-B obtained from the RCSB PDB Protein Data Bank, PDB
ID: 3PO7) (Al-Saad et al., 2024) was removed from the crystalline
water molecules and hydrogenated atoms. The original ligand in the
MAO-B fragment was then extracted and its binding site was
determined as shown in Figure 5.

The Sybyl-X program was used to perform flexible docking
between small molecule ligands and receptors. Activity pockets
were produced by identifying and using the binding sites of the
target ligands. The threshold parameter was configured to a value
of 0.5, the expansion factor was set to 1, and the docking process
was executed using the Sybyl-Dock standard mode. The
molecular conformational changes were preserved for a
duration of 20 units of time. The evaluation of the interaction
between the small molecule and the target was conducted using
the total score function of the Sybyl-Dock module. The Total-
Score function considers the influences of polarity,

hydrophobicity, and enthalpy. A greater number indicates a
stronger interaction between the medication molecule and the
protein crystal.

Based on Figure 1 and COMSIA contour plots, it is evident that
the primary parameters influencing the activity of 6-
hydroxybenzothiazole-2-carboxamide derivatives are hydrophobicity
and hydrogen bonding (as shown in Table 5). Consequently,
the development of novel compound should be derived from
this. Nevertheless, the docking test findings revealed that a
portion of the 100 recently developed compounds had
either low activity levels or were incapable of successfully
completing docking with the tiny MAO-B molecules in space,
as indicated by their extremely low docking scores. Through
careful analysis of these matters, it was discovered that the
creation of novel compounds is conducted at the 2D-QSAR.
Hence, when compounds undergo 3D-QSAR, there is a potential
for misalignment with tiny MAO-B molecules, resulting in
diminished activity levels and docking scores. Compound 31.j3 is
an archetypal illustration. According to Figure 5, compound
31.j3 may fold spatially to create a ring-shaped structure. This
structure can effectively attach to the target pocket of the MAO-
B fragment. Additionally, compound 31.j3 can make hydrogen
bonds with three specific residues of the MAO-B fragment: VAL-
235, ALA-35, GLU-34, GLY-16, GLY-13, and SER-15. Unlike other
compounds, many are shown to be linked to less than five or even
zero amino acid residues. This aligns with the discovery that
compound 31.j3 had the greatest docking prediction score in
Table 3. Compound 31.j3 is considered a potential contender due
to its potential to defend against damage to the nervous system in
neurodegenerative illnesses.

Based on Figure 1 and COMSIA contour plots, it is evident that
the primary parameters influencing the activity of 6-
hydroxybenzothiazole-2-carboxamide derivatives are
hydrophobicity and hydrogen bonding. Consequently, the
development of novel compounds should focus on these
interactions. Indeed, compound 31.j3 forms hydrogen bonds with
several key amino acid residues of the MAO-B receptor, as detailed
in Table 6. Additionally, it exhibits favorable hydrophobic
interactions with other residues. These interactions collectively
contribute to the high docking score and binding affinity of
compound 31.j3, making it a promising candidate for further
development.

3.7 Molecular dynamics simulation

The RMSD rapidly increases from 0 to around 1.0 Å within the
first 2000 frames, indicating initial adjustments as the system
equilibrates. Between 2000 and 6,000 frames, the RMSD
fluctuates between 1.0 Å and 1.5 Å, suggesting that the complex
is exploring conformational space but remains relatively stable

TABLE 3 Summary of external validation parameters for the CoMSIA model.

Parameters ntest tr R2
ext R2

m

Value 7 6.502 0.688 0.642

Note: Both R2
ext > 0.5 and R2

m > 0.5 indicate that the model has statistically reliable predictive power.
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around these values. The red trend line indicates a slight upward
trend, which might suggest a gradual conformational change or
adjustment in the complex over time. The RMSD continues to

fluctuate but shows a slight increase toward the end of the
simulation, reaching up to 2.0 Å. Despite the fluctuations, the
RMSD values do not deviate significantly, indicating that the

FIGURE 4
Contour map showing the optimal configuration of compound 31. (A) In the steric field, the color green indicates a favorable situation, whereas
yellow indicates an unfavorable one. (B) In an electrostatic field, the color blue indicates a positive field, whereas the color red indicates a negative field.
(C) In a hydrophobic environment, the color yellow indicates a favorable condition, whereas white indicates an unfavorable one. (D) Purple represents
advantageous hydrogen bond donor fields, whereas cyan represents unfavourable hydrogen bond donor fields. (E) Favorable (magenta) and
unfavorable (red) hydrogen bond acceptor regions.
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TABLE 4 New compounds designed and their predicted values and total docking scores.

No. R1 R2 pIC50 predicted by CoMSIA Total scores

31 -OH 5.783 6.0648

31.a -OH 6.431 5.3026

31.b -OH 6.386 6.0734

31.c -OH 6.375 6.3952

31.d -OH 6.359 7.2428

31.e -OH 6.452 7.8233

31.f -OH 6.355 6.2652

31.g -OH 6.247 6.4829

31.h -OCH3 5.739 8.0273

31.i -H 6.464 7.0429

(Continued on following page)
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complex does not undergo major structural changes and remains
relatively stable throughout the simulation.

The histogram shows the frequency distribution of RMSD values
throughout the simulation. Most RMSD values lie between 1.0 Å and
2.0 Å, with the highest density around 1.5 Å (Figure 6). This
indicates that the complex remains predominantly stable within
this range. The peak around 1.5 Å suggests this is the most probable

conformation of the complex during the simulation, reflecting its
equilibrium state.

The RMSD analysis indicates that the complex of compound
31.j3 with the target protein (PDB ID: 3PO7) achieves stability after
an initial equilibration phase. The RMSD values fluctuating around
1.5 Å with no significant deviations suggest that the binding of
compound 31.j3 is stable over the simulation period. The slight

TABLE 4 (Continued) New compounds designed and their predicted values and total docking scores.

No. R1 R2 pIC50 predicted by CoMSIA Total scores

31.j3 -OH 6.391 8.1522

FIGURE 5
Performing molecular docking of small molecule compounds 31 and 31.j3 with MAO-B target molecules that are closely related (PDB ID: 3PO7).
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upward trend in the RMSD trend line might warrant further
investigation, but overall, the complex maintains a stable
conformation, making compound 31.j3 a promising candidate for
further experimental validation and development.

The Root Mean Square Fluctuation (RMSF) plot provides
insight into the flexibility of each residue in the protein
throughout the molecular dynamics simulation. Higher RMSF
values indicate greater flexibility, while lower values suggest more
rigid regions. Several peaks are observed, indicating regions with
high flexibility. Notable peaks are found around residue positions
100, 200, 450, and 500. These regions exhibit RMSF values above
1.5 Å, suggesting significant movement during the simulation. The
regions between the peaks. particularly around residue positions
0–100, 100–200, and 200–400, show lower RMSF values, often below
1.0 Å. These areas are relatively stable and do not undergo significant
conformational changes. Both the N-terminal (residues 0–100) and
C-terminal (residues 400–500) ends exhibit higher RMSF values
(Figure 7) which is common as terminal regions are often more
flexible compared to the core of the protein.

The residue cross-correlation matrix obtained from the
molecular dynamics simulation of Compound 31.j3 in complex
with the target protein (PDB ID: 3PO7). The matrix displays the
correlated motions between pairs of residues, with the xaxis and
y-axis representing the residue numbers. The color scale on the right
indicates the correlation coefficients, ranging from −1.0 to 1.0. Blue
(1.0) indicates highly correlated motions, meaning the residues
move in the same direction. Pink (−1.0) indicates highly anti-
correlated motions, meaning the residues move in opposite
directions. White (0) represents uncorrelated or independent
motions The strong blue diagonal line (correlation coefficient of

1.0) indicates the self-correlation of residues, which is expected as a
residue is always perfectly correlated with itself. Patches of blue and
pink off-diagonal elements indicate regions of correlated and anti-
correlated motions, respectively. Clusters of blue patches around
residue numbers 100, 200, 300, and 400 suggest regions where
groups of residues move in a concerted manner. These regions
might correspond to secondary structural elements like alpha-
helices or beta-sheets that undergo collective motions. Pink
patches indicate residues that exhibit opposite directional
movements (Figure 8). These anti-correlated motions could be
indicative of hinge points or flexible regions that allow for
conformational changes in the protein.

Figure 9A shows the energetic contributions of individual
residues to the total binding energy. Each bar represents a
different residue, with energy contributions in kcal/mol. Certain
residues, such as A-GLU-34, A-ALA-35, A-ARG-36,A-GLY-41,
A-ARG-42, A-PRO-234, A-ILE-264, A-PRO-265, A-LEU-268,
A-LYS-271, and A-TYR-393, exhibit significant contributions to
the binding energy. Residues A-GLU-34 and A-ARG-36 show the
highest contributions, indicating they play crucial roles in stabilizing
the binding of compound 31.j3.

Figure 9B provides a visual representation of the target protein,
highlighting the key residues that contribute significantly to the
binding energy. The residues identified in Figure 8B are shown in the
protein structure, illustrating their spatial arrangement and
interaction with compound 31.j3. The highlighted residues ate.
lecated.in close proximity to the binding site of compound 31.j3,
reinforcing their importance in stabilizing the complex.

Figure 9C breaks down the total binding energy into various
components: Van der Waals VDWAALS), electrostatic energy,

TABLE 5 Molecular docking interactions of potential compounds.

Name Define Role in bonding

Hydrogen Bonds Hydrogen bonding is an interaction between a hydrogen atom (usually
attached to a more electronegative atom such as nitrogen, oxygen, or

fluorine) and another electronegative atom

Hydrogen bonds are essential for specificity and stability between ligands
and receptors. By analyzing the number and strength of hydrogen bonds,
it can help to understand the affinity and specificity of a compound

Hydrophobic
Interactions

Hydrophobic interactions occur between the nonpolar amino acid side
chains of a protein and the hydrophobic regions of a ligand

These interactions help to increase the binding energy and stabilize the
presence of the ligand within the binding site

Ionic Interactions Ionic interactions, also known as electrostatic interactions, occur between
positively charged groups (e.g., lysine, arginine) and negatively charged

groups (e.g., aspartic acid, glutamic acid)

This interaction is usually very strong and significantly enhances the
stability of the ligand-protein complex

Van der Waals
Forces

These are weak interactions that occur between atoms and occur when
atoms are close enough together

Although individual van derWaals forces are weak, their cumulative effect
during binding may significantly affect ligand stability

TABLE 6 The most important interactions in molecular docking.

Compound Receptor residues Type of interaction Distance (Å)

31.j3 VAL-235 Hydrogen bond 2.8

31.j3 ALA-35 Hydrogen bond 3.0

31.j3 GLU-34 Hydrogen bond 2.7

31.j3 GLY-16 Hydrophobicity 3.5

31.j3 GLY-13 Hydrophobicity 3.2

31.j3 SER-15 Hydrophobicity 3.9
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polar solvation energy, and non-polar solvation energy. Each
component’s contribution to the overall binding energy is
represented in separate bar graphs. Van der Waals interactions
contribute significantly to the binding energy, indicating strong
hydrophobic interactions between compound 31.j3 and the target
protein. Electrostatic interactions also play a crucial role,
contributing positively to the binding stability. Solvation energies
(both polar and nonpolar) are important for overall binding, with
polar solvation energy showing a substantial positive contribution.
The total binding energy is a combined result of these interactions,
emphasizing the importance of a balanced contribution from
different energetic components for stable binding. The energy
breakdown of amino acid residues is shown in Table 7, with a
total energy of −26.25 kcal/mol.

The energetic components analysis of compound 31.j3 in
complex with the target protein (PDB ID: 3PO7) reveals critical
insights into the binding interaction. Key residues contributing
significantly to the binding energy have been identified, with
visual representation highlighting their importance in stabilizing
the complex. Decomposition of the binding energy into its
components shows that Van der Waals interactions,
electrostatic interactions, and solvation energies all play vital
roles in maintaining the stability and efficacy of compound
31.j3 simulations, and energetic analyses offers a robust
platform for the rational design and optimization of new
therapeutic agents targeting CRC. Future research will focus
on further optimizing these inhibitors and experimentally
validating their efficacy in biological systems, ultimately

FIGURE 6
Root mean square deviation (RMSD) analysis of compound 31.j3 in complex with target protein (PDB ID: 3PO7) During molecular dynamics
simulation.

FIGURE 7
Root mean square fluctuation (RMSF) analysis of compound 31.j3 in complex with target protein (PDB ID: 3PO7).
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contributing to the development of more effective treatments for
neurodegenerative diseases.

3.8 Mechanistic analysis of binding
capabilities and stability

The RMSD analysis revealed that compound 31.j3 exhibits
stable binding to the MAO-B receptor, with RMSD values
fluctuating between 1.0 and 2.0 Å throughout the simulation
(Figure 6). This stability can be attributed to several factors.
First, the compound forms hydrogen bonds with key amino
acid residues such as VAL-235, ALA-35, and GLU-34 (Table 6),
which anchor the compound within the binding pocket and reduce
its mobility. Second, the hydrophobic interactions with residues
like GLY-16, GLY-13, and SER-15 (Table 6) further stabilize the
compound by providing favorable van der Waals
interactions (Figure 9C).

The energy decomposition analysis further supports these
observations. The significant contributions of van der Waals
interactions and electrostatic interactions to the total binding
energy (Table 7) indicate that these non-covalent forces play
crucial roles in stabilizing the complex. Specifically, residues
like A-GLU-34 and A-ARG-36 exhibit the highest energy
contributions, highlighting their importance in the binding
process (Figures 9A, B).

Together, these mechanistic insights provide a comprehensive
understanding of why compound 31.j3 exhibits superior binding
capabilities and stability. The combination of hydrogen bonding,
hydrophobic interactions, and favorable energetic contributions
from key amino acid residues results in a stable and potent
MAO-B inhibitor.

4 Discussion

4.1 Discussion of experimental results and
future research directions

For Table 1: “The predicted IC50 values listed in the table were
calculated by a 3D-QSARmodel we constructed to rapidly assess the
potential of the newly discovered 6-hydroxybenzothiazole-2-
carboxamide derivatives as MAO-B inhibitors. The accuracy and
reliability of the QSAR model can be verified by comparing it with
experimentally measured IC50 values.

In addition to predicting the pIC50 values of the novel
derivatives using the QSAR model, we further evaluated their
performance through molecular docking and molecular dynamics
simulations. Compound 31.j3 not only exhibited the highest
predicted IC50 value but also scored the highest in molecular
docking, with a total score of 8.1522 (Table 4). Molecular
dynamics simulations revealed that compound 31.j3 maintained

FIGURE 8
Residue cross-correlation matrix of compound 31.j3 in complex with the target protein (PDB ID: 3PO7) derived from molecular dynamics
simulations.
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stable binding to the MAO-B receptor, with RMSD values
fluctuating between 1.0 and 2.0 Å (Figure 6). Moreover, energy
decomposition analysis showed that key amino acid residues, such

as VAL-235, ALA-35, and GLU-34, contributed significantly to the
binding energy of compound 31.j3 through hydrogen bonding and
hydrophobic interactions (Table 6; Figure 9).

FIGURE 9
Energetic components analysis of compound 31.j3 in complex with target protein (PDB ID: 3PO7) from molecular dynamics simulation. (A, B)
Compound 31.j3 Binding Pose with MAO-B Target; (C) Key Binding Interactions of Compounds 31 and 31.j3 with MAO-B.
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In this paper, we have selected 36 novel 6-
hydroxybenzothiazole-2-carboxamide derivatives for our study, a
choice based on several considerations.

These compounds are structurally diverse, especially in the
amide substituent portion where multiple modifications have
been made to introduce different side chains. This structural
diversity provides us with a rich dataset that helps to explore the
relationship between structure and activity. At the same time, these
compounds exhibit a high degree of specificity in the inhibition of
MAO-B, which is crucial for the development of targeted
therapeutic agents against neurodegenerative diseases.

Prior to the selection of these compounds, we performed
extensive pre-experimental screening, including preliminary
enzyme activity tests and structure-activity relationship analyses.
The results of these experiments indicated that these compounds
showed good potential in inhibiting MAO-B. In particular,
compound 31, as a reference molecule, showed the highest
pharmacological activity in the experiments. Therefore, we used
it as a basis to derive more compounds by structural modification in
order to further explore the space for activity optimization.

We made theoretical predictions of the activities of these
compounds using quantitative structure-effect relationship
(QSAR) models. By COMSIA method, we constructed 3D-QSAR
and successfully predicted the IC50 values of these compounds. To
verify the accuracy of the theoretical predictions, we compared the
predicted results with the actual experimental data and found good
agreement between them. This further confirmed the structural
rationality and predictability of our selected compound set in
terms of activity.

The superior performance of compound 31.j3, as evidenced by
its highest predicted IC50 value, molecular docking score, and
stable binding in molecular dynamics simulations,
comprehensively demonstrates its advantages over existing
MAO-B inhibitors. The strong hydrogen bonding and
hydrophobic interactions with key amino acid residues further
support the robustness of its binding to the MAO-B receptor.
These findings not only validate the efficacy of our QSAR model
but also underscore the potential of compound 31.j3 as a
promising candidate for the development of novel therapeutic
drugs for neurodegenerative diseases.

These novel 6-hydroxybenzothiazole-2-carboxamide
derivatives were selected for study not only because of their
potential pharmacological activities, but also because of their
structural novelty. This helps us to develop novel drugs with
our own intellectual property rights. In addition, in view of the
important role of MAO-B inhibitors in the treatment of
neurodegenerative diseases, these compounds are expected to be
important candidates for future drug discovery and have a broad
application prospect.

4.2 Discussion of mechanistic insights

The mechanistic analysis presented here underscores the
importance of considering multiple molecular interactions when
designing potent and stable MAO-B inhibitors. The stable binding
of compound 31.j3, as evidenced by the RMSD analysis, is the result
of a well-orchestrated interplay between hydrogen bonding,
hydrophobic interactions, and favorable energetic contributions.

In particular, the formation of hydrogen bonds with key amino
acid residues within the MAO-B binding pocket appears to be a
critical factor in stabilizing the compound. These hydrogen bonds
not only anchor the compound but also facilitate the formation of
favorable van der Waals interactions with nearby hydrophobic
residues. The significant contributions of van der Waals and
electrostatic interactions to the total binding energy further
emphasize the importance of these non-covalent forces in
stabilizing the complex.

By gaining a deeper understanding of the underlying
mechanisms that govern the binding capabilities and stability of
our compounds, we can more effectively guide the rational design of
novel therapeutic agents targeting MAO-B. These insights provide
valuable guidance for future drug discovery efforts aimed at
developing potent and stable MAO-B inhibitors for the treatment
of neurodegenerative diseases.

5 Conclusion

Through a broader comparison encompassing IC50 values,
molecular docking scores, molecular dynamics simulations,
binding free energies, and key amino acid residue contributions,
we have demonstrated that the newly designed compound
31.j3 exhibits superior performance as a potential MAO-B
inhibitor. Its efficient inhibitory activity, stable binding to the
MAO-B receptor, and favorable interactions with key amino acid
residues collectively support its development as a promising
therapeutic agent for neurodegenerative diseases.

Based on the current results, we will further optimize the
structure of compound 31.j3 to improve its bioavailability and
selectivity, and validate its actual efficacy through synthesis and
bioactivity tests. We will utilize more advanced biochemical and cell
biological methods, such as proteomics, metabolomics and gene
editing technologies, to fully reveal the mechanism of the protective
effects of compound 31.j3 and its derivatives on neuronal cells. After
confirming the safety and efficacy of the compounds, animal
experiments and preclinical studies are advanced to assess their
efficacy, pharmacokinetic properties and toxicity in the in vivo
environment, providing an important basis for potential clinical
applications. Given the complex and multifactorial nature of

TABLE 7 Energy breakdown values of amino acid residues.

Frames VDWAALS EEL EGB ESURF GGAS GSOLV Total

Average −40.15 −6.38 25.73 −5.46 −46.52 20.27 −26.25

SD 6.91 7.5 6.37 0.75 11.72 6.0 7.61

SEM 0.07 0.08 0.07 0.01 0.12 0.06 0.08
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neurodegenerative diseases, explore the development of drugs that
simultaneously target multiple targets, such as combining MAO-B
and other enzymes or receptors associated with neurodegenerative
diseases, to provide a more comprehensive neuroprotective effect.
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