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Background: Serous ovarian carcinoma (SOC) is the most lethal subtype of
ovarian cancer, with chemoresistance to platinum-based chemotherapy
remaining a major challenge in improving clinical outcomes. The role of the
tumor microenvironment (TME), particularly cancer-associated fibroblasts
(CAFs), in modulating chemotherapy responses is not yet fully understood.

Methods: To explore the relationship between CAF subtypes and chemotherapy
sensitivity, we employed single-cell RNA sequencing (scRNA-seq), bulk RNA-seq,
spatial transcriptomics, immunohistochemistry (IHC), and immunofluorescence
(IF). This multi-omics approach enabled the identification, characterization, and
functional analysis of CAF subtypes in both chemotherapy-sensitive and
chemotherapy-resistant SOC patients.

Results: We identified steroidogenic acute regulatory protein-positive (STAR+)
cells as a novel CAF subtype enriched in chemotherapy-sensitive SOC patients.
STAR + cells exhibited unique transcriptional profiles and were functionally
enriched in pathways related to P450 drug metabolism, lipid metabolism, and
amino acid metabolism, with enhanced pathway activity observed in
chemotherapy-sensitive groups. Spatial transcriptomics and IF revealed that
STAR + cells were closely localized to tumor cells, suggesting potential cell-
cell interactions. Further communication analysis indicated that STAR + cells may
suppress WNT signaling in tumor cells, contributing to improved chemotherapy
responses. Importantly, STAR expression levels, validated by IHC, were positively
correlated with chemotherapy sensitivity and improved patient prognosis.
Platinum-based chemotherapy was shown to increase the proportion of STAR
+ cells, underscoring their dynamic response to treatment.

Conclusion: Our study identifies STAR + cells as a novel CAF subtype that
enhances chemotherapy sensitivity in SOC. By modulating key metabolic
pathways and potentially suppressing WNT signaling, STAR + cells could
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contribute to improved treatment responses. These findings position STAR + cells
as a promising biomarker for predicting chemotherapy efficacy in SOC, which
warrants further investigation.
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1 Introduction

Serous ovarian carcinoma (SOC) is the most lethal form of
ovarian cancer, primarily due to its high invasive capacity and
resistance to chemotherapy (Liu et al., 2020; Liu et al., 2019).
Platinum-based chemotherapy combined with surgery remains
the first-line treatment for SOC, achieving an initial response in
most patients. However, approximately 80% of patients experience
relapse, leading to a 5-year survival rate of less than 30% for stage
IIIC-IV patients (Ahn et al., 2024; Gockley et al., 2017; Gadducci and
Cosio, 2021; Lheureux et al., 2019). Despite advances in targeted
therapies and immunotherapy, their efficacy in SOC remains
limited, leaving few effective options for platinum-resistant
patients (Konstantinopoulos and Matulonis, 2023; Marchetti
et al., 2021). The frequent recurrence of SOC underscores the
urgent need to understand and address the mechanisms driving
its chemoresistance to platinum-based therapies.

SOC’s genetic landscape is characterized by extensive copy
number variations (CNVs) and recurrent mutations in key genes
such as TP53 and BRCA1/2, which contribute to its genomic
complexity and therapy resistance (Raab et al., 2024; Dias et al.,
2021; Montemorano et al., 2024). In addition to genetic factors, the
tumor microenvironment (TME), particularly cancer-associated
fibroblasts (CAFs), has emerged as a crucial driver of tumor
progression and treatment resistance (Carvalho et al., 2022).

Specifically, in tumors such as non-small cell lung cancer and
colorectal cancer, CAFs enhance tumor cell resistance to
chemotherapy agents like fluorouracil and platinum-based drugs
by secreting or receiving exosome signals (Wang et al., 2021; Hu
et al., 2015). Targeting CAFs can increase drug absorption by the
tumor, thereby improving the efficacy of cancer chemotherapy
(Loeffler et al., 2006). CAFs contribute to chemotherapy
resistance through mechanisms such as increasing drug efflux,
reducing drug absorption, promoting EMT, and creating a
supportive microenvironment via extracellular matrix remodeling
and immune cell infiltration, allowing tumors to survive under
therapeutic pressure (Helms et al., 2020; Zhao et al., 2022).
However, recent studies on CAF subtypes have revealed that
CAFs exhibit significant heterogeneity, with distinct subtypes
potentially playing divergent roles in drug response (Ma et al.,
2023; Lavie et al., 2022; Su et al., 2018). Some types of CAFs
have tumor-suppressive properties (Feng et al., 2022). For
example, CD146+ CAFs have been identified as tumor-
suppressive subsets in breast cancer, with high levels of CD146+
CAFs increasing the sensitivity of breast cancer to treatment
(Brechbuhl et al., 2017). Similarly, Slit2+ and CD146+ CAFs can
suppress tumorigenesis and enhance chemosensitivity (Mhaidly and
Mechta-Grigoriou, 2021). However, the specific contributions of
these CAFs to platinum resistance in SOC remain largely unknown.

To comprehensively analyze changes in the TME of SOC across
patients with varying responses to chemotherapy, we identify and
characterize a novel subtype of CAFs-steroidogenic acute regulatory
positive (STAR+) cells. By integrating multiple omics analyses of
SOC with real-world clinical data, we aim to elucidate the role of
STAR + cells and their interactions with tumor cells in mediating
responses to platinum-based chemotherapy. Through a detailed
characterization of the cellular and microenvironmental
dynamics, we seek to provide new insights into the therapeutic
vulnerabilities of SOC, paving the way for improved treatment
strategies.

2 Methods

2.1 Transcriptomics data sources

In this study, transcriptomics data were obtained from publicly
available datasets. Specifically, single-cell RNA sequencing data
(GSE211956, GSE201047, GSE184880) were downloaded from
the Gene Expression Omnibus (GEO) repository (https://www.
ncbi.nlm.nih.gov/geo/), and rc47y6m9mp.1 was retrieved from
Mendeley (https://data.mendeley.com/datasets/rc47y6m9mp/2).
Spatial transcriptomics data (GSE211956) were also sourced from
the GEO repository. Bulk RNA sequencing data (GSE227100,
GSE28739, GSE156699, GSE30161) were downloaded from GEO;
TCGA-OV data were retrieved from The Cancer Genome Atlas
(TCGA) repository (https://portal.gdc.cancer.gov/); normal ovarian
tissue data were downloaded from UCSC (https://xenabrowser.net/
datapages/?cohort=GTEX). Prognosis assessment data were
accessed from Kaplan-Meier Plotter (https://kmplot.com/), ROC
Plotter (https://rocplot.com/), and the TIMER2 database (http://
timer.cistrome.org/).

Patients were classified as either platinum-based chemotherapy-
sensitive or chemotherapy-resistant based on two criteria: (1)
chemotherapy-resistant patients were defined as those with
progression-free survival (PFS) ≤ 6 months after the last
platinum-based chemotherapy, or a histological assessment
showing no or minimal tumor response (CRS = 1); (2)
chemotherapy-sensitive patients were defined as those with
PFS >6 months or CRS ≥2. In cases where both PFS and CRS
data were available, PFS was prioritized as the primary indicator.

2.2 Patient selection and evaluation criteria

With approval from the Ethics Committee of Qingdao
University Affiliated Hospital and after obtaining informed
consent (QYFYWZLL29492), we conducted a retrospective study
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on patients with SOC who received platinum-based chemotherapy
at our institution. The inclusion criteria were: a confirmed diagnosis
of SOC, an Eastern Cooperative Oncology Group (ECOG)
performance status of 0–2, completion of at least six cycles of
platinum-based chemotherapy, and availability of comprehensive
medical records. Clinical data were collected through medical chart
reviews and patient follow-ups, and corresponding tumor tissue
samples were obtained from the department of pathology. All
treatments were administered in accordance with relevant clinical
guidelines and drug protocols. Tumor staging prior to treatment was
determined according to the 8th edition of the American Joint
Committee on Cancer (AJCC) guidelines. Treatment responses were
evaluated radiologically using the Response Evaluation Criteria in
Solid Tumors (RECIST) version 1.1.

2.3 Single-cell RNA transcriptomics analysis

All single-cell RNA sequencing (scRNA-seq) analyses were
performed in R (v4.2.0) with Seurat (v4.3.0) (Hao Y. et al., 2021).
Cells with over 15% mitochondrial UMI content, fewer than
500 UMIs, or fewer than 200 detected genes were excluded. The
gene expression matrix was normalized to total cellular UMI counts
using the SCTransform method, followed by scaling, which corrects
for technical variation due to differences in sequencing depth. Next,
3,000 highly variable features were selected for principal component
analysis (PCA). To minimize batch effects, Harmony (v0.1.0) was
used before PCA, ensuring that any technical variations were not
confounding the biological analysis. The first 100 principal
components were used for clustering at a resolution of 1, and the
resulting clusters were visualized using t-SNE or UMAP. Cluster-
specific markers were identified with the FindAllMarkers function
using the Wilcoxon test, applying thresholds of log2-fold
change >0.25 and min. pct >0.25. Cell types, including tumor
cells, T cells, macrophages, and stromal cells, were annotated
using SingleR (v1.4.1) and canonical marker genes from previous
literature. Hallmark and KEGG pathway enrichment analyses were
conducted using the GSVA (v1.50.5) (Hänzelmann et al., 2013) and
msigdbr (v7.5.1) (Liberzon et al., 2015) R packages. The
ClusterProfiler R package (v4.4.4) (Wu T. et al., 2021)was used
for Gene Ontology (GO) enrichment analysis. SCENIC (v1.3.1)
(Aibar et al., 2017) was employed for transcription factor analysis.
Pseudotime trajectory analysis was carried out using the
Monocle2 R package (v2.18.0) (Bray et al., 2016) and
CytoTRACE (v0.3.3) (Gulati et al., 2020).

2.4 Combined analysis of single-cell RNA
and bulk-RNA transcriptomics analysis

To integrate scRNA-seq data with bulk RNA-Seq data for
ovarian cancer, bulk RNA-Seq data for tumor samples were
obtained from TCGA, and normal ovarian bulk RNA-Seq data
were sourced from GTEx. Sample annotations were standardized,
and the expression matrix was filtered to retain genes expressed in at
least 50% of samples with non-zero counts. Raw count data were
normalized using the Trimmed Mean of M-values (TMM) method
in the edgeR package to account for library size differences. To

estimate cell-type proportions in bulk RNA-Seq data, cell-type-
specific signatures derived from annotated scRNA-seq data were
applied using CIBERSORT and ssGSEA algorithms. Specifically,
CIBERSORT was employed to estimate the relative abundance of
different cell types in the bulk RNA-seq data by comparing the gene
expression patterns of these cell types with those in the bulk samples.
For ssGSEA, gene sets corresponding to specific cell types were
scored in bulk RNA-seq data to evaluate the enrichment of different
cell types across tumor and normal samples. Differential expression
analysis between tumor and normal samples was performed using
the edgeR package, with thresholds set at FDR <0.05 and |log2FC| >
1 to identify significant differentially expressed genes (DEGs). Gene
signatures derived from scRNA-seq analysis were scored in the bulk
RNA-seq samples using the AddModuleScore function in Seurat.
UMAP dimensionality reduction was performed to visualize tumor
enrichment scores. Correlation analysis was conducted to examine
gene expression relationships between different cell populations,
and results were organized into a correlation matrix.

2.5 Combined analysis of single-cell RNA
and spatial transcriptomics data analysis

Spatial transcriptomics data analysis was performed using R
(v4.2.0), and the following packages were used: Seurat (v4.3.0),
ggplot2 (v3.5.1), dplyr (v1.1.4), magrittr (v2.0.3), RColorBrewer
(v1.1–3) packages (He et al., 2025; Liu et al., 2022). To normalize
the ST data, we applied the SCTransform method for normalization,
followed by integration steps involving selectIntegrationFeatures,
prepSCTIntegration, findIntegrationAnchors, and integrateData to
harmonize the datasets. The integration was performed to ensure
compatibility between the different datasets. We then used an
unsupervised clustering approach to identify spatially distinct spots.
Cell population annotations were derived through deconvolution using
scRNA-seq annotations to ensure consistency across the datasets,
allowing for the alignment of cell identities between spatial and
scRNA-seq data. Visualization of spatial expression patterns was
accomplished using SpatialDimPlot and SpatialFeaturePlot functions,
providing an in-depth view of cell distribution and activity across tissue
sections. Additionally, for the spatial transcriptomics data, batch effects
were controlled by integrating reference scRNA-seq data using the
RCTD approach, which provides insights into the spatial distribution of
cell types within the tumor microenvironment.

2.6 Cell-to-cell communication analysis

All analyses were performed in R (v4.2.0), and the following
packages were used:

Seurat (v4.3.0), dplyr (v1.1.4), magrittr (v2.0.3), RColorBrewer
(v1.1–3), tidyr (v1.3.1), patchwork (v1.2.0), and CellChat (v1.1.3)
(He et al., 2025; Liu et al., 2022; Jin et al., 2021). To ensure robustness
and minimize noise, ligand-receptor interactions expressed in fewer
than 10 cells within specific cell groups were excluded. Interaction
patterns were visualized using the netVisual function, generating
bubble plots and signaling network diagrams. For pathways
involving multiple ligand-receptor pairs, the netAnalysis
contribution function was applied to evaluate the contribution of

Frontiers in Pharmacology frontiersin.org03

Lan et al. 10.3389/fphar.2025.1545762

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1545762


each pair. Gene expression levels of key ligands and receptors were
displayed with PlotGeneExpression in violin plots to assess
differential expression across cell groups. Non-negative Matrix
Factorization (NMF) was applied within CellChat to extract
major co-communication patterns, following the identification of
significant signals using the identifyCommunicationPatterns

function. Network centrality scores were calculated using
netAnalysis_teCentrality to quantify the importance of cells
within the communication network, and netAnalysis
signalingRole network was used to identify dominant senders,
receivers, mediators, and influencers in cell-cell
communication networks.

FIGURE 1
Identification of cell types in the SOC tumor microenvironment (A) Uniform Manifold Approximation and Projection (UMAP) visualization displaying
all cell clusters. (B) UMAP visualization of cells colored by the expression levels of marker genes. (C)UMAP plot illustrating themain cell types identified in
the tumor microenvironment (TME). (D) Dot plot depicting marker gene expression across the main cell types. (E) Proportions of the major cell types
across all samples.
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2.7 Immunohistochemical staining analysis

Tumor tissues were fixed in 4% paraformaldehyde, dehydrated
using an ethanol gradient (70%, 85%, 95%, 100%), embedded in
paraffin, cut into 5 µm-thick sections using a paraffin-embedded
tissue microtome (RM2235, Leica, Wetzlar, Germany), and dried in
an oven at 60°C for 1 h. The sections were deparaffinized in xylene
(2 changes, 10 min each), rehydrated through a descending ethanol
gradient (100%, 95%, 85%, 70%; 5 min per step), and washed with
phosphate-buffered saline (PBS, P3813-10 PAK, Sigma, USA).
Antigen retrieval was performed using Tris-EDTA buffer
(pH 9.0, 95°C, 20min), followed by cooling in a water bath for 5 min.

Rabbit anti-STAR antibody (80751-1-RR, 1:500 dilution,
Proteintech, Wuhan, China) was applied, and sections were
incubated as per the manufacturer’s instructions. The percentage
of STAR-positive cells was quantified using ImageJ software.

2.8 Statistical analysis

Data are presented as the mean ± SD. The Mann‒Whitney test or
Student’s t-test was used to compare the differences between different
groups. Correlation analyses employed the R function cor. test with
Pearson’s method. Kaplan-Meier curves with log-rank tests were used
for prognosis analysis. Differential expression in pseudotime or cell-type
trajectories used negative binomial models with
q-values <0.01 indicating significance. Data analysis and
visualization were mainly performed using GraphPad Prism 9, R
language, and R packages. The statistical significance was set at P < 0.05.

3 Results

3.1 Single-cell RNA sequencing reveals
cellular composition of the tumor
microenvironment

Fifteen SOC samples were collected and processed for scRNA-seq
using standard protocols (Methods). After quality control, batch effect
correction, and dimensionality reduction clustering, a total of 57,693 cells
were retained for subsequent analyses and grouped into 39 distinct cell
clusters (Figure 1A). These clusters were annotated into 13 major cell
types based on canonical marker genes (Figures 1B, C). Specifically, the
identified cell typeswere annotated based on canonicalmarkers: epithelial
cells (EPCAM, KRT19, KRT7), smooth muscle cells (MYH11, TAGLN,
ACTA2), CAFs (COL1A1, COL1A2, POSTN), B cells (CD79A, MZB1),
endothelial cells (VWF, CDH5), T cells (CD2, CD3D, CD8A, CD4), NK
T cells (NKG7, PRF1), macrophages (CD68, C1QA, TREM2),
monocytes (CD14, S100A8, S100A9), dendritic cells (CD1E, CD1C),
and HSP + cells (HSPA6, HSP1B, HSPA1A).

Interestingly, we identified a unique cell population termed STAR+
cells, which exhibited high expression of STAR, C6orf48, and MEG3,
but lacked canonical epithelial markers (Figure 1D). These cells showed
a close transcriptional relationship with tumor cells, suggesting a unique
biological identity. Notably, STAR + cells were present in all SOC
samples, as confirmed by their consistent detection across samples
(Figure 1E). To further characterize the nature and functional relevance
of STAR + cells, we performed an in-depth analysis.

3.2 STAR + cells as a special CAF subtype

A pan-cancer analysis revealed that STAR is expressed not only in
ovarian cancer but also in other tumors, such as head and neck squamous
cell carcinoma (HNSC), testicular germ cell tumors (TGCT), low-grade
glioma (LGG), and lung squamous cell carcinoma (LUSC) (Figure 2A).
In SOC, STAR expression was significantly lower than in normal ovarian
tissues (Figure 2B). Previous studies have indicated that STAR is
primarily expressed in ovarian granulosa and theca cells. To further
explore the characteristics of STAR + cells, we analyzed an independent
dataset containing SOC and normal tissues. This analysis showed that
although STAR + cells share some transcriptional similarity with
granulosa/theca cells, they are a distinct cell type more closely related
to fibroblasts (Supplementary Figures S1A, B).

Further examination revealed that while STAR expression is high in
both STAR+ cells and granulosa/theca cells, theirmarker gene expression
profiles differ. STAR + cells exhibited elevated expression of fibroblast-
associated genes such as COL3A1 and COL1A1, while granulosa/theca
cells predominantly expressed GJA1, LHCGR, and LSD3B2
(Supplementary Figures S1C, D). This expression pattern is consistent
with the STAR+ cell profile observed in this study (Supplementary Figure
S1E). Single-cell sequencing further confirmed that STAR expression in
STAR + cells and granulosa/theca cells was significantly lower in SOC
tissues compared to normal tissues (Supplementary Figure S1F). These
findings indicate that the STAR + cells identified in this study are distinct
from granulosa and theca cells.

To distinguish STAR + cells from tumor cells, we performed
inferCNV analysis, which showed that STAR + cells exhibited low
CNV levels, similar to CAFs and smooth muscle cells (SMCs), whereas
tumor cells displayed high CNV levels indicative of malignancy
(Figure 2C). Additionally, deconvolution of scRNA-seq annotations
into TCGA and GTEX bulk RNA-seq data revealed that STAR + cells
are predominantly present in normal tissues, with significantly lower
enrichment in tumor tissues compared to tumor cells (Figure 2D).
These results support that STAR+ cells are non-malignant, despite their
transcriptional and spatial proximity to tumor cells.

Correlation analyses using both scRNA-seq and bulk RNA-seq data
demonstrated that STAR + cells are closely associated with CAFs, SMCs,
and endothelial cells (Figures 2E, F). Pseudotime trajectory analysis
showed that STAR + cells are more differentiated compared to tumor
cells, suggesting a higher degree of maturity. STAR + cells shared partial
developmental trajectories with CAFs but exhibited distinct
developmental endpoints (Figures 2G, H, Supplementary Figure S1G).
Spatial transcriptomics suggest that STAR+ cells are spatially proximal to
CAFs, but they showed stronger spatial association with tumor cells
compared to CAFs (Figure 2I). To further validate this, IF was conducted,
which confirmed that STAR is predominantly expressed in CAFs, with a
small amount of expression observed in tumor cells (Figure 2J).

In summary, these findings suggest that STAR + cells represent a
distinct CAF subtype and are closely associated with tumor cells.

3.3 STAR + cells are associated with
platinum-based chemotherapy sensitivity
in SOC

To investigate the differences in the TME between
chemotherapy-sensitive and chemotherapy-resistant SOC groups,
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FIGURE 2
Identification and analysis of STAR + cells (A) The expression of STAR in pan cancers. (B) Expression level of STAR between SOC and normal samples.
(C) Hierarchical heatmap from InferCNV analysis displaying large-scale copy number variations (CNVs) in different cells. (D) The enrichment of STAR +
cell in tumor and normal ovarian sample. (E, F) Heatmap depicting the Pearson correlation coefficients among identified cell clusters in ScRNA-seq and
bulk RNA-seq data. (G) Analysis of differentiation levels in major cell types. (H) Pseudotime trajectory analysis of STAR + cell and CAF. (I) Spatial
transcriptomics reveals the spatial relationships among STAR + cell, tumor cell, CAF, and SMC. (J) Immunofluorescence staining of SOC showing the
expression of STAR, COL1A1, and EPCAM. Blue represents DAPI, green represents STAR + cell, yellow represents COL1A1 (CAF), and red represents
EPCAM (tumor cell).
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we conducted a detailed analysis. The results showed that STAR +
cells were the most significantly different cell population between
the two groups, with a higher proportion of STAR + cells in the

chemotherapy-sensitive group compared to the resistant group
(Figure 3A). Differential gene expression analysis further revealed
that STAR + cells exhibited the highest number of differentially

FIGURE 3
STAR + cells are associated with platinum-based chemotherapy sensitivity in SOC (A) Differential abundance of cell types between chemotherapy-
resistant and chemotherapy-sensitive SOC patients. (B) Number of differentially expressed genes (DEGs) in each cell type between chemotherapy-
resistant and chemotherapy-sensitive patients. (C) AUC-based evaluation of cell-type specificity in distinguishing chemotherapy-resistant from
chemotherapy-sensitive patients. (D, E) UMAP visualization and cell-type composition showing the differences in cell proportions between
chemotherapy-sensitive and chemotherapy-resistant SOC patients before and after treatment. (F) Comparison of STAR expression levels between
chemotherapy-sensitive and chemotherapy-resistant patients using bulk RNA-seq data. (G) Comparison of STAR AOD values between chemotherapy-
sensitive and chemotherapy-resistant patients based on IHC data. (H, I) Representative IHC image of STAR in chemotherapy-sensitive and
chemotherapy-resistant patient.
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expressed genes (DEGs) between the two groups, with these DEGs
demonstrating high specificity and a strong ability to distinguish
chemotherapy-sensitive from resistant groups (Figures 3B, C).

To account for potential variations due to sampling time points,
we separately compared samples collected before and after
chemotherapy. In pre-chemotherapy samples, the proportions of
tumor cells, STAR + cells, and T lymphocytes were higher in the

sensitive group, while CAFs and macrophages were more abundant
in the resistant group (Figure 3D). In post-chemotherapy samples,
tumor cell proportions were significantly reduced in the sensitive
group, accompanied by decreases in CD4 T cells, CD8 T cells, and
NKT cells. However, the proportion of STAR + cells remained
higher in the sensitive group compared to the resistant
group (Figure 3E).

FIGURE 4
STAR + cells are positively associated with prognosis in SOC (A) Comparison of STAR expression levels between responders and non-responders to
platinum, taxane, and platinum-taxane combination chemotherapy at 12 months post-treatment. (B) Comparison of STAR expression levels between
patients with complete response (CR) and partial response (PR) to platinum-based chemotherapy. (C) Spatial distribution of STARweights in SOC patients
showing bad, partial, and good chemotherapy responses. (D) Representative IHC images of STAR expression in SOC patients achieving complete
response (CR), partial response (PR), and progressive disease (PD) following platinum-based chemotherapy. (E) Kaplan-Meier plot showing the
association between STAR expression levels and overall survival in ovarian cancer patients. (F) Kaplan-Meier plot showing the association between STAR
expression levels and progression-free survival and overall survival in SOC patients receiving platinum, taxane, and platinum-taxane combination
chemotherapy.
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Independent bulk RNA-seq data also showed that STAR
expression levels were higher in the chemotherapy-sensitive
group compared to the resistant group (Figure 3F). Moreover,
analysis of tumor specimens from SOC patients receiving
platinum-based chemotherapy at our center confirmed that
STAR expression was significantly higher in the sensitive group
(N = 24) compared to the resistant group (N = 20) (Figures 3G–I).

These findings suggest that STAR + cells are positively
associated with platinum-based chemotherapy sensitivity in SOC
and may enhance the cytotoxic effects of chemotherapy on
tumor cells.

3.4 STAR + cells are positively associated
with chemotherapy response and prognosis
in SOC

Given the close association between STAR + cells and platinum-
based chemotherapy sensitivity in SOC, we further hypothesized
that STAR + cells may influence clinical outcomes in patients.

To validate this hypothesis, we analyzed transcriptomic data from
patients who received platinum, taxane, or platinum-taxane combination
chemotherapy at 12 months post-treatment. The results showed that
STAR expression levels were higher in patients who responded well to
treatments compared to non-responders (Figure 4A). Moreover, among
patients treated with platinum-based chemotherapy, those achieving
complete response (CR) exhibited significantly higher STAR
expression levels compared to patients with partial response (PR)
(Figure 4B). Spatial transcriptomic analysis revealed that the
proportion of STAR + cells gradually increased in patients with poor
response, partial response, and good response to chemotherapy
(Figure 4C). Similarly, a comparable trend was observed in post-
chemotherapy patients achieving progressive disease (PD), PR, or CR
(Figure 4D). These results indicate that STAR + cells are positively
associated with the response to platinum-based chemotherapy in SOC,
with higher STAR expression levels potentially corresponding to
improved chemotherapy efficacy.

Further analysis of the relationship between STAR expression
and the clinical prognosis of SOC patients revealed that, in the
overall ovarian cancer cohort, patients with high STAR expression
had significantly longer overall survival (OS) compared to those with
low STAR expression (Figure 4E). Subgroup analyses based on
platinum, taxane, or platinum-taxane combination chemotherapy
consistently showed that high STAR expression is a protective factor
for SOC patients, correlating with better progression-free survival
(PFS) and OS (Figure 4F).

In conclusion, STAR + cells are positively associated with
platinum-based chemotherapy sensitivity and clinical prognosis
in SOC, suggesting that STAR + cells may serve as potential
biomarker for predicting chemotherapy response and prognosis
in SOC patients.

3.5 Platinum-based chemotherapy
increases STAR + cell levels

We have demonstrated that STAR + cells are positively
associated with chemotherapy efficacy and patient prognosis.

Based on these findings, we hypothesized that platinum-based
chemotherapy may influence the levels of STAR + cells.

To test this hypothesis, patients were divided into two groups:
pre-chemotherapy (naïve group) and post-chemotherapy (treated
group), based on sampling time points. The results showed a
significant reduction in tumor cells following chemotherapy,
confirming the anti-tumor effect of platinum-based treatment. In
contrast, the proportion of STAR + cells increased significantly after
chemotherapy (Figure 5A). Considering that the pre-chemotherapy
and post-chemotherapy samples in this dataset were not paired, we
validated these findings using another dataset containing matched
pre-chemotherapy and post-chemotherapy primary tumor samples
from the same patients. This analysis also revealed a decrease in
tumor cells and a significant increase in STAR + cells after
chemotherapy (Figure 5B). Independent bulk RNA-seq data
further confirmed that STAR expression levels were significantly
elevated in post-chemotherapy samples compared to pre-
chemotherapy (Figure 5C). Analysis of IHC data from patients at
our center similarly validated these findings, showing increased
STAR expression in post-chemotherapy (N = 23) compared to
pre-chemotherapy (N = 21) (Figures 5D–F).

Furthermore, to investigate the behavior of STAR + cells in
metastatic SOC lesions, we analyzed metastatic tumor samples. The
results showed that STAR expression levels were generally low in
metastases, and no distinct STAR + cell population was identified
(Figure 5G). Further analysis revealed that STAR was primarily
expressed in myCAFs, with varying levels across metastatic sites.
Specifically, STAR expression was higher in omental and peritoneal
metastatic lesions (Figure 5H). IHC analysis further confirmed the
low expression of STAR in metastatic tumors (Figure 5I). However,
despite the overall low levels, STAR expression in metastatic tumors
was still higher in post-chemotherapy samples compared to pre-
chemotherapy samples (Figure 5H).

In conclusion, these results further confirm the close
relationship between STAR + cells and platinum-based
chemotherapy, suggesting that the clinical benefit of platinum-
based treatment in SOC patients may be associated with an
increase in STAR + cells.

3.6 STAR + cells influence drug efficacy
through metabolic pathways

To investigate how STAR + cells affect the efficacy of platinum-
based chemotherapy in SOC, we conducted a comprehensive
functional analysis of STAR + cells. GSVA analysis revealed that,
compared to other cell types, STAR + cells were significantly
enriched in metabolic pathways, including P450 metabolism,
lipid metabolism, and amino acid metabolism (Figure 6A).
Further analysis showed that, in the chemotherapy-sensitive
group, STAR + cells exhibited higher enrichment in these
pathways compared to the resistant group (Figure 6B). These
findings suggest that STAR + cells may regulate drug
metabolism, energy supply, and oxidative stress responses,
thereby influencing chemotherapy drug efficacy (Gougis
et al., 2021).

The correlation between STAR + cells and metabolic pathways
was further validated by spatial transcriptomic data. Previous spatial

Frontiers in Pharmacology frontiersin.org09

Lan et al. 10.3389/fphar.2025.1545762

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1545762


FIGURE 5
Variation of STAR+ cell levels in chemotherapy-naïve and chemotherapy-treated primary andmetastasis SOC samples (A)UMAP visualization and cell-type
composition illustrating the differences in cell proportions between pre-chemotherapy and post-chemotherapy SOC patients. (B) UMAP visualization and cell-
type composition showing thedifferences in cell proportions betweenpairedpre-chemotherapy andpost-chemotherapy SOCpatients. (C)Comparisonof STAR
expression levels between pre-chemotherapy and post-chemotherapy SOC patients using bulk RNA-seq data. (D) Comparison of STAR AOD values in
patients based on IHC data. (E, F) Representative IHC image of STAR in pre-chemotherapy and post-chemotherapy SOC patient. (G) UMAP visualization the
expression of STAR in metastasis SOC samples. (H) Violin plots showing STAR expression levels across different cell types (top), metastatic tumor locations
(middle), and pre-chemotherapy and post-chemotherapy metastatic SOC samples (bottom). (I) IHC image of STAR in different metastatic tumor locations.
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transcriptomic analysis revealed the spatial proximity of STAR +
cells to CAFs; however, CAFs exhibited spatial heterogeneity. To
address this, we classified CAFs into Far CAFs and Near CAFs based
on their spatial distance from STAR + cells and performed
differential gene expression analysis (Figure 6C). The results
showed that Near CAFs exhibited significantly higher expression

of metabolism-related genes such as ADIRF and
PARRES2 (Figure 6D).

GO enrichment analysis indicated that, in addition to fatty acid
metabolism pathways, STAR+ cells were also involved inWnt signaling
pathways and p53 signal transduction, which are associated with tumor
progression (Figure 6E). Moreover, we observed potential functional

FIGURE 6
STAR + cells influence chemotherapy response through metabolic pathways and transcription factor activation. (A) Heatmaps showing pathways
enriched in cell types. (B) Heatmaps showing pathways enriched of STAR + cells in chemotherapy-sensitive and chemotherapy-resistant patients. (C)
Spatial distribution of STAR + cells and their spatial proximity to CAFs in the SOC TME. (D) Volcano plot showing differentially expressed genes (DEGs)
between near CAFs and far CAFs. (E) Bubble plot showing GO enrichment analysis of STAR + cells. (F, G) Transcription factor analysis of STAR +
cellsin chemotherapy-sensitive and chemotherapy-resistant groups.
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differences in STAR + cells between the chemotherapy-sensitive and
resistant groups. For example, STAR + cells in the sensitive group
displayed higher transcription factor activity (Figure 6F). Specifically,

the transcription factors FOS/FOSB, JUN/JUNB, and EGR1, which are
closely linked to the p53 signaling pathway, exhibited significantly
elevated activity in the sensitive group (Figure 6G).

FIGURE 7
Cell-cell communication between tumor cell and STAR + cells (A)Cell-cell communication networks showing differences between chemotherapy-
sensitive and chemotherapy-resistant groups. (B) Communication patterns of cell types. (C) Dot plot showing the main significant ligand-receptor (L-R)
pairs between tumor cells and STAR + cells. The dot color and size represent the calculated communication probability and p-values. p-values are
computed from a one-sided permutation test. (D) The L-R pairesWnt signaling include, and the relative importance of L-R paires inWnt signaling. (E)
WNT-related gene expression levels in cell types. (F)Hierarchical plot shows the inferred intercellular communication network forWnt signaling. This kind
of plot consists of two parts: The left side focusing on signaling targeting stromal cells and B cells while the right side focusing on signaling targeting
tumor cells and immune cells. Solid and open circles represent source and target, respectively. Circle sizes are proportional to the number of cells in each
cell group and edge width represents the communication probability. Edge colors are consistent with the signaling source. (G) Heatmap shows the
relative importance of different cell-types based on the computed four network centrality measures of Wnt signaling network. (H) Heatmap showing
enriched pathways in chemotherapy-sensitive and chemotherapy-resistant tumor cells.
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In conclusion, STAR + cells may influence chemotherapy
efficacy by modulating metabolism-related pathways in the TME,
as well as key signaling pathways such as Wnt and p53.

3.7 STAR + cells promote chemotherapy
efficacy by suppressing wnt signaling

We further analyzed the cell-cell communication between STAR
+ cells and other cell types within the TME. The chemotherapy-
sensitive group showed significantly fewer cell-cell communications
than the resistant group, indicating that improved chemotherapy
efficacy reduced the complexity of cellular interactions. Despite a
higher proportion of STAR + cells in the sensitive group, their
communication numbers also decreased (Figure 7A). STAR + cells
shared similar communication patterns with CAFs and SMCs,
primarily enriched in Pattern 5 (Figure 7B), confirming their
close relationship with CAFs.

We observed significant differences in ligand-receptor pairs
(LRPs) between STAR + cells and tumor cells in the sensitive
and resistant groups. In the resistant group, the primary LRPs
included WNT7A-FZD6 +LRP6 and LAMA/B/C-ITGAC
(Figure 7C), which were absent in the sensitive group, replaced
by LRPs associated with p53 signaling, such as COL1A1-ITGA3
+ITGB1 (Figure 7C). WNT7A-FZD6/FZD3+LRP6/LRP5, critical
components of the canonical Wnt signaling pathway, were
exclusively expressed in STAR + cells and tumor cells (Figures
7D, E). The Wnt-FZD + LRP LRPs play an important role in the
Wnt signaling pathway. Specifically, Wnt signaling activates signal
transduction by binding with the FZD receptor and the LRP5/6 co-
receptor, leading to the dimerization or aggregation of these two
receptors. This mechanism is crucial for intercellular
communication, especially in the TME, where Wnt signaling
regulates the interaction between tumor cells and CAFs (Nusse
and Clevers, 2017; Ren et al., 2021). Moreover, it has also been
observed in the nervous system that Wnt7a activates β-catenin
signaling through binding with FZD + LRP6/LRP5 (Zhao
et al., 2015).

Additionally, we found that Wnt signaling transmitted
unidirectionally from STAR + cells to tumor cells via paracrine
signaling. Tumor cells also regulated their own Wnt signaling
through autocrine signaling (Figures 7F, G). Pathway analysis of
tumor cells showed that, in the resistant group, Wnt signaling,
angiogenesis, and invasion-related pathways were upregulated,
while in the sensitive group, p53 signaling and apoptosis
pathways were elevated (Figure 7H).

In conclusion, these results support our hypothesis that STAR +
cells influence tumor behavior by regulating Wnt and p53 signaling,
enhancing the anti-tumor effects of platinum-based chemotherapy.

4 Discussion

Platinum-based chemotherapy remains the cornerstone of
treatment for SOC, yet chemoresistance remains a significant
barrier to improving patient outcomes, as most patients
eventually relapse with platinum-resistant disease (Richardson
et al., 2023). This study presents several key advancements in

understanding SOC chemoresistance by identifying STAR + cells
as a novel CAF subtype and conducting a comprehensive analysis of
their characteristics, functions, and underlying mechanisms.
Notably, this is the first study to establish the relationship
between STAR + cells and platinum-based chemotherapy
sensitivity, offering mechanistic insights into their potential roles
within the TME.

STAR is a mitochondrial protein primarily involved in
steroidogenesis, facilitating the transport of cholesterol into
mitochondria for steroid hormone synthesis (Clark et al., 1994).
Under normal physiological conditions, STAR is highly expressed in
ovarian granulosa and luteal cells, where its expression is tightly
regulated during the luteal phase, playing a key role in progesterone
production during luteal development and regression (Dou et al.,
2016). STAR is also associated with hormone signaling pathways
involving NR4A1, CEBPD, and ADAMTS4 (Jones et al., 2024).
Recent studies have identified STAR + cells, defined as theca and
stroma (T&S) cells that co-express DCN and STAR, as linked to
RNA and protein synthesis processes, contributing to ovarian aging
(Wu M. et al., 2024). Despite these findings, the role of STAR in
ovarian cancer, particularly in SOC, remains largely unexplored.
With the advancement of single-cell sequencing technology, Qian
Hao et al. first reported the expression of STAR in fibroblasts of SOC
(Hao Q. et al., 2021), and Nele Loret et al. further described STAR +
cells as a unique CAF subtype in SOC (Loret et al., 2022). However,
the functional significance and detailed characteristics of STAR +
cells remain to be fully elucidated.

Our findings demonstrate that STAR + cells are distinct from
both stromal and tumor cell populations. While STAR has
traditionally been associated with granulosa and luteal cells, our
analysis reveals that STAR + cells possess a unique transcriptional
profile, differentiating them from granulosa/luteal lineages.
Furthermore, both spatial and transcriptional analyses and IF
analysis of SOC patient samples confirmed that STAR + cells are
a unique CAF subtype, and that STAR + cells are in closer proximity
to tumor cells than typical CAFs, suggesting that they may perform
distinct and specialized functions within the TME, setting them
apart from traditional CAF populations.

We found that STAR + cells were enriched in chemotherapy-
sensitive patients compared to resistant ones, and this was validated
using scRNA-seq, bulk RNA-seq, and IHC. The differential gene
expression in STAR + cells between the two groups was highly
specific, suggesting their role in modulating chemotherapy
responses. These findings support STAR + cells as a potential
biomarker for chemotherapy sensitivity. Although STAR + CAFs
have only recently been described, no prior studies have focused on
their relationship with chemotherapy responses. Previous research
showed that chemotherapy reduced STAR expression in granulosa
cells in normal ovaries (El Andaloussi et al., 2018), and in esophageal
cancer, elevated STAR expression was linked to chemotherapy
resistance (Holloway et al., 2024). However, these studies did not
investigate STAR + CAFs specifically. Our study provides new
insights into the role of STAR + cells in chemotherapy
sensitivity in SOC.

STAR + cells influence chemotherapy sensitivity by modulating
key metabolic pathways. GSVA analysis revealed significant
enrichment of STAR + cells in P450 metabolism, lipid
metabolism, and amino acid metabolism pathways, which

Frontiers in Pharmacology frontiersin.org13

Lan et al. 10.3389/fphar.2025.1545762

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1545762


regulate drug metabolism, energy supply, and oxidative stress
responses (Klomp et al., 2020; Snaebjornsson et al., 2020; Ling
et al., 2023). Notably, STAR + cells in chemotherapy-sensitive
patients exhibited higher enrichment in these pathways compared
to resistant patients, suggesting that STAR + cells may enhance
chemotherapy efficacy by regulating metabolic processes that
increase tumor vulnerability to platinum-based drugs.
Additionally, cell-cell communication analysis revealed that in
chemotherapy-resistant patients, STAR + cells interact with
tumor cells through Wnt signaling, specifically via ligand-
receptor pairs such as WNT7A-FZD6/FZD3-LRP6/LRP5,
components of the canonical Wnt pathway. Wnt signaling
promotes tumor proliferation, angiogenesis, and chemoresistance
(Parsons et al., 2021; Wu J. et al., 2024; Liu et al., 2021). However, in
chemotherapy-sensitive patients, Wnt signaling was suppressed,
indicating that STAR + cells may enhance chemotherapy efficacy
by inhibiting Wnt signaling in tumor cells.

This relationship among STAR + cells, Wnt signaling, and
tumor cells has also been reported in other studies. For example,
in colorectal cancer, CAFs secrete exosomes that activate the Wnt
signaling pathway in tumor cells, contributing to chemoresistance
(Hu et al., 2015; Hu et al., 2019), although the specific CAF subtypes
responsible for this effect remain unclear. In bladder cancer, Zikun
Ma et al. identified SLC14A1+ CAFs through single-cell sequencing,
which impart stemness to tumor cells via the Wnt pathway, thus
enhancing chemotherapy resistance (Ma et al., 2022).

A key findingwas the increase in STAR+ cell proportions following
platinum-based chemotherapy. While chemotherapy reduced tumor
cell numbers, STAR + cells became more prevalent in both primary
tumors and bulk RNA-seq analyses. This paradoxical enrichment may
reflect STAR + cells’ role in creating a microenvironment less favorable
for tumor survival during chemotherapy. However, STAR expression
was lower in metastatic tumors, suggesting spatial or functional
heterogeneity depending on the tumor context. The interaction
between STAR + cells and tumor cells highlight the complexity of
the TME in SOC and underscores the need to identify specific CAF
subtypes that impact treatment outcomes. Previous studies have shown
CAF functional heterogeneity in matrix remodeling, immune
regulation, and drug resistance (Wu F. et al., 2021; Caligiuri and
Tuveson, 2023).

Although this study provides a comprehensive exploration of STAR
+ cells as an exploratory study, there are several limitations and challenges
to consider. First, technical difficulties in isolating and culturing STAR +
cells, coupled with the lack of established cell lines, hinder short-term
functional validation. We plan to conduct further functional studies,
including co-culture experiments and interference assays, once STAR +
cells are successfully isolated and stabilized. Additionally, we aim to
validate the role of STAR + cells in chemotherapy efficacy through
metabolomics analysis and by investigating their interaction with key
molecules in the Wnt and p53 pathways using techniques like qPCR or
Western blot. We also intend to use patient-derived xenograft models to
further explore STAR + cells’ role in chemotherapy sensitivity and their
potential as therapeutic targets for SOC. Secondly, despite employing
effective multi-omics integration approaches, our analysis has inherent
limitations, such as reliance on algorithms like CIBERSORT and ssGSEA,
which may not fully capture rare or poorly annotated cell types. Thirdly,
the small clinical sample size and focus on SOC limit our ability to assess
the correlation between STAR + cells and clinical features, and further

exploration of STAR + cells in other tumor types is needed, with ongoing
sample collection and collaboration to validate these findings. Lastly,
while STAR + cells show potential as a chemotherapy efficacy biomarker
in SOC, challenges such as the development of reliable protocols for
isolation, validation in larger multi-center trials, and cost-effective
detection methods must be addressed before their practical application.

In conclusion, this study provides novel insights into the biology and
clinical significance of STAR+ cells in SOC.We demonstrate, for the first
time, that STAR + cells are positively associated with platinum-based
chemotherapy sensitivity and may exert their effects through metabolic
modulation and suppression of Wnt signaling, suggesting their potential
as a biomarker for predicting chemotherapy efficacy in SOC.
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