
New prognostic features and
personalized treatment strategies
of mitochondrial related genes in
colorectal cancer patients

Qizheng Xu1*, Zhiwen Wang1, Shan-Tao Huang1, Jia-Yu Shi1,
Yan Zhu2 and Han-Qing Pang2

1School of Life Science, Shanxi University, Taiyuan, China, 2Institute of Translational Medicine, School of
Medicine, Yangzhou University, Yangzhou, China

Colorectal cancer (CRC) is a common and aggressive malignancy with the
complex and varied molecular landscape. Mitochondria play a pivotal role in
the metabolic reprogramming of cancer cells, and their function can profoundly
influence tumor progression. Therefore, identifying mitochondrial genes with
immune-related features may offer a promising new approach for prognosis in
CRC. Mitochondrial-associated genes were retrieved from the MITOCARTA
3.0 dataset. The LASSO regression method was applied to identify prognostic
genes, while the area under the ROC curve and nomograms were used to assess
the robustness of the model. Single-sample genomic enrichment analysis
(ssGSEA) was utilized to explore the relationship between model genes and
immune infiltration, and drug sensitivity analysis was conducted to identify
potential therapeutic agents. Cellular assays were performed to validate the
effectiveness of identified drugs. Key mitochondrial genes, including SUCLG2,
ACACB, OSBPL1A, and TRAP1, have been identified as significant prognostic
markers in CRC. The expression of ACACB and OSBPL1A progressively increased,
while SUCLG2 and TRAP1 expression decreased in patients. ROC curve analysis of
the TCGA dataset showed an area under the curve (AUC) greater than 0.6 for 1-,
2-, and 3-year survival predictions, demonstrating the strong prognostic potential
of this model. Additionally, the model was strongly correlated with immune cells,
particularly CD8+ T cells, and immune checkpoint regulators. Molecular docking
analysis revealed that OSBPL1A binds to dabrafenib at glycine position 747.
Cellular assays confirmed that dabrafenib effectively inhibited CRC cell
migration and proliferation, providing a promising therapeutic avenue. Our
findings suggested that the four mitochondrial-related genes identified in this
study provide accurate survival predictions for CRC patients.
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1 Introduction

Colorectal cancer (CRC) is the most prevalent malignant tumor in the gastrointestinal
tract. It ranks as the third most diagnosed cancer and the second leading cause of cancer-
related deaths globally, with approximately 1.9 million new cases annually (Sung et al., 2021;
Armaghany et al., 2012; Tariq and Ghias, 2016). CRC is classified into stages from I to IV
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based on tumor growth and metastasis. Later stages are generally
associated to significantly lower survival rates (An et al., 2024). CRC
has a favorable prognosis when diagnosed early; however, 15%–30%
of patients already present with metastatic disease at diagnosis
(Moisuc et al., 2024). Early diagnosis and accurate risk
stratification play a crucial role in improving CRC treatment
outcomes, with colonoscopy and imaging techniques, such as
computed tomography (CT) and magnetic resonance imaging
(MRI), serving as the standard diagnostic methods (Milot et al.,
2024). However, these diagnostic approaches sometimes fail to
differentiate between tumor recurrence and benign lesions, which
can lead to treatment delays (Rompianesi et al., 2022). Standard
therapeutic strategies for CRC include surgical resection,
chemotherapy, and radiotherapy. Nevertheless, resistance to these
treatments, along with frequent tumor recurrence and metastasis,
makes CRC treatment particularly challenging (Kumar et al., 2023).
Hence, developing innovative prognostic models and identifying
effective drug targets are essential for improving early diagnosis and
treatment outcomes for CRC.

Mitochondria, known as the cellular powerhouses, are crucial for
bioenergetics, metabolic signaling, and cell survival regulation. Its
functions significantly influence tumor progression and resistance to
therapy (Roy et al., 2024). Emerging evidence indicates that
mitochondrial dysfunction and metabolic reprogramming play a role
in developing chemotherapy resistance in CRC (Abdelmaksoud et al.,
2023). Tumor cells often prefer aerobic glycolysis, known as the
Warburg effect, which enables them to grow continuously under
low oxygen conditions while still producing ATP (Flood et al.,
2023). Furthermore, CRC cells heavily depend on mitochondrial
oxidative phosphorylation (OXPHOS) for ATP production,
especially when glucose is scarce (Cherkas et al., 2020). This ability
to switch metabolic pathways enables tumor cells to adapt to different
microenvironmental conditions, promoting their growth and
metastasis. Nevertheless, the influence of genes associated with
mitochondrial function on the prognosis and response to therapy in
CRC is still not well understood.

This study investigated mitochondrial-related differentially
expressed genes (Mit-DEGs) in CRC by analyzing publicly
available mRNA expression profiles. We constructed prognostic
models based on mitochondrial-associated genes using the TCGA
dataset, which were then validated with the GEO and other
independent datasets. Additionally, we examined protein
expression levels of model-associated genes in normal colon and
CRC tissues, and performed functional annotations of risk groups to
uncover potential mechanisms. Finally, we explored mitochondrial-

related therapeutic targets in colorectal cancer and showed that
specific compounds could covalently bind to mitochondrial
proteins, potentially inhibiting the proliferation and invasion of
CRC cells.

2 Materials and methods

2.1 Data acquisition

RNA-seq data for 634 CRC samples and 51 normal colorectal
tissue samples were obtained from the UCSC Xena platform (http://
xena.ucsc.edu/) and The Cancer Genome Atlas (TCGA) database
(https://portal.gdc.cancer.gov/), along with corresponding clinical
information. A total of 1136 mitochondrial-related genes were
retrieved from the MitoCarta3.0 database (https://www.
broadinstitute.org/mitocarta) to assess their expression in CRC
tissue. Detailed descriptions of the datasets are provided in Table 1.

2.2 Identification of differentially
expressed genes

The RNA-seq data from CRC samples and normal colorectal
tissues were combined and subjected to analysis using R software
(version 4.2.1). Differentially expressed genes (DEGs) were
identified based on the criteria of |log2FoldChange| ≥ 1 and
p-value <0.05, using the “limma” and “edgeR” R packages. The
DEGs were then intersected with mitochondrial-related genes to
identify Mit-DEGs in CRC.

2.3 Construction and validation of
prognostic model

The Mit-DEGs were further analyzed to construct a prognostic
model (Xiao et al., 2022; Zhang et al., 2024). First, univariate Cox
regression analysis was performed on the training dataset to identify
genes significantly associated with overall survival (OS) in patients.
These candidate genes were refined using LASSO Cox regression
analysis with the “glmnet” R package. The performance of the
prognostic model was evaluated by calculating risk scores for
patients in both the training and validation datasets. Kaplan-
Meier survival analysis was conducted using the “survival” and
“survminer” packages. Model accuracy was assessed with time-

TABLE 1 Basic information of datasets used in the study.

GSE series Tissue Organism Sample size Platform

Normal Tumor

COAD Colon Homo sapiens 41 471 TCGA

READ Rectum Homo sapiens 10 163 TCGA

Mitochondria-related genes — Homo sapiens — — MitoCarta3.0

GSE20916 CRC Homo sapiens 34 30 GEO

GSE21510 CRC Homo sapiens 25 123 GEO

Frontiers in Pharmacology frontiersin.org02

Xu et al. 10.3389/fphar.2025.1540767

http://xena.ucsc.edu/
http://xena.ucsc.edu/
https://portal.gdc.cancer.gov/
https://www.broadinstitute.org/mitocarta
https://www.broadinstitute.org/mitocarta
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1540767


dependent ROC curves, and the area under the curve (AUC) was
calculated for 1-, 2-, and 3-year survival predictions.

2.4 Nomogram construction and
ROC curves

A nomogram was developed based on significant independent
prognostic factors identified through multivariate Cox regression
analysis. The predictive accuracy and clinical utility of the
nomogram were assessed using calibration plots for 1-, 2-, and 3-
year OS. The C-index was calculated to assess the model’s
discriminative ability, and ROC curves were generated to
compare predicted survival with actual survival outcomes.

2.5 Immune infiltration analysis

We analyzed the immune landscape of CRC using ssGSEA.
Using the CIBERSORT algorithm, we calculated various
immune-related scores, such as immune cell abundance,
immune score, stromal score, and tumor purity. Correlation
analysis was performed to evaluate the relationship between
immune cell infiltration and the risk scores generated by the
prognostic model.

2.6 Drug screening and molecular docking

We identified potential small-molecule drugs targeting the key
DEGs were identified using the CellMiner database (https://
discover.nci.nih.gov/cellminer/home.do) and DrugBank database
(https://www.drugbank.ca/). Molecular docking studies were
conducted using AutoDock Vina to evaluate the binding affinity
of candidate compounds with key proteins encoded by the DEGs.
PyMOL (v.2.4.0) was used for visualization and analysis of docking
results (Pang et al., 2018).

2.7 Cell culture and reagents

HumanCRC cell lines HCT116 and SW480 were obtained from the
American Type Culture Collection (ATCC). Cells were maintained in
RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS)
and 1% penicillin-streptomycin, cultured in a 5%CO2 incubator at 37°C.
The overexpressed OSBPL1A plasmid was purchased from Miaoling
Biotechnology Co., Ltd. (China, Wuhan). Using X-tremeGENE
according to the manufacturer’s specifications, HP DNA Transaction
Agent (Roche# 06366236001) transfected the plasmid into cells.

2.8 Cell proliferation and
migration detection

Evaluate the proliferation rate of CRC cells using plate cloning
technology. As described in the previous reference to CRC cell
research methods, colony formation and pore migration
experiments were conducted.

2.9 Statistical analysis

Statistical analysis was conducted using R software and GraphPad
Prism (v. 8.0). Student’s t-test andWilcoxon rank-sum test were used as
appropriate. A p-value < 0.05 was considered statistically significant,
and results were presented as mean ± standard deviation (SD).

3 Result

3.1 Identification of Shared Pathogenic
Genes in CRC

Figure 1A displaysa volcano plot of DEGs in COAD,
highlighting significantly upregulated and downregulated genes
based on log2FC and p-values. Figure 1B presents a similar
volcano plot for DEGs in READ, emphasizing genes with
significant expression changes. The UpSetR plot in Figure 1C
visualizes the overlap of DEGs between COAD and READ,
showing that 1,640 genes are differentially expressed only in
COAD, 685 genes are commonly differentially expressed in both
COAD and READ, and 369 genes are differentially expressed only in
READ. These findings indicate that although specific gene sets
exhibited unique expression patterns in each condition, there was
also a significant overlap of DEGs between COAD and READ.

Furthermore, theMRGs, comprising approximately 1,136 genes,
were compared with the DE mRNA data from COAD and READ.
Figure 1D displays a Venn diagram showing the overlap of
upregulated and downregulated MRGs between COAD and
READ, identifying 59 common genes—36 downregulated and
23 upregulated. To better understand the functional roles of the
59 Mit-DEGs, we conducted GO and KEGG pathway enrichment
analyses. GO analysis showed significant enrichment in processes
including organic acid catabolism, fatty acid oxidation, and
components of the mitochondrial inner membrane. This
highlights the role of mitochondria in energy metabolism and
redox activities (Figure 1E). Additionally, the KEGG pathway
analysis identified pathways related to fatty acid metabolism,
carbon metabolism, and other metabolic processes, emphasizing
the critical role of mitochondrial metabolism in CRC (Figure 1F).
The GSEA enrichment analysis indicated that the Mit-DEGs mainly
exert their influence on mitochondrial function via the pathways
including KEGG Oxidative Phosphorylation, KEGG Citrate Cycle
TCA Cycle, KEGGGlycolysis Gluconeogenesis, KEGG Fructose and
Mannose Metabolism, KEGG Drug Metabolism - Cytochrome
P450, and KEGG Glutathione Metabolism
(Supplementary Figure 1).

3.2 Interaction analysis of Mit-DEGs

We conducted further analysis to explore the complex
interaction network of the 59 overlapping genes that are either
upregulated or downregulated in COAD and READ. The circular
plot illustrates the interactions between genes. In this plot, red lines
indicate positive correlations, while green lines indicate negative
correlations (Figure 2A). The correlation heatmap quantifies the
relationships between these genes, using a color scale that transitions
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from green (indicating negative correlation) to red (indicating
positive correlation) (Figure 2B). Additionally, the network
diagram illustrates gene interactions. In this diagram, nodes
represent different genes, while the color and thickness of lines
indicate the direction and strength of interactions. Red lines
represent strong positive correlations and blue lines represent
negative correlations (Figure 2C). Collectively, the circular plot,
correlation heatmap, and network diagram indicated that the
59 overlapping genes in COAD and READ primarily function
synergistically.

3.3 Construction of the mitochondrial-
associated differential gene
prognostic model

The Mit-DEGs model is built using several statistical
analyses, including univariate Cox regression, multivariate Cox

regression, and Lasso regression. In Figure 3A, univariate Cox
regression results indicated that ACACB and OSBPL1A (HR > 1)
were high-risk genes, suggesting that higher expression levels are
linked to poor patient prognosis. Conversely, SUCLG2, TRAP1,
MTHFD1L, and PAICS were identified as low-risk genes because
their higher expression levels were associated with
better prognosis.

We applied LASSO regression to enhance gene selection and
avoid overfitting. Figure 3B presents the cross-validation plot of
LASSO, with the y-axis represents the partial likelihood bias and the
x-axis corresponds to the logarithmic transformation of the
regularization parameter λ. The optimal λ value, marked by the
red dashed line, minimizes model bias. Figure 3C further illustrates
the coefficient contraction path of LASSO, showing that as λ
increases, the coefficients of non-informative genes decrease,
thereby highlighting the most relevant genes for the prognostic
model, including SUCLG2, ACACB, OSBPL1A, TRAP1,
MTHFD1L, and PAICS.

FIGURE 1
Identification of Shared Pathogenic Genes in CRC. (A) Volcano plot illustrating the DEGs in COAD. (B) Volcano plot of DEGs in READ. (C) UpSet plot
showing the overlap of DEGs between COAD and READ. (D) Venn diagram of MRGs and their association with DEGs in COAD and READ. (E) GO
enrichment analysis of Mit-DEGs. (F) KEGG enrichment analysis of Mit-DEGs.
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Lastly, we performed multivariate Cox regression analysis to
confirm the prognostic significance of the selected genes. The results
(Figure 3D) confirm the prognostic value of four Mit-DEGs: ACACB,

OSBPL1A, TRAP1, and SUCLG2. This comprehensive analysis
identified key genes that influenced patient prognosis, offering a solid
foundation for developing mitochondrial-related prognostic models.

FIGURE 2
Interaction Analysis of Mit-DEGs. (A) Circular plot of Mit-DEG interactions. (B) Correlation heatmap of Mit-DEGs. (C) Network diagram of Mit-DEG
interactions.
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3.4 Development of Mit-DEGs
related functions

The risk scores of 607 CRC patients were calculated, and the
patients were classified into high-risk and low-risk groups based on
the median risk score. In the scatter plot, patients are clearly
separated into high-risk and low-risk groups (Figure 4A).
ACACB and OSBPL1A exhibit high expression levels in the
high-risk group, while SUCLG2 and TRAP1 are more highly
expressed in the low-risk group (Figure 4B). The distribution of
survival status for all TCGA samples is displayed (Figure 4C),
indicating a poorer prognosis in the high-risk group compared to
the low-risk group among TCGA CRC patients (Figure 4D, P <
0.001). The ROC curves for 1-, 2-, and 3-year survival prediction in
all TCGA samples showed acceptable AUC values of 0.648, 0.626,
and 0.632, respectively (Figure 4E). To further validate the model,
the TCGA data were randomly divided into training and validation
sets. The results in both the training and validation sets aligned with
those observed in the entire dataset (Figures 4F–O). In the training
set, survival analysis revealed a significantly lower survival rate for

the high-risk group compared to the low-risk group (P < 0.018). The
ROC curves for predicting 1-, 2-, and 3-year survival in all TCGA
samples yielded AUC values of 0.648, 0.626, and 0.632, respectively
(Figure 4E). Similarly, in the validation set, survival analysis
demonstrated a significantly lower survival rate in the high-risk
group (P < 0.001), with the ROC curves analysis showing AUC
values of 0.651, 0.684, and 0.691 for 1-, 2-, and 3-year survival,
respectively. Overall, the Mit-DEGs SUCLG2, ACACB, OSBPL1A,
and TRAP1 are strong predictors of overall survival in CRC.

3.5 Exploration of key DEGs expression
levels in GEO datesets

The GEO database is used to analyze the gene expression of
SUCLG2, ACACB, OSBPL1A, and TRAP1 in normal and
cancerous colorectal tissues. Figure 5 shows that compared to
normal tissues, the levels of ACACB and OSBPL1A increase in
CRC tissues, while the levels of SUCLG2 and TRAP1 decrease in
CRC tissues.

FIGURE 3
Construction of the Mitochondrial-Associated Differential Gene Prognostic Model. (A) Forest plot of univariate Cox regression analysis. Green
squares represent low-risk genes (HR < 1), while red squares represent high-risk genes (HR > 1). (B)Cross-validation plot of LASSO regression. The optimal
λ value is selected through cross-validation tominimizemodel bias, with the red dashed line indicating the position of the best λ. (C)Coefficient shrinkage
path of LASSO regression. (D) Forest plot of multivariate Cox regression analysis.
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3.6 Association of risk score with
clinicopathological factors

TCGA database results showed that higher risk scores correlate
with increased expression of ACACB and OSBPL1A, while
SUCLG2 and TRAP1 expression decreased (Figure 6A).
Univariate and multivariate Cox analyses from TCGA revealed
that age (p < 0.001), T stage (p = 0.002), and risk score were
independent prognostic factors (Figure 6B). Significant differences
were observed between the high-risk and low-risk groups regarding
age, grade, and TNM stage (Figures 6C–G). Patients aged 60 and
above have a higher risk of disease and a poorer prognosis (p =
0.0053). M1 stage patients have a worse prognosis compared to M0

(p = 0.012), and both N2 and N1 stages present a higher risk of
disease than N0 (p = 0.0041). The disease risk progressively increases
with advancing stage (p = 1.2 × 10−5). A similar trend is observed for
T stages, where higher T stages are linked to greater disease risk
(p = 0.0061).

3.7 Verify the expression of mitochondria-
related features

Our nomogram gives a score to each prognostic indicator,
and the total score is the sum of these individual scores
(Figure 7A). The concordance index (C-index) shows that the

FIGURE 4
Validation of the prognostic model based on mitochondria-associated differential genes. (A) Expression levels of SUCLG2, ACACB, OSBPL1A, and
TRAP1 in the TCGA cohort; (B) Scatter plot of themodel in the TCGA cohort, classifying samples into high-risk and low-risk groups; (C) Scatter plot of the
relationship between patient survival time and risk scores in TCGA samples; (D)Distribution of survival status among TCGA samples; (E) ROC curves for 1-,
2-, and 3-year survival in the TCGA cohort; (F–J) Validation of the prognostic model in the TCGA training set; (K–O) Validation of the prognostic
model in the TCGA validation set.
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nomogram aligns with the ideal model (Figure 7B). The ROC
curves for clinical features and risk scores in the training set
showed AUC values of 0.651 for the risk model, 0.613 for age,
0.728 for staging, 0.670 for T stage, 0.676 for N stage, and
0.663 for M stage (Figure 7C). The ROC analysis indicate that
our nomogram is a reliable predictive model.

3.8 Mitochondria-related gene features are
associated with immunity

To analyze the relationship between risk groups and immune
characteristics in CRC, we used an ssGSEA heatmap to display the
expression differences across multiple immune-related features
between high-risk and low-risk groups. Significant differences in
immune features, specifically Type I and Type II IFN Responses,
were observed between the groups (Figure 8A). A CIBERSORT bar
chart further illustrated variations in immune cell infiltration
proportions between high- and low-risk groups. And the results
revealed that the notable differences in several immune cell types
could activate CD4 memory T cells and resting dendritic cells
(Figure 8B). The expression of SUCLG2, ACACB, OSBPL1A, and

TRAP1 influenced these immune cell differences
(Figure 8C, P < 0.05).

The consensus matrix identified two distinct clusters, suggesting
that k = 2 yielded the best clustering results (Figure 8D). The consensus
cumulative distribution function (CDF) curve confirmed the stability of
clustering across various k-values. The smallest relative change occurred
at k = 2, further indicating that k = 2 is the optimal choice for clustering
(Figure 8E). The delta area plot illustrated the change in the CDF area as
k-values increased, showing a significant decline at k = 2, reinforcing
that k = 2 remains the optimal number of clusters (Figure 8F).

The PCA scatter plot showed the separation of two clusters,
C1 and C2, along principal components 1 (PC1) and 2 (PC2),
validating the clustering effectiveness (Figure 8G). A bar chart
displayed the differences in immune cell infiltration proportions
between the two clusters, C1 and C2, highlighting significant
variations in types such as naive B cells, resting memory
CD4 T cells, regulatory T cells, M0 macrophages, and eosinophils
(Figure 8H). A box plot displayed the expression levels of SUCLG2,
ACACB, OSBPL1A, and TRAP1 across the clusters (C1 and C2),
with statistically significant differences in gene expression,
suggesting their potential role in the immune
microenvironment (Figure 8I).

FIGURE 5
The GEO datasets were used to validate the expression of the SUCLG2, ACACB, OSBPL1A, and TRAP1 genes in CRC. (A) Expression of SUCLG2,
ACACB, OSBPL1A, and TRAP1 genes in the GSE20916 dataset. (B) Expression of SUCLG2, ACACB, OSBPL1A, and TRAP1 genes in the GSE21510 dataset.

Frontiers in Pharmacology frontiersin.org08

Xu et al. 10.3389/fphar.2025.1540767

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1540767


3.9 A broad correlation between tumor
mutation burden and stemness

The results show that the low-risk group has a lower percentage of
mutations in various genes compared to the high-risk score group, which
has higher mutation frequencies in genes like TP53 (61%) and KRAS
(48%) (Figures 9A, B). Survival analysis shows a significant difference in
survival rates between patients classified into high- and low-mutation
burden groups (Figures 9C, D). These findings suggested a correlation
between mutation burden, CRC, and mitochondrial function.

3.10 Drug sensitivity analysis and
molecular docking

A drug sensitivity analysis was performed to create treatments
for all CRC patients. The results show a positive correlation between
ACACB gene expression and sensitivity to Dabrafenib, while a
negative correlation is observed with Dasatinib sensitivity.
TRAP1 gene expression positively correlates with Fludarabine
sensitivity but negatively correlates with Zoledronate sensitivity.
OSBPL1A gene expression shows a positive correlation with

FIGURE 6
Association of Clinical Variables with Risk Score and Survival Analysis in Cancer Patients. (A) Heatmap of risk scores and various clinical
characteristics (Age, Stage, T, N, M) in cancer patients. (B) Forest plot of hazard ratios and p-values from aCox proportional hazards regression analysis for
different clinical variables (Age, Stage, T, N, M) and risk score. (C) Age groups (below 60 and 60 or above) with a significant difference. (D)Metastasis status
(0 vs. 1) showing a significant difference. (E) Lymph node involvement levels (0, 1, 2) showing a significant difference using the Kruskal–Wallis’s test.
(F) Cancer stage (1, 2, 3, 4) with a significant difference in risk scores. (G) Tumor size categories (1, 2, 3, 4) showing a significant difference.
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Dabrafenib sensitivity and a negative correlation with Epirubicin
sensitivity. SUCLG2 expression is negatively correlated with
sensitivity to Acetalax and positively correlated with sensitivity to
Selumetinib (Figure 10A). The correlation analysis of SUCLG2,
ACACB, OSBPL1A, and TRAP1 gene expressions with their
corresponding drug sensitivities revealed distinct patterns:
OSBPL1A expression affects both Dabrafenib and Epirubicin
sensitivities, while Selumetinib sensitivity is influenced by
SUCLG2 expression (Figure 10B). Given that OSBPL1A is the
gene with the highest disease risk (Figures 3A, D), and
Dabrafenib exhibits a positive correlation with OSBPL1A
sensitivity, OSBPL1A and Dabrafenib were selected for further
analysis. Molecular docking between OSBPL1A and Dabrafenib
indicates that this protein can bind through residues with a static
potential energy of approximately 69,550 (Figure 10C). A close-up
of the docking site reveals that Dabrafenib covalently binds to
OSBPL1A at position 747 through a glycine residue (Figure 10D).

3.11 Dabrafenib inhibits the growth of
HCT116 and SW480 cells

Colony formation assays were conducted to evaluate whether
Dabrafenib inhibits the proliferation of CRC cells, specifically
HCT116 and SW480. The results indicated that the colony
formation rate for both HCT116 and SW480 cells decreased as
Dabrafenib concentrations increased. The colony formation rate of
HCT116 and SW480 cells treatedwith 5 μMand 10 μMDabrafenibwas
significantly lower than that of the control group (Figure 11C).
Simultaneous OSBPL1A overexpression led to a 121.9-fold increase
in HCT116 cell proliferation and a 16.99-fold increase in SW480 cell
proliferation (Figure 11A). The protein level of OSBPL1A was also
sgnificantly increased in both HCT116 and SW480 cells (Figure 11B).
After OSBPL1A overexpression, both HCT116 and SW480 cells were
treated with 10 μM Dabrafenib, and the colony formation rate was
partially restored (Figure 11C). Transwell migration assay further

FIGURE 7
Construction of a nomogram to predict individualized survival probability for CRC patients. (A) Nomogram; (B) C-index of the nomogram; (C) ROC
curves for clinical prediction of CRC risk scores.

Frontiers in Pharmacology frontiersin.org10

Xu et al. 10.3389/fphar.2025.1540767

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1540767


showed that the migration rate of HCT116 and SW480 cells decreased
with increasing Dabrafenib concentrations. Compared to the control
group, fewer HCT116 and SW480 cells migrating to the lower chamber
was significantly reduced after exposure to 5 μMand 10 μMDabrafenib.
However, after OSBPL1A overexpression, the number of migrated
HCT116 and SW480 cells was partially restored (Figure 11D).

4 Discussion

In this study, we systematically analyzed mitochondrial-associated
gene expression in CRC tissues and their prognostic implications. Our
study revealed the potential mechanisms through which mitochondrial
genes influence CRC progression and immune responses. Mit-DEGs

FIGURE 8
Differential analysis of immune characteristics and gene expression between risk and clustering groups. (A) Heatmap showing differences in the
expression of various immune features between the high-risk and low-risk groups. (B) Comparative chart of immune cell infiltration proportions,
contrasting the high-risk group (red) with the low-risk group (blue). (C) Correlation analysis of four genes (TRAP1, SUCLG2, OSBPL1A, and ACACB) with
different types of immune cell infiltration. (D) Consensus matrix plot (k = 2) illustrating the clustering results. (E) Consensus cumulative distribution
function (CDF) curve showing clustering stability across different k-values. (F)Delta area plot indicating relative changes in the CDF curve area at k = 2. (G)
PCA plot illustrating the distribution of two clusters (C1 andC2) along PC1 and PC2. (H)Comparative chart of immune cell infiltration proportions between
different clusters (C1 and C2). (I) Box plot showing expression levels of SUCLG2, ACACB, OSBPL1A, and TRAP1 genes across clusters (C1 and C2).
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play a crucial role in energy metabolism and oxidative processes,
particularly in fatty acid oxidation and organic acid metabolism.
These findings suggest that mitochondria are not only essential for
maintaining cellular energy supply but may also impact tumor growth
and metastasis by regulating the cellular redox state. Furthermore, Mit-
DEGs are closely associated with the immune microenvironment of
CRC, particularly in the observed differences in Type I and Type II
interferon responses. Through ssGSEA and CIBERSORT analysis, we
identified significant differences in immune cell infiltration between
high-risk and low-risk groups, further emphasizing the pivotal role of
mitochondrial genes in modulating the immune microenvironment.
Additionally, we confirmed that the keyMit-DEGs are linked to a lower
mutation frequency in the low-risk group, while the high-risk group is
strongly associated with mutations in genes such as TP53 and KRAS.
This suggests that mitochondrial function may influence CRC
progression by altering the mutation burden in tumor cells.

We identified four mitochondrial-related genes and constructed a
novel prognostic model for CRC. This mitochondrial-based prognostic
nomogram can help manage CRC patients by guiding treatment

decisions. Additionally, mitochondrial characteristics are
independent prognostic predictors with higher sensitivity and
specificity compared to traditional clinical features. We further
compared immune features across different risk groups and
analyzed the correlation between these mitochondrial genes and
immune cells. Notably, we found a close relationship between
mitochondrial-associated genes in CRC and tumor-infiltrating
immune cells, including plasma cells, resting CD4 memory T cells,
activated CD4 memory T cells, resting dendritic cells, and eosinophils.
This finding provides new insights into the role ofmitochondria inCRC
immunotherapy. Despite extensive research on the mitochondrial
aspects of tumors, mitochondrial markers are rarely used in
prognostic models.

In recent years, mitochondria have played a crucial role in the
development and progression of CRC. For instance, cancer cells that
lack mitochondrial DNA (mtDNA) lose their tumor-forming ability.
They can regain this potential only by acquiring mitochondria from the
surrounding stroma, which allows them to perform oxidative
phosphorylation (Valero, 2014). CRC cells exhibit significantly

FIGURE 9
Analysis of gene mutation distribution and survival probability in different tumor mutation burden (TMB) levels and risk groups. (A)Waterfall plot of
the gene mutation distribution in the common types and frequencies of gene mutations in the L-TMB group. (B)Waterfall plot of the common types and
frequencies of gene mutations in the H-TMB group. (C) Survival curve comparing survival probabilities between the H-TMB and L-TMB groups. (D)
Survival curve integrating the effects of TMB levels and risk groups.

Frontiers in Pharmacology frontiersin.org12

Xu et al. 10.3389/fphar.2025.1540767

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1540767


increased mitochondrial metabolic activity and produce higher levels of
ROS. These cells require a greater glucose supply to meet their energy
demands and display higher anabolic activity than normal cells (Tabe
et al., 2019). Moreover, the shift toward anaerobic glycolysis enhances
cancer cell proliferation by triggering hypoxia-induced activation (Chen
et al., 2023). Toadstatin induces apoptosis in U251 cells by disrupting
the mitochondrial fission/fusion homeostasis through the
demyelination of mitochondrial outer membrane-associated protein
A2 andDRP1 (Zuo et al., 2024; Lee et al., 2024). One of themost notable
characteristics of cancer cells is their ability to evade apoptosis. Pro-
carcinogenic alterations in the MEK/ERK signaling pathway induce the
phosphorylation of Mfn-1, thereby inhibiting apoptosis (Pyakurel et al.,
2015). These findings suggest that mitochondria play a crucial role in
tumor and may be involved in the initiation and progression of CRC.
However, the specific functions and molecular mechanisms of these

mitochondrial-associated genes require further experimental
investigation.

Immune activation is crucial for fighting cancer growth, while
mitochondrial dynamics can affect cancer progression by
influencing immune system activity, especially concerning T cells
(Wang et al., 2023). Our analysis showed significant correlations
between T cells, including CD8+ T cells, Th1 cells, and Th2 cells, in
high-risk groups. Recent studies on peptide immunology, including
IFN-γ ELISPOT assays, showed that FMACSPVAL effectively
triggered Sox11-specific CD8+ T cells (Liu et al., 2023). This
novel peptide epitope holds promise as a potential target for T
cell-based immunotherapy in CRC. Conversely, another study
indicated that M1 macrophages might promote tumorigenesis by
modifying the tumor microenvironment, akin to the Warburg effect
seen in cancer cells (Jaworska et al., 2023). Our findings also

FIGURE 10
Sensitivity analysis ofmitochondrial-associated prognostic genes andmolecular targeted drugs. (A)Drug sensitivity correlation analysis for SUCLG2,
ACACB, OSBPL1A, and TRAP1 using the CellMiner database; (B) Correlation analysis between the expression of SUCLG2, ACACB, OSBPL1A, and
TRAP1 and corresponding drug sensitivities in the CellMiner database; (C)Molecular docking results betweenOSBPL1A and Dabrafenib; (D)Detailed view
of the local docking interface between OSBPL1A and Dabrafenib.
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indicated that macrophage infiltration was notably higher in the
high-risk group, potentially contributing to the poor prognosis of
these patients. A study examining immune cell infiltration and
immunotherapy in low-grade CRCs found that elevated immune
infiltration scores were strongly associated with an increase in
CD4 naïve T cell infiltration, with high CD4 naïve T cell
expression correlating with a favorable patient prognosis (Wu
et al., 2023). Furthermore, alterations in somatic mtDNA, or a
reduced mtDNA copy number, are linked to enhanced cancer
progression and metastasis by activating retrograde
mitochondrial signaling pathways (Wang et al., 2023).
Conversely, eliminating mtDNA has been shown to restrict
tumor development. These results indicate that CRC can activate
immune responses via CD4 T cells, CD8 T cells, and macrophages.
Additionally, it can modulate metabolic processes by decreasing
mtDNA content and increasing glycolysis, potentially providing a
new strategy for effective CRC treatment.

CRC Patients who receive radiotherapy often experience high
recurrence rates because cancer cells are resistant to radiation
(McCarthy et al., 2012). There is an urgent need for therapies that
target the mechanisms of radiotherapy resistance to enhance the
radiation response and ultimately improve patient survival. A study
revealed that in radiation-resistant CRC cells, the NADH ubiquinone

oxidoreductase (complex I) subunit was significantly upregulated in the
mitochondria. Additionally, there was an increase in mitochondrial
DNA copy number. The study demonstrated that treating these
resistant cells with mitochondrial complex I inhibitors resensitized
the drug-resistant CRC cells to radiation (Zhu et al., 2023). Tumor
hypoxia and altered metabolic states drive the malignant progression
and drug resistance of cancer cells. Moreover, CRC stem cells show a
preferential dependence on mitochondrial metabolism, suggesting that
therapies targeting mitochondria could be promising for treating CRC
stem cells (Sessions and Kashatus, 2021). An analysis of drug sensitivity
indicated that the expression of mitochondrial genes OSBPL1A and
ACACB was positively correlated with Dabrafenib. Mitochondrial
proteins OSBPL1A and ACACB can enhance radiosensitivity, reduce
drug resistance, and offer new hope for treating recurrent cancer.
However, further clinical trials are needed to validate these findings.

OSBPL1A is a protein that plays a role in the transport and
metabolism of lipids within cells. It is part of the oxysterol-binding
protein family (Zhao et al., 2020). OSBPL1A regulates the
distribution of cholesterol and phospholipids. It interacts with
cellular membranes and other intracellular structures, which
helps maintain membrane homeostasis and balance (Wyles and
Ridgway, 2004). Mutations in OSBPL1A are associated with lipid
metabolism disorders and may alter membrane structure,

FIGURE 11
Evaluation of Dabrafenib’s potential as a treatment for CRC. (A) Efficiency ofOSBPL1A overexpression inCRC cells, assessed by RT-qPCR analysis. (B)
Evaluate the efficiency of OSBPL1A protein overexpression in colorectal cancer HCT116 and SW480 cells through Western blotting analysis. (C) Plate
colony formation assay showing the effect of Dabrafenib on CRC cell proliferation. (D) Cell migration assay demonstrating the impact of Dabrafenib on
the migratory ability of CRC cells.
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contributing to various metabolic diseases. Research onOSBPL1A in
cancer is limited, and its role in tumors remains unclear. Our
findings indicate that increasing OSBPL1A expression in CRC
enhances its proliferation and migration abilities. This suggests
that OSBPL1A and its associated signaling pathways may serve
as potential therapeutic targets for anti-tumor strategies. These
findings highlight the crucial role of OSBPL1A in tumorigenesis
and lipid metabolism regulation.

Dabrafenib is a BRAF inhibitor primarily used to treat cancer
with the BRAF V600E mutation. In CRC, approximately 8%–10% of
patients harbor BRAF V600E mutations, which typically are
associated with poor prognosis (Grothey et al., 2021). For
patients with BRAF V600E mutant CRC, combination therapy
with PD-1, BRAF, and MEK inhibitors significantly increased the
clinical objective response rate (cORR) to 25% (95% CI 10.7%–
44.9%). This rate is more than three times higher than the 7% (95%
CI 1.5%–19.1%) observed in patients who had not been previously
treated with BRAF inhibitors. In terms of sustained efficacy, themedian
progression free survival (PFS) of combination therapy is 5 months,
compared to the 3.5 months of BRAF/MEK inhibition therapy alone.
57% of patients receive treatment for more than 6 months, and 18% of
patients continue treatment for over 1 year (Tian et al., 2023). These
data indicate that the therapeutic effect of Dalafenib combinedwith PD-
1 and MEK inhibition in BRAF V600E mutant CRC patients deserves
attention. In experiments testing the anticancer activity ofDabrafenib in
CRC cells, plate clone formation assays showed that Dabrafenib
significantly reduced the viability of CRC cell lines in a dose-
dependent manner. In addition, Transwell experiments showed that
2.5 μM and 5 μM Dabrafenib inhibited the migration ability of CRC
cells. These findings indicated that Dabrafenib could serve as an
effective clinical therapy for CRC, providing new treatment options
and personalized strategies for patients.

The study has several limitations. First, the data came from a
database, and the findings need further validation in clinical settings
to confirm the reliability of predictions regarding mitochondria-
associated gene expression in CRC. Second, the impact of
mitochondrial alterations on the immunophenotype of CRC has
not been explored. This will be the focus of our future research to
better understand how mitochondrial genes contribute to immune
evasion in CRC. Additionally, the proposed drugs aimed at
enhancing sensitivity need further validation through laboratory
experiments and clinical trials.

5 Conclusion

This study examined mitochondrial characteristics in all stages of
CRC and their potential as prognostic markers. The study identified
three mitochondrial-related biological functions and key signaling
pathways. These findings offer valuable insights into the molecular
mechanisms that drive colorectal cancer progression. Moreover, the
study developed a new prognostic signature and identified potential
therapeutic agents tailored to individual patient profiles. These findings
will enhance diagnostic and treatment strategies for CRC, offering a new
approach for targeting mitochondrial function and integrating
immunotherapy into clinical practice.
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