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Introduction

The skin system constitutes the human body’s largest organ, acting as a robust shield against
various harmful invaders, includingmicrobes and ultraviolet (UV) rays (Ling et al., 2021; Cheng
et al., 2022). When the skin is burned, its barrier function is compromised, making the affected
areas susceptible to microbial influence, which can lead to a series of pathological changes in the
body. The process of wound recovery from burns can be categorized into three distinct phases:
the inflammatory response, tissue proliferation, and the tissue remodeling of the affected area
(Qi et al., 2024). A multitude of bacteria multiply rapidly in the compromised area, during the
inflammatory phase (1–2 days after burn), which in turn slows down the wound’s recovery due
to the formation of ulcers (Iacob et al., 2020). During the tissue proliferation phase, which
typically occurs 1–2 weeks post-burn, the wound site is marked by the influx and activation of
fibroblasts, as well as the development of new blood vessels, which are crucial for the healing
process (Wietecha et al., 2020). The tissue remodeling phase initiates approximately 2 weeks
following skin injury and continues for a number of weeks, aimed at restoring the skin’s
physiological functionality (Wang et al., 2022). This stage is primarily characterized by the
metamorphosis of granulation tissue into a more advanced connective tissue. However, an
overproduction of collagen during this phase can readily result in the formation of scars.
Therefore, the development of a burn treatment system that possesses antibacterial properties,
promotes skin repair, and inhibits scar formation is of great significance.

Over the past few years, there has been a growing interest in the versatile potential of
cold atmospheric plasma (CAP) across various fields, such as sterilization and disinfection,
dental cleaning, cosmetology, and the treatment of skin diseases, trauma, and cancer,
attracting widespread attention in the biomedical field (Chen et al., 2021; Lunov et al., 2016;
Qin et al., 2022). This is mainly due to its rich content of physiologically active components,
such as reactive free radicals (ROS and RNS, etc.), charged particles (positive and negative),
electrons, and ultraviolet light (Chen et al., 2021; Szili et al., 2021). Research has found that
CAP not only has antibacterial effects but also can accelerate the healing process of wounds
through the stimulation of fibroblast proliferation and angiogenesis, making it a potential
ideal method for treating burns (Dijksteel et al., 2020; Boekema et al., 2021; Oliver et al.,
2024; Bagheri et al., 2023; Plattfaut et al., 2021; Duchesne et al., 2019; Nastuta et al., 2011;
Bhartiya et al., 2021; Frescaline et al., 2020). The applicant’s previous work in combining
CAP with nanomedicine for the treatment of third-degree burns has also proven that CAP
has the functions of antibacterial activity and skin repair (Wang et al., 2023).

As a new type of treatment, most of the CAP devices currently used are self-built in
laboratories, with significant differences in parameters and operations between different
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devices, resulting in inconsistent dosage and frequency of treatment.
In contrast, in our research, we found that CAP has other inherent
defects that severely limit its application in burn treatment.

UV radiation

Although some research reports indicate that the risks are minimal
under specific conditions (Lotfi et al., 2024), there is also literature
suggesting that long-term treatment can trigger cytotoxic effects and
reduce cell viability (Sremački et al., 2021). In the absence of a protective
medium, vacuum ultraviolet/ultraviolet radiation significantly contributes
to plasma - induced DNAdamage and cytotoxicity (accounting for 70%).
While normal skin canmitigate the harmofUV light through the stratum
corneum, burned areas lack this protective barrier (Shimizu et al., 2010).
The damage caused by UV radiation to the skin is mainly manifested as:
(1) UV light can impair the physiological functions of macromolecules
within cells (proteins, lipids, and nucleic acids, etc.), inducing cellular
damage (Gu et al., 2020); (2) It also destroys collagen and elastic fibers,
accelerating skin aging and slowing down wound healing (Xiao et al.,
2022); (3) By forming pyrimidine dimers and other DNA damages, it
leads to skin cancer (Saha et al., 2020; Douki et al., 2024). These hazards of
UV radiation limit the drug dosage and administration frequency of CAP
treatment, thereby affecting the speed of wound recovery. Although
existing literature has noted the hazards of UV light in CAP and
improved CAP devices to suppress the generation of UV light, it has
also significantly weakened the intensity of its active free radicals (Shimizu
et al., 2010). Therefore, how to effectively filter out UV light while
retaining the active free radicals of CAP remains a challenge.

There are two potential approaches to address this issue. The first
method involves utilizing an instrument that leverages the linear
propagation characteristics of light to filter out the majority of UV
light. However, this approachmay, to some extent, diminish the quantity
of active ions that reach the target site. The second idea is to develop an
adjuvant drug capable of absorbing UV light, akin to a sunscreen. It is
crucial to ensure that the selected sunscreen does not react with ROS or
RNS, as such reactions could compromise the overall activity of CAP.

High flow rate gas

Ahigh flow rate gas of CAP canmake thewound area extremely dry
(Dejonckheere et al., 2024; Shaitelman et al., 2015), which contradicts
the theory of moist wound healing and hinders wound healing,
preventing it from fully exerting its functions of promoting wound
healing and inhibiting scarring. A moist wound environment facilitates
the natural process of autolytic debridement, alleviates pain, minimizes
scarring, stimulates collagen production, and encourages the migration
of keratinocytes across the wound bed, thus collectively contributing to
an enhanced wound healing process (Nuutila and Eriksson, 2021). On
the other hand, a dry wound environment has at least four
disadvantages: (1) Excessive dryness of the wound can dehydrate the
traumatized tissue, leading to further tissue damage and the formation of
unfavorable eschar, making it difficult for new epithelial cells to move,
and prolonging the wound healing time (Breuing et al., 1992); (2) The
wound is more susceptible to infection (Daly et al., 2016); (3) Larger
scars are produced (Junker et al., 2013); (4) It intensifies the patient’s
pain (Bechert and Abraham, 2009). Therefore, when using CAP for

burn treatment, another issue that needs to be addressed is the dryness
brought about by the high flow rate of gas.

Certainly, it is feasible to strike a balance between the efficacy of
CAP and the minimization of dryness by fine-tuning the gas flow rate
threshold. Nevertheless, this equilibrium merely replicates the wound
environment akin to that of exposure therapy and falls considerably
short of attaining the optimal state of wet wound healing. In light of
this, a question emerges: could we integrate hydrogel, hydrosol, and
other relevant materials with CAP to actualize a dual benefit of wet
wound healing and combined CAP treatment?

Discussion

In this Opinion, we have summarized the inherent defects that
severely limit CAP application in burn treatment. Most of the studies
reported self-built in laboratories, with significant differences in parameters
and operations between different devices, resulting in inconsistent dosage
and frequency of treatment, but ultraviolet light and high-speed gas flow
are rarely performed. Therefore, how to effectively address the issues ofUV
andhigh-speed gasflow inCAP is a fundamental problem that needs to be
solved for the use of CAP in burn treatment.

In view of the challenges associated with UV radiation, innovative
instruments could be devised to effectively filter out ultraviolet rays.
Additionally, CAP adjuvant drugs might be developed, leveraging the
linear propagation traits of light to absorb ultraviolet radiation. When it
comes to the drying issue resulting from high-flow-rate gas, the design
and application of hydrogels, hydrosols, and other related substances
could be explored to facilitate wet wound healing. This Opinion piece
offers a novel research vantage point for the utilization of CAP in burn
treatments, carrying significant theoretical and practical implications
for the exploration of new therapeutic approaches in the field of burns.
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