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Introduction: Cisplatin-induced acute kidney injury (AKI) is primarily caused by
oxidative stress from reactive oxygen species (ROS) accumulation. Developing
ROS scavengers presents promising opportunities for preventing and treating this
condition by targeting oxidative stress mechanisms.

Methods: This study involves the fabrication of a metal-polyphenol self-
assembled nanozyme (Fe@Ba) designed to inhibit ferroptosis through
synergistic catalytic actions and antioxidant properties. The nanozyme is
constructed using metal-polyphenol coordination-driven nanoprecipitation
techniques. Its performance is evaluated in vitro using MTEC cells and in vivo
within an AKI model, with assessments of catalytic activities, ROS depletion
efficacy, antioxidant effects, and anti-ferroptotic mechanisms.

Results: The Fe@Ba nanozyme demonstrates significant catalase (CAT) and
superoxide dismutase (SOD)-like activities upon internalization by MTEC cells,
effectively reducing high ROS levels in the AKI model. Baicalein (Ba), a traditional
Chinese medicine component in the nanozyme, exhibits strong antioxidant
properties, inhibits lipid peroxidation (LPO), upregulates reductive glutathione
(GSH), and promotes glutathione peroxidase 4 (GPX4) expression, thereby
inhibiting ferroptosis. Fluorescence imaging confirms effective renal
accumulation of Cy5.5-labeled Fe@Ba nanozyme. In vivo experiments show
the nanozyme reduces inflammation and significantly enhances survival rates
in AKI models.

Discussion: This study validates the concept of self-assembling nanozymes for
AKI treatment and offers new insights into nanomedicine applications. The Fe@Ba
nanozyme’s ability to counteract inflammation-related damage and inhibit
ferroptosis through multiple mechanisms highlights its therapeutic potential.
The successful integration of traditional Chinese medicine components with
nanotechnology represents an innovative approach to addressing cisplatin-
induced AKI, suggesting broader applications for metal-polyphenol
nanozymes in oxidative stress-related kidney diseases.
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Introduction

Acute kidney injury (AKI) is a critical global health issue that
rapidly impairs kidney function, often resulting in tubular cell death
and inflammation (Li et al., 2023; Jiang et al., 2024; Liu et al., 2020).
It is frequently associated with severe illnesses and can be intensified
by conditions such as reduced blood flow, sepsis, low blood pressure,
and the overuse of certain antibiotics and chemotherapy drugs,
including cisplatin (DDP) (Tang et al., 2023; Li et al., 2021a; Zhang
et al., 2021a; Li et al., 2021b). DDP-induced AKI is a major clinical
complication, and its development is closely tied to the buildup of
reactive oxygen species (ROS) (Li et al., 2021a; Dai et al., 2020),
which overwhelms the body’s antioxidant defenses (Zhao et al.,
2021; Meng et al., 2018; Zhang et al., 2021b). These ROS can damage
essential cellular components like lipids (Zhu et al., 2024a; Liu et al.,
2015), nucleic acids (Zhu et al., 2023a; Liu et al., 2021), and proteins
(Pan et al., 2024; Huang et al., 2024), leading to kidney dysfunction.
While treatments like N-acetylcysteine are employed to counteract
ROS and mitigate cisplatin-induced AKI, they are swiftly cleared by
the immune system (Magner et al., 2022). In addition, antioxidant
enzymes such as catalase (CAT) and superoxide dismutase (SOD)
are promising candidates for clinical treatment of ROS-induced
diseases (Chen et al., 2023; Scholz et al., 2021). Consequently,
exploring artificial enzyme systems to address the challenges of
scavenging ROS generation, and inhibiting ferroptosis, ultimately
preventing cisplatin-induced kidney damage remains a
substantial challenge.

Nanozymes, nanomaterials that mimic the functions of enzymes,
are gaining recognition as a viable substitute for natural enzymes
(Zhang et al., 2022; Zhu et al., 2023b; Jiang et al., 2019; Huang et al.,
2019). Their appeal stems from their affordability, customizable
catalytic properties, and enhanced stability (Chen and Arnold, 2020;
Peng et al., 2024; Zhu et al., 2022; Zhu et al., 2021). Nanozymes have
emerged as promising alternatives to natural enzymes, effectively
bridging the unique intersection of nanotechnology and
biomedicine (Zhu et al., 2023c; Xu et al., 2024; Zhu et al., 2024b).
Metal-polyphenol nanozymes have been widely exploited in recent
years (Liang et al., 2024a; Liang et al., 2024b). Previous studies have
reported that various nanozymes with CAT- and SOD-like activities
have been proven effective in treating AKI by neutralizing harmful
ROS, which aids in the recovery of kidney function (Wang et al., 2022;
Zhang et al., 2021c). While the potential of nanozymes in treating
cisplatin-induced AKI is encouraging, several challenges remain (Li
et al., 2024). Firstly, their relatively low catalytic efficiency hinders their
effectiveness in treating AKI. Secondly, the ongoing process of ROS
scavenging by nanozymes is not as effective as needed. Consequently, it
is crucial to develop new nanozymes that are highly catalytically
efficient and can continuously eliminate ROS, to address the issue
of AKI in cancer patients treated with cisplatin.

Herein, we have developed a metal-polyphenol nanozyme, Fe@
Ba, which is formed by the interaction of ferric ions (Fe3+) and the
antioxidant compound baicalein (Ba) from traditional Chinese
medicine. The polyphenol contains phenolic hydroxyl groups,
which have more lone pair electrons, while the trivalent iron ion

FIGURE 1
(A) TEM image of Fe@Ba nanozyme. (B) The DLS results of Fe@Ba nanozyme. (C) XPS spectrum of O 1s in Fe@Ba nanozyme. (D)High-resolution XPS
spectrum of Fe 2p. (E) XRD spectrum of Fe@Ba nanozyme. (F) The UV-vis spectra of BDP and Fe@Ba nanozyme.
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has vacant orbitals. Therefore, the phenolic hydroxyl groups can
effectively coordinate with the iron ions to form nanoparticles. Fe@Ba
inhibits lipid peroxidation (LPO), a process that contributes to cell
death known as ferroptosis, by neutralizing harmful ROS and
activating the antioxidant properties of baicalein. Fe@Ba nanozyme
mimics the functions of natural enzymes, CAT and SOD, to convert
toxic superoxide anions (·O2

−) into harmless oxygen, thereby reducing
inflammation and preventing ferroptosis. It also increases the
expression of glutathione peroxidase 4 (GPX4), a key enzyme in
the antioxidant defense system, further inhibiting ferroptosis.
Fluorescence imaging reveals that the cyanine 5.5 (Cy5.5)-labeled
Fe@Ba nanozyme effectively accumulates in the kidneys. Our in vivo
experiments have shown that Fe@Ba can alleviate inflammation and
improve survival rates in an AKImodel, demonstrating its therapeutic
potential. This research provides a proof-of-concept for the
development of self-assembling nanozymes and offers new insights
into the use of nanomedicine for treating AKI, highlighting their
potential to mitigate the negative effects of inflammation.

Results and discussions

The synthesis of the Fe@Ba nanozyme was outlined in Scheme 1.
We utilized a self-assemblymethod to combine Fe3+ ions with ametal-
organic framework Ba in the presence of polyvinylpyrrolidone (PVP).

As depicted in Figure 1A, the resulting Fe@Ba nanozyme, which was
uniformly dispersed and approximately 50 nm in size, was directly
visualized using transmission electron microscopy (TEM). The
hydrodynamic size of the Fe@Ba nanozyme was measured with
dynamic light scattering (DLS), as shown in Figure 1B. The zeta
potential of Fe@Ba was −16.7 mV.

The high-angle annular dark-field scanning transmission
electron microscopy (HAADF-STEM) images was employed to
observed the element analysis (Supplementary Figure S1). Further
analysis was conducted using X-ray photoelectron spectroscopy
(XPS) to determine the oxidation states of iron and oxygen in
the Fe@Ba nanozyme, with results presented in Figures 1D;
Supplementary Figures S2, S3. The O 1s XPS spectrum revealed a
peak at a binding energy of 531.4 eV, indicative of the presence of
Fe-O bonds, as shown in Figure 1C. The high-resolution Fe 2p XPS
spectrum split the Fe 2p peak into two components, corresponding
to Fe3+ at 722.9 eV and Fe2+ at 710.1 eV, which are crucial for the
nanozyme’s catalytic activity. The X-ray powder diffraction (XRD)
spectrum indicated no distinct crystal pattern, suggesting that the
iron in the Fe@Ba nanozyme had poor crystallinity, as shown in
Figure 1E. Raman spectroscopy was employed to assess the degree of
crystallinity, with results in Supplementary Figure S4. Ultraviolet-
visible (UV-vis) spectroscopy confirmed the successful assembly of
Ba and Fe3+, as illustrated in Figure 1F. Collectively, these findings
confirmed the successful fabrication of the Fe@Ba nanozyme.

SCHEME 1
Schematic representation of the application of Fe@Ba nanozyme to inhibit ferroptosis in a cisplatin-induced AKI model.
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Motivated by the potential of multivalent iron elements, we
investigated the catalytic capabilities of the Fe@Ba nanozyme. We
assessed its catalase-like activity by measuring its ability to convert
the highly toxic H2O2 into the non-toxic O2, which helps to reduce
oxidative stress caused by ROS, as shown in Figure 2A. Furthermore,
we determined SOD-like activity of Fe@Ba nanozyme using electron
spin resonance (ESR) analysis with the spin-trap reagent 5-tert-
butyloxycarbonyl-5-methyl-1-pyrroline N-oxide (BMPO). The
distinctive quadrupling peak for BMPO-OOH confirmed the
effectiveness of Fe@Ba nanozyme in scavenging superoxide
anions, demonstrating the strong SOD mimetic activity, as
depicted in Figure 2B. These results confirmed the effectiveness
of Fe@Ba nanozyme in reducing ROS and alleviating oxidative
stress. AKI is a significant side effect of DDP treatment, closely
linked to the accumulation of ROS due to an overactive oxidation
system and a compromised antioxidant defense. To evaluate the
cellular protective effects of the Fe@Ba nanozyme, we used confocal

laser scanning microscopy (CLSM) to observe the uptake of Cy5.5-
labeled Fe@Ba nanozyme by DDP-induced cells over time. The
increasing red fluorescence signal indicated that the nanozyme had a
favorable cellular affinity and could enter mouse tubular epithelial
cells (MTEC) cells to exert its therapeutic effects, as seen in Figures
2C, D; Supplementary Figure S5. A colocalization assay revealed that
some Fe@Ba nanozyme could escape from lysosomes into the
cytoplasm, where it scavenged ROS and exhibited antioxidant
capabilities (Figure 2E). These findings indicated that Fe@Ba
nanozyme can effectively be internalized by MTEC cells.

The protective impact of the Fe@Ba nanozyme on cells was
measured using a cell counting kit 8 (CCK-8), which showed that the
nanozyme did not hinder the growth of MTEC cells and was
associated with strong antioxidant effects and reduction of ROS,
as illustrated in Figure 3A. Importantly, the CCK-8 assay indicated
that the Fe@Ba nanozyme significantly improved the MTEC cell
viability in a concentration-dependent way, as shown in Figure 3B.

FIGURE 2
(A) The oxygen generation rate of H2O2 catalyzed by Fe@Ba nanozyme was assessed by dissolved oxygen analyzer. (B) ESR spectra of Fe@Ba
nanozyme with DMPO as the spin trapper. (C) The CLSM images and (D) corresponding quantification of MTEC cells treated with Cy5.5-labeled Fe@Ba
nanozyme. (E) The CLSM images revealed the colocalization of Cy5.5-labeled Fe@Ba nanozyme with the lysosomes of MTEC cells.
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The cytoprotective effect of the Fe@Ba nanozyme was also evaluated
visually through flow cytometry analysis, with results displayed in
Figure 3C; Supplementary Figure S6. These analyses showed that the
Fe@Ba nanozyme-treated group had a notably higher cell survival
rate compared to groups treated with free baicalein or cisplatin,
aligning with the findings from the CCK-8 assay. Moreover, cellular
ROS levels were quantified using a ROS probe, 2′,7′-
dichlorofluorescin diacetate (DCFH-DA), as illustrated in Figures
3D, E. CLSM revealed that the Fe@Ba nanozyme had a greater

capacity to reduce ROS than baicalein alone, attributed to its robust
catalytic activities and antioxidant properties. These results confirm
that the Fe@Ba nanozyme can effectively lower cellular ROS levels
and enhance cell viability.

To understand how the Fe@Ba nanozyme can prevent
ferroptosis in MTEC cells, we used a fluorescence probe,
5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide
(JC-1), to assess changes in mitochondrial membrane potential
(MMP). The fluorescence of probe shifts from green to red as

FIGURE 3
(A) Cell viability after a 24-h treatment with various concentrations of Fe@Ba nanozyme. (B) Cell viability after a 24-h treatment with various
concentrations of Fe@Ba nanozyme in the presence of cisplatin. (C) Flow cytometry measurement of MTEC cells death rate following different
treatments. (D) DCF fluorescence and (E) corresponding quantification of MTEC cells subjected to different treatments.
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FIGURE 4
(A) Confocal images of MTEC cells stained with JC-1 kit following a 24-h treatment with different formulations. (B) Confocal images of MTEC cells
stained with C11-BODIPY581/589 following different formulations.

FIGURE 5
(A) The cellular levels of GSH after different treatmentsweremeasured using aDTNB assay kit. (B)Confocal images (C) and the corresponding quantification
(f) of GPX4 expression in MTEC cells after different formulations. (D) Quantitative analysis of MDA (E) and 4-HNE levels following different formulations.
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MMP decreases. CLSM images revealed a decrease in red
fluorescence and an increase in green fluorescence in the DDP
group, indicating MMP damage, as shown in Figure 4A. In contrast,
the Fe@Ba nanozyme treatment resulted in a decrease in green
fluorescence and an increase in red fluorescence, suggesting
significant mitochondrial depolarization. Ferroptosis is marked by
mitochondrial damage, and we used the fluorescent probe BODIPY
C11581/591 to measure lipid peroxide levels, which change from red to
green fluorescence. CLSM images indicated that the Fe@Ba
nanozyme significantly reduced green fluorescence and increased
red fluorescence, as depicted in Figure 4B, suggesting a reduction in
lipid peroxides and thus inhibiting LPO. Furthermore, the Fe@Ba
nanozyme was found to enhance glutathione (GSH) levels, which in
turn increases the expression of GPX4, a key enzyme that inhibits
ferroptosis. Figure 5A shows that the Fe@Ba nanozyme substantially

increased GSH levels due to its excellent enzymatic activities and
antioxidant capabilities. An immunofluorescence assay was used to
measure GPX4 expression, and Figures 5B, C shows that the Fe@
Ba nanozyme upregulated GPX4 expression, likely due to its
catalytic activities in raising GSH levels. We also measured
additional indicators of ferroptosis, malondialdehyde (MDA)
and 4-hydroxynonenal (4-HNE), to confirm the inhibitory
effect of the Fe@Ba nanozyme on ferroptosis. Figures 5D, E
demonstrate that MTEC cells treated with the Fe@Ba nanozyme
significantly reduced the levels of these harmful byproducts. These
findings suggest that the Fe@Ba nanozyme can effectively
neutralize ROS and protect mitochondria from depolarization,
potentially offering antioxidant protection in an AKI model. This
provides strong evidence for the potential of Fe@Ba nanozyme as
an effective inhibitor of ferroptosis.

FIGURE 6
(A) Fluorescence images (B) corresponding quantification of cisplatin-induced AKI mice at different time points post-injection with Cy5.5-labeled
Fe@Ba nanozyme. (C) Kaplan-Meier survival curves of mice following different treatments. (D) TUNEL staining of kidney slices and (E) the corresponding
quantification from various groups following a 24-h treatment with different formulations. (F) ROS staining and (G) the corresponding quantification of
kidney slices following various formulations. (H) Immunofluorescence staining and (I) the corresponding quantification of GPX4 in kidney slices
following various formulations.
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The animal study protocol was approved by the Ethical
Committee of Fujian Medical University (IACUC FJMU 2024-
Y-0291). We used an IVIS imaging system to track the in vivo
distribution of the Cy5.5-labeled Fe@Ba nanozyme. The imaging
showed that the fluorescence signal at the kidney area increased
over time, peaking 24 h after injection, which corresponds to ROS
scavenging and ferroptosis inhibition effects of Fe@Ba nanozyme,
as seen in Figures 6A, B. The mice were divided into four groups:
PBS control, DDP treatment, DDP plus free Ba, and DDP plus Fe@
Ba nanozyme. The results, as depicted in Figure 6C, indicated that
the Fe@Ba nanozyme group had a significantly extended survival
rate compared to the free Ba group, demonstrating the nanozyme’s
superior antioxidant performance. We have measured the serum
creatinine and blood urea nitrogen of different treatment groups in
mice in vivo. As shown in Supplementary Figures SS7, S8, Fe@Ba
nanozyme can significantly decrease the levels of serum creatinine,
blood urea nitrogen, and inflammatory factor. To further confirm
the antioxidant effect of Fe@Ba nanozyme, we performed terminal
deoxynucleotidyl transferase-mediated dUTP nick-end labeling
(TUNEL) staining on kidney sections. Figures 6D, E;
Supplementary Figure S9 show that kidneys treated with the
Fe@Ba nanozyme experienced less damage than those treated
with free Ba, indicating a significant therapeutic benefit.
Immunofluorescence staining confirmed the inhibition of
kidney ferroptosis, with notable reductions in ROS and
increases in GPX4 expression observed directly in the kidney,
as shown in Figures 6F–I and S10-S11. In conclusion, the Fe@Ba
nanozyme reduced lipid peroxidation, decreased intracellular
oxidative stress, and enhanced GPX4-mediated protection
against ferroptosis. Blood biochemistry analysis of mice and
H&E staining further confirmed the antioxidant ability of Fe@
Ba nanozyme, significantly reducing the levels of blood urea
nitrogen (BUN), creatinine (CREA), and renal injury
(Supplementary Figures S12, S13). These findings underscore
the potential of Fe@Ba nanozyme as an effective inhibitor of
ferroptosis for the treatment of AKI.

Conclusion

We successfully developed a metal-polyphenol self-assembling
nanozyme as a ROS scavenger for treating cisplatin-induced AKI.
The Fe@Ba nanozyme was synthesized through the interaction
between Fe3+ and the antioxidant compound Ba, derived from
traditional Chinese medicine. This nanozyme effectively inhibited
LPO, a key driver of ferroptosis, by scavenging highly reactive ROS
and enhancing antioxidant properties of Ba. Fe@Ba nanozyme
exhibited CAT- and SOD-like activities to convert toxic ·O2

− into
harmless oxygen, thereby reducing inflammation and preventing
ferroptosis. Additionally, Fe@Ba nanozyme upregulated the
expression of GPX4, further inhibiting ferroptosis. Fluorescence
imaging demonstrated that Cy5.5-labeled Fe@Ba nanozyme
effectively accumulated in the kidneys. In vivo experiments
confirmed that Fe@Ba nanozyme reduced inflammation and

improved survival rates in an AKI model, showcasing its
therapeutic potential. This research not only validated the
concept of self-assembling nanozymes but also offered new
insights into the use of nanomedicine for AKI treatment,
emphasizing their ability to counteract inflammation-
related damage.
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