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Background:Optimizing prescription practices for surgical patients is crucial due
to the complexity and sensitivity of their medication regimens. To enhance
medication safety and improve patient outcomes by introducing a machine
learning (ML)-based warning model integrated into a pharmacist-led Surgical
Medicines Prescription Optimization and Prediction (SMPOP) service

Method: A retrospective cohort design with a prospective implementation phase
was used in a tertiary hospital. The study was divided into three phases: (1) Data
analysis and ML model development (1 April 2019 to 31 March 2022), (2)
Establishment of a pharmacist-led management model (1 April 2022 to
31 March 2023), and (3) Outcome evaluation (1 April 2023 to 31 March 2024).
Key variables, including gender, age, number of comorbidities, type of surgery,
surgery complexity, days from hospitalization to surgery, type of prescription,
type of medication, route of administration, and prescriber’s seniority were
collected. The data set was divided into training set and test set in the form of
8:2. The effectiveness of the SMPOP service was evaluated based on prescription
appropriateness, adverse drug reactions (ADRs), length of hospital stay, total
hospitalization costs, and medication expenses.

Results: In Phase 1, 6,983 prescriptions were identified as potential prescription
errors (PPEs) for ML model development, with 43.9% of them accepted by
prescribers. The Random Forest (RF) model performed the best (AUC = 0.893)
and retained high accuracy with 12 features (AUC = 0.886). External validation
showed an AUC of 0.786. In Phase 2, SMPOP services were implemented, which
effectively promoted effective communication between pharmacists and
physicians and ensured the successful implementation of intervention
measures. The SMPOP service was fully implemented. In Phase 3, the
acceptance rate of pharmacist recommendations rose to 71.3%, while the
length of stay, total hospitalization costs, and medication costs significantly
decreased (p < 0.05), indicating overall improvement compared to Phase 1.
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Conclusion: SMPOP service enhances prescription appropriateness, reduces
ADRs, shortens stays, and lowers costs, underscoring the need for continuous
innovation in healthcare.
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1 Background

Optimizing prescription practices for surgical patients is critical
due to the complexity and sensitivity of their medication regimens.
Surgical patients often require multiple medications to manage their
conditions before and after surgery, especially elderly patients, who
typically need more prescriptions due to comorbidities (Cross et al.,
2020). The frequent use of high-alert medications such as
anticoagulants (Raccah et al., 2021), opioids (Heneka et al., 2018),
anesthesia (Kothari et al., 2010), and sedatives, during surgery
increases the risk of prescription errors (Abbasi et al., 2022).
Studies report a 9.3% error rate among all prescription in
1,000 perioperative patients in the United States (Langlieb et al.,
2023). These errors can lead to adverse drug events (ADEs), prolonged
hospital stays, and higher healthcare costs (Durand et al., 2024),
highlighting the need to optimize prescriptions to improve outcomes.

Given the high risk of errors, it is crucial to explore strategies to
enhance prescription accuracy. Strengthening the clinical role of
clinical pharmacists is one such effective strategy (Jia et al., 2021).
Previous literature has confirmed that clinical pharmacists play a
pivotal role in drug management and reducing ADRs (Johns et al.,
2024; Mahomedradja et al., 2023; Delgado-Pérez et al., 2023). Studies
have shown that clinical pharmacists have significantly reduced drug
errors and adverse drug reactions through systematic drug review
services. For instance, research has demonstrated that pharmacist-led
prescription review services improve appropriateness, reduce errors,
enhance patient outcomes, and minimize resource wastage (Dalton
and Byrne, 2017; Jaam et al., 2021; Jošt et al., 2024). Yang, for example,
found that a pharmacist-led, system-assisted review model reduced
inpatient prescribing errors from 6.94% to 1.96% (Yang et al., 2021).
Pharmacists are particularly important in the drug management of
surgical patients, especially in complex treatment plans (Xie et al.,
2023). Pharmacists can optimize drug selection and administration
routes, reduce inappropriate drug use, and thus mitigate the
occurrence of drug-related adverse reactions (Nguyen et al., 2023).
Other studies have shown that pharmacist-involved drug
optimization services significantly reduce the incidence of adverse
drug reactions and shorten hospital stays (Gray et al., 2023).

However, while these interventions are beneficial, addressing
potential prescription errors (PPEs) is even more critical. Numerous
studies have shown that pharmacists can resolve possible conflicts in
treatment plans between doctors and pharmacists through effective
communication, further improving the safety of drug therapy (Kim
et al., 2024; Waszyk-Nowaczyk et al., 2021). Yet over 50% of PPEs
identified by pharmacists were not accepted by prescribers in prior
studies (Alipour et al., 2018; Albassam et al., 2020). Few studies have
developed management models to address unaccepted PPEs, leading
to higher risks and potential harm.

Developing a management model for unaccepted PPEs has
proven challenging due to factors such as patient conditions,

disease complexities, and medication regimens Unresolved PPEs
present significant risks to medication safety and efficacy.
Prescribers may reject pharmacists’ recommendations due to
differing focuses, with prescribers prioritizing outcomes and
pharmacists emphasizing drug properties and interactions
(Waszyk-Nowaczyk et al., 2021). Heavy workloads and existing
management processes contribute to communication discrepancies
(Rosen et al., 2018). A study found that 60% of pharmacist
interventions were not implemented by prescribers, often due to
differences in clinical focus (De Rijdt et al., 2008). The lack of a
structured approach exacerbates these gaps in medication safety.

To bridge these challenges, recent advances in machine learning
(ML) offer promising solutions. ML can handle large-scale datasets
and identify factors influencing healthcare management outcomes.
A study demonstrated that models such as Random Forest (RF) and
Support Vector Machine (SVM) could enhance predictive accuracy
and patient outcomes by identifying critical factors like age, BMI,
and blood pressure in diabetic groups (Tan et al., 2023). In recent
years, the application of ML in drug management has also gradually
increased. Studies have shown that by introducing ML models,
pharmacists can more accurately identify potential medication
errors and inappropriate drug treatment plans, thereby
improving the efficiency and accuracy of drug reviews (Chalasani
et al., 2023). For example, by using an RF model, pharmacists can
significantly enhance the accuracy and efficiency of drug reviews,
consequently reducing drug-related adverse events (Vora et al.,
2023; Li et al., 2024). Integrating machine learning models with
pharmacists’ clinical expertise can help mitigate disagreements
between pharmacists and prescribing physicians (Al Meslamani,
2023), leading to greater acceptance of drug treatment plans (Babel
et al., 2021) and ultimately reducing adverse drug reactions (Dsouza
et al., 2025) and healthcare costs (Khanna et al., 2022).

This study presents an ML-based warning model t designed to
identify key intervention points in the medication management
process and optimize the pharmacist-led prescription review system.
The aim is to evaluate the effectiveness of the model in improving
prescription appropriateness for surgical patients, reducing adverse
drug events (ADEs), and shortening hospital stays. By focusing on
surgical patients, the study seeks to contribute to the standardization
of clinical medication management, thereby enhancing patient
safety and improving healthcare outcomes in perioperative care.

2 Methods

2.1 Design

This study employed a retrospective cohort design combined
with a prospective implementation phase to evaluate the
effectiveness of a pharmacist-led prescription optimization
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intervention service for surgical patients. The study was structured
into three phases: data analysis and ML model development,
establishment of a pharmacist-led management model, and
outcome evaluation (Figure 1). This study was approved by the
Ethics Committee of our hospital (Ethics Number: 2021-K-K229).

2.2 Setting and participants

The study was conducted at a tertiary hospital, which was the
first to implement an electronic system-assisted review service for all
inpatient prescriptions (beginning on 1 April 2019). The participant
cohort included surgical patients admitted between April 2019 and
March 2024. Patients were selected based on the following criteria:
(1) Patients underwent surgery during hospitalization; (2) Patients
were aged 18 years or older; (3) Patients had multiple comorbidities
(defined as having at least two chronic conditions) (Skou et al., 2022)
and complex medication regimens (defined as the use of five or more
medications during hospitalization) (Pazan and Wehling, 2021).
Exclusion criteria included: (1) Patients with incomplete medical
records; (2) Patients transferred from other hospitals.

2.3 Data collection

Data was collected from the electronic prescription review (EPR)
system. Key data points included: patient demographics (gender,
age, number of comorbidities, length of stay, incidence of ADRs,
total hospitalization costs, cost of medication); surgical-related
information (type of surgery, days from hospitalization to
surgery, and level of surgery complexity); prescription-related
information (type of prescription, number of concurrent

medications, type of medication, route of administration, grade
of prescription, and type of PPEs); and intervention Information
(prescribers’ seniority, prescribers’ gender, and
pharmacist training).

2.4 Definition and evaluation of PPEs

To define Potential Prescription Errors (PPEs), we utilized a set
of criteria embedded in the commercialization EPR system, which
has been implemented in multiple leading hospitals across China.
These criteria were developed based on authoritative literature,
clinical guidelines, drug package inserts, and national drug
use policies.

Before the implementation of EPR system, our hospital
established a Prescription Review Rules Panel comprising
multidisciplinary experts, including clinical pharmacists,
prescribers, and other healthcare professionals. The panel
developed the criteria using established resources such as the
Beers Criteria (American Geriatrics Society, 2023), STOPP/
START Criteria (O’Mahony et al., 2015), Centers for Disease
Control and Prevention (CDC) opioid prescribing guidelines
(Dowell et al., 2022), and other relevant guidelines.

After updating the criteria based on these resources, the panel
finalized them through two rounds of the Delphi method. The
updated rules were updated with monthly to address evolving
clinical needs.

The included rules were embedded in the hospital’s EPR system,
which contained approximately 90,000 rules. To facilitate the
implementation, prescriptions were categorized into eight grades
according to these rules: (1) Grades 0–4: Defined as appropriate
prescriptions. Based on existing evidence, these prescriptions were

FIGURE 1
Flowchart. ADRs: Adverse Drug Reactions; AUC: Area Under the ROC Curve; PPV: positive predictive value; NPV: negative predictive value; PPEs:
potential prescription errors.
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likely to benefit the patient. (2) Grades 5–6: Defined as potential
errors prescription. These prescriptions required further evaluation
by a pharmacist, as the benefits and risks could not be conclusively
determined from existing evidence. (3) Grade 7: Defined as error
prescriptions. Based on existing evidence, these prescriptions had
clear contraindications or risks for the patient.

According to the prescription review process, grades
5–6 prescriptions were forwarded to the pharmacist’s interface
for further review. If the prescription was considered as
appropriate by the pharmacist, it could proceed to dispensing; if
considered a PPE, it was sent back to the prescriber’s interface for
reconsideration. The prescriber then decided whether to continue
with the prescription based on the pharmacist’s suggestion. Due to
disagreements between pharmacists and prescribers in resolving
PPEs identified as grades 5–6, the communication and acceptance
process required considerable effort, making it challenging to
efficiently manage risks for these prescriptions. Therefore, grades
5–6 prescriptions were included as the subject of investigation in this
study. Additionally grades 5–6 PPEs were defined according to the
following criteria: (1) Contraindicated drug; (2) Drug interactions;
(3) Incorrect dilution; (4) Incompatibilities; (5) Incorrect infusion
rate or order; (6) Non-compliance with hospital policies; (7)
Incorrect duration of treatment; (8) Wrong utilization.

2.5 Study phases

This study was conducted in three phases to optimize and
evaluate the SMPOP service model. The phases include data
analysis and ML model development, establishment of the
SMPOP intervention model, and outcome evaluation. Figure 1
summarizes the key activities and timeline of each phase.

2.6 Phase 1: Data analysis and ML model
development (April 1, 2019 to
31 March 2022)

2.6.1 Data Variables
The data was divided into an accepted group and an unaccepted

group based on the prescribers’ decisions which were informed by
the pharmacist’s opinion. Independent variables included patient
variables (gender, age, number of comorbidities); surgical variables
(type of surgery, days from hospitalization to surgery, level of
surgery complexity); prescription variables (type of prescription,
number of concurrent medications, type of medication, route of
administration, grade of prescription, and type of PPEs); and
intervention variables (prescriber’s seniority, prescriber’s gender,
pharmacist’s training).

2.6.2 Model Development
The 6,983 prescriptions were split into a training set and an

internal validation set in a ratio of 8:2. The 15 aforementioned
features were used to develop the prediction models. 11 ML models
were used to predict whether the prescriber accepts the pharmacist’s
decision: Naive Bayes (NB), RF, extreme gradient boosting
(XGBoost), artificial neural network (ANN), SVM, decision tree
(DT), extra trees (ET), gradient boosting machine (GBM), light

gradient boosting machine (LightGBM), logistic regression (LR),
and adaptive boosting (AdaBoost).

2.6.3 Model Evaluation
The reliability of the models was assessed using common

evaluation metrics (Mandrekar, 2010; McHugh, 2012), including
the area under the receiver operating characteristic curve (AUC),
accuracy, F1 score, sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), and kappa coefficient. The
prediction models were validated using Five-fold and Ten-fold
cross-validation.

2.6.4 Feature Selection and Model Interpretation
SHapley Additive exPlanations (SHAP) was used to interpret the

models and estimate the contribution of each variable (Hu et al.,
2024). SHAP values were used to reduce the features from 15 to the
top three based on feature importance ranking. The Delong
nonparametric method and binomial exact test in MedCalc
(version 22.030) (DeLong et al., 1988) were used to compare the
differences in AUC for different features.

2.7 Phase 2: Establishment of the
pharmacist-led surgical Medicines
prescription optimization intervention
management model (April 1, 2022 to
31 March 2023)

In this phase, version 1.0 of a pharmacist-led Surgical Medicines
Prescription Optimization and Prediction (SMPOP) ® service model
was developed. Activities included: (1) Technical Integration: The
ML-based optimization and prediction model was embedded into
the hospital’s EPR system. (2) System Debugging and Calibration:
Continuous monitoring and adjustment of the system were
performed made to ensure the system operated accurately and
efficiently operation. (3) SMPOP Process Design: Based on
significant findings from Phase 1, multiple management nodes
were established, and the overall process clearly defined (Figure 2).

2.8 Phase 3: Outcome evaluation (April 1,
2023 to 31 March 2024)

During this phase, the effectiveness of the SMPOP service was
assessed. Data from the following periods were collected and
analyzed to measure the impact of the SMPOP service on patient
outcomes: (1) April 2019 to March 2020 (ML Development Period):
This period was dedicated to developingMLmodels using data from
the derivation cohort. (2) April 2020 to March 2021 (External
Validation Period): During this period, the developed models
were externally validated using a separate dataset to ensure
robustness and generalizability. (3) April 2023 to March 2024
(Post-Implementation Evaluation Period): This period involved
evaluating patient outcomes after the implementation and
stabilization of the pharmacist-led prescription optimization
intervention service model.

The following key outcome measures were evaluated: (1)
Prescription appropriateness: Evaluated based on the prediction
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of PPEs and the acceptance rate of pharmacist recommendations by
prescribers. (2) ADRs: Measured by the total incidence rate of ADRs
across the three periods to determine the effectiveness of the
intervention in reducing medication-related harm. (3) Length of
Hospital Stay: A comparison of the average duration of hospital
stays across the three periods was used to highlight any
improvements in patient recovery times and hospital efficiency.
(4) Total Hospitalization Costs: Analyzed by comparing the total
costs incurred during hospital stays across the three periods, which
includes all expenses related to patient care and treatment. (5) Cost
of Medication: Evaluated by comparing the total expenditure on
medications across the three periods, reflecting the cost-effectiveness
of the optimized prescription practices.

2.9 Statistical analysis

Statistical analyses were performed using Python (Spyder-
py3), IBM SPSS Statistics (version 25.0), and R (version 4.4.0).
Decision curve analysis (DCA) was performed using R (version
4.4.0), while precision-recall curve analysis (P-R curve analysis)
was performed using Python (Spyder-py3). In the comparative
analysis between the two groups, categorical variables were
expressed as frequencies (percentages) and compared using the
chi-square test. For normally distributed continuous data,
descriptive statistics were presented as mean ± standard
deviation, and the independent sample t-test was used. For
non-normally distributed continuous data, distribution
characteristics were described using the interquartile range

(IQR), and the Mann-Whitney U test was applied. A
p-value <0.05 was considered statistically significant.

3 Result

3.1 Descriptive statistics of the number of
each prescription

A total of 2,049,499 prescriptions were issued for both the pre-
and post-implementation SMPOP service cohorts between 1 April
2019, and 31 March 2024. For pre-implementation cohorts,
793,395 prescriptions were classified as grades 5 and 6 by the
system and were sent to the pharmacist interface for further
review. Among these, 6,983 prescriptions were deemed to have
PPEs and were included for MLmodel development during Phase 1.
Prescriptions for external validation were included in Phase 1. In
Phase 3, the number of prescriptions included was 3,307.

4,208 patients were associated with the 6,983 prescriptions
deemed to have PPEs: 62.55% of patients had one prescription,
22.81% had two prescriptions, 7.87% had three prescriptions, and
6.86% of patients had more than three prescriptions
(Supplementary Table S1).

3.2 Characteristics of patients and surgeries

For the analysis of the ML model development, of the 6,983 PPE
prescriptions,43.90% were accepted by prescribers and defined as

FIGURE 2
Establishment and Implementation of the Pharmacist-Led Surgical Medicines Prescription Optimization and Prediction (SMPOP)

®
Service Model.

PPEs: potential prescription errors; SOP: standard operating procedures.
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the ‘accepted group’, while 56.10% were not accepted and were
categorized as the ‘unaccepted group’. Comparison between the two
groups indicated that the type of surgery, days from hospitalization
to surgery, level of surgery complexity, type of prescription, number
of concurrent medications, type of medication, route of
administration, grade of prescription, type of PPEs, prescriber’s
gender, and pharmacist training were significantly different (p <
0.05). Specifically, regarding the grade of prescription, prescriptions
of grade 5 accounted for 84.52% of all PPE prescriptions, and made
up 83.33% of the ‘unaccepted’ group (p = 0.001). For all types of PPE,
the most common error was inappropriate indication (67.76%),
accounting for 68.30% of the ‘unaccepted’ group (p < 0.001). Others,
such as gender, age, number of comorbidities, or prescriber’s
seniority, showed no significant statistical differences (p > 0.05)
(Supplementary Table S2). A comparison of demographics and

variables between the training set, internal validation set, and
external validation set was provided in Supplementary Table S3.

4 ML model development

4.1 Model development and performance
comparison

During Phase 1, 11 ML models were generated to predict
whether the prescriber accepts the pharmacist’s recommendation.
Among the 11 ML models, the RF model had the best predictive
performance in terms of AUC (AUC = 0.893), followed by the
LightGBM model (AUC = 0.797), DT model (AUC = 0.780),
XGBoost model (AUC = 0.777), and GBM model (AUC = 0.773)

FIGURE 3
Performance of ML Models in Predicting Whether the prescriber accepts the pharmacist’s decision. (A) ROC curves of the top five best-performing
MLmodels; (B) AUC of the top five best-performing MLmodels with different numbers of features; (C) AUC, Sensitivity, Accuracy, Specificity, Kappa, and
F1 Score of the RF model with different numbers of features. ROC: Receiver Operating Characteristic; AUC: Area Under the ROC Curve; AdaBoost:
Adaptive Boosting; ANN: Artificial Neural Network; DT: Decision Tree; ET: Extra Trees; GBM: Gradient Boosting Machine; LightGBM: Light Gradient
Boosting Machine; LR: Logistic Regression; ML: Machine Learning; RF: Random Forest; SVM: Support Vector Machine; XGBoost: Extreme
Gradient Boosting.
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(Figure 3A). For other performance metrics, these 5 ML models also
performed better than the other six models (Supplementary Table
S4), and were therefore selected as further analysis models.

In the SHAP summary plot for all features, the ‘type of prescription’
consistently ranked as the most important feature across the five
optimal ML models (Supplementary Figure S1). During the feature
reduction using feature engineering, changes in the AUC values
indicated that the RF model demonstrated the best predictive
capability (Figure 3B). Additionally, performance evaluations of the
RFmodel with varying numbers of features further confirmed its strong
predictive capability (Figure 3C; Supplementary Table S5).

4.2 Final model selection

The finalmodel was selected through the feature reduction process of
the RF model. The DeLong and binomial exact tests were used to
compare the differences in AUC with different features in predicting
whether the prescriber accepts the pharmacist’s decision. The results
showed that the 15-feature model (AUC = 0.893, 95%CI = 0.876–0.909)
was significantly better than the 9-feature model (AUC = 0.868, ΔAUC=
0.025, p < 0.001, 95% CI = 0.849–0.885), the 6-feature model (AUC =
0.802,ΔAUC=0.092, p< 0.001, 95%CI= 0.780–0.822), and the 3-feature
model (AUC = 0.678, ΔAUC = 0.216, p < 0.001, 95% CI = 0.653–0.702)
but was not significantly better than the 12-feature model (AUC = 0.886,
ΔAUC = 0.007, p = 0.092, 95%CI = 0.868–0.902). This implies that
reducing the number of features did not significantly affect model
performance (Supplementary Figure S2A; Supplementary Table S6).

The DCA curve was used to compare prediction models with
varying numbers of features. Results showed that the 12-featuremodel
provided a greater net benefit, demonstrating strong predictive
performance across different thresholds (Supplementary Figure
S2B). Additionally, the P-R curve revealed that the 12-feature
model (PR-AUC = 0.867) performed slightly below the 15-feature
model (PR-AUC = 0.874), indicating that both models offer similarly
high clinical utility (Supplementary Figure S2C).

Finally, the 12-feature RF model (including gender, age, number of
comorbidities, type of surgery, level of surgery complexity, days from
hospitalization to surgery, type of prescription, number of concurrent
medications, type of medication, route of administration, type of PPEs,
prescriber’s seniority) was selected as the final model for further analysis.
The final RF model for predicting prescriber opinion had an AUC of
0.886, a sensitivity of 0.836, a specificity of 0.773, PPV of 0.742, NPV of
0.857, accuracy of 0.800, F1 score of 0.786, and kappa of 0.600.

To validate the adequacy of the sample size and the robustness of
the model, additional cross-validation was performed. The final RF
model achieved a mean AUC of 0.891 ± 0.012 in five-fold cross-
validation (Supplementary Figure S3A) and 0.898 ± 0.014 in ten-fold
cross-validation (Supplementary Figure S3B). Additionally, the final
model had a mean AUC of 0.912 ± 0.026 for 2019 (n = 2,734) and
0.885 ± 0.012 for 2020 (n = 4,249) according to ten-fold cross-
validation (Supplementary Table S7).

4.3 External validation of the final model

Data from 2021 to 2022 were used as external validation data.
The RF model performed well in both internal and external

validation. Internal validation showed an AUC of 0.886, while
external validation showed an AUC of 0.786, with a ΔAUC of
0.100, indicating the model’s consistency and generalizability across
different datasets (Supplementary Figure S4). Despite a slight
decrease in the AUC during external validation, other key
performance metrics, such as accuracy, precision, PPV, NPV, and
specificity, remained high on the external dataset, which
demonstrated the model’s effectiveness and robustness for new
data (Supplementary Table S8).

4.4 Model explanation

Using the SHAPmethod, both local and global interpretations of
the model were provided. Local interpretation was used to
understand the specific prediction process for individual samples
in the RF model. Variables such as gender, age, number of
comorbidities, type of surgery, level of surgery complexity, days
from hospitalization to surgery, type of prescription, type of
medication, route of administration, and prescriber’s seniority
were found to have a positive impact on the SHAP values. In
contrast, the number of concurrent medications and type of
PPEs were found to have a negative impact on the SHAP
values (Figure 4A).

Global interpretation was used to describe the overall
functionality of the model. By calculating and plotting the
SHAP values for each feature across all samples, the SHAP
values for each sample were summarized and variables ranked
in descending order. For example, the SHAP values for long-term
prescriptions were found to be relatively low, indicating a
significant negative impact on model predictions (Figure 4B).
The importance of the features was evaluated based on the
average absolute SHAP values, which were arranged in
descending order. According to the RF model, the five most
important features were identified as type of prescription, type
of surgery, type of medication, number of comorbidities, and days
from hospitalization to surgery (Figure 4C). SHAP dependence
plots were used to understand how individual features influenced
the model’s output. The relationships between the actual values
and SHAP values for these 12 features are illustrated in
Supplementary Figure S5.

5 Outcome evaluation

The changes in prescribers’ acceptance of pharmacists’
recommendations, length of stay, total hospitalization costs,
cost of medication, and number of ADRs were compared across
three periods to evaluate the effectiveness of the SMPOP service.
An increase in the acceptance rate of pharmacists’
recommendations was observed among the three groups, along
with decreases in the length of stay, total hospitalization costs, cost
of medication, and ADRs (Table 1). Compared to the ML
development period and external validation period, the
acceptance rate of pharmacists’ recommendations in the post-
implementation evaluation period increased from 40.63% to
71.30%, the length of stay was reduced from 13 days (IQR: 8,
22) (P < 0.001) to 7 days (IQR: 9, 15) (p < 0.001), total
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hospitalization costs decreased from 32,263.42 RMB (IQR:
16,880.46,68,921.29) (p < 0.001) to 20,842.89 RMB (IQR:
13,516.59, 32,055.51) (p < 0.001), cost of medication decreased
from 7847.67 RMB (IQR: 3815.45,19,980.16) (p < 0.001) to
4,712.92 RMB (IQR: 2866.63, 7716.55) (p < 0.001), and the
ADR rate was reduced from 0.4% to 0.18% (p = 0.095).

6 Discussion

This study demonstrated the potential of an ML-based model
integrated into a pharmacist-led SMPOP service to enhance
prescription practices for surgical patients. Given the complexity
of surgical medication regimens, optimizing prescriptions was

FIGURE 4
SHAP Explanation of the RFModel. (A) SHAP Force Plot: Contribution of each feature value for a single sample; (B) SHAP Summary Plot: Summary of
SHAP values for each variable; (C) SHAP Summary Bar Plot: Absolute mean of SHAP values for each variable.

TABLE 1 Evaluation of Outcomes during the different period.

Variable ML development period
(N = 6983)

External validation period
(N = 3495)

Post-implementation
evaluation period (N = 3307)

p-value

The acceptance rate of pharmacist
recommendations by prescribers,
(n, %)

<0.001

Accepted group 3069 (43.95) 1420 (40.63) 2358 (71.30)

Unaccepted group 3914 (56.05) 2075 (59.37) 949 (28.70)

Length of stay, (median, IQR) 15 [9,24] 13 [8,22] 7 [9,15] <0.001

Total hospitalization costs,
(median, IQR)

36160.11 [19550.97-71673.10] 32263.42 [16880.46,68921.29] 20842.89 [13516.59,32055.51] <0.001

Medication costs, (median, IQR) 8794.98 [4162.56–19805.44] 7847.67 [3815.45,19,980.16] 4712.92 [2866.63,7716.55] <0.001

ADRs (n, %) 13 (0.19) 14 (0.4) 6 (0.18) 0.095

Note: P < 0.05 is considered statistically significant; IQR: interquartile range; ADRs: adverse drug reaction.
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essential to improving outcomes and reducing costs. Using a three-
phase approach, namely, data analysis and model development,
management model establishment, and outcome evaluation, the
study showed how predictive analytics can enhance the
identification and resolution of PPEs. The RF model proved most
effective in predicting the acceptance of pharmacist
recommendations, enhancing prescription appropriateness,
reducing ADRs, shortening hospital stays, and saving costs.
These findings highlight the benefits of integrating ML with
clinical decision-making, providing a framework for better
medication management and patient safety in surgical care.

A significant proportion of identified PPEs remained
unaccepted by prescribers from 2019 to 2022. Similar to findings
from prior research, a study from the United States found that
around 30% of discovered medication errors reached patients (Sacks
et al., 2009). However, that investigation did not focus on surgical
settings, a factor which may have influenced how unaccepted PPEs
were resolved. Even with pharmacy-based interventions, 53% of
drug errors during the administration stage persisted (FitzHenry
et al., 2007), highlighting the difficulty of comparing PPE rates
across studies, as they can vary based on context, methodology, and
definitions of prescription errors (Lisby et al., 2010; Saif et al., 2024;
Alsabri et al., 2024). Consequently, these comparison data should be
interpreted cautiously. Nonetheless, the high proportion of
unresolved PPEs underscores the need to enhance efforts to
address these issues.

The final ML prediction model included critical features: age,
gender, number of comorbidities, type of surgery, level of surgical
complexity, days from hospitalization to surgery, number of
concurrent medications, type of medication, route of
administration, type of PPEs, prescriber’s seniority, and type of
prescription. Inclusion of these features could enhance the efficiency
of resolving unaccepted PPEs and provide a nuanced understanding
of effective strategies (Johns et al., 2024; Mahomedradja et al., 2023;
Tansuwannarat et al., 2023). Our study identified that male patients
with comorbidities undergoing complex surgeries were at higher risk
for unresolved PPEs, aligning with prior research indicating that
surgical complexity and comorbidities are significant predictors,
often exacerbating communication challenges in resolving PPEs
(Tonelli et al., 2018; Nanji et al., 2016).

While gender had not traditionally been viewed as a significant
factor, our findings suggested that prescriptions for male patients
required closer collaboration between prescribers and pharmacists.
Medications administered via non-oral routes, such as intravenous,
intramuscular, subcutaneous, and via inhalation, were flagged as
high-risk categories, indicating that non-oral routes were associated
with higher rates of PPEs due to their complexities (Alsabri et al.,
2024). Additionally, our study found that junior pharmacists were
more likely to reduce unresolved PPEs, contradicting the notion that
experience necessarily enhances PPE resolution (Jaam et al., 2021;
Dean et al., 2002). This may be due to junior pharmacists being more
attuned to newer protocols and dedicating more time to PPE-related
issues, supporting research advocating for fresh perspectives and up-
to-date training in the healthcare workforce (Newby et al., 2019;
Gillani et al., 2021).

In this study, the RF model was selected for its superior
predictive performance in identifying PPEs and supporting
pharmacist-led interventions. Among the tested ML models, RF

achieved the highest AUC, making it optimal in this context. This
finding aligns with prior studies highlighting the effectiveness of RF
models in predicting clinical outcomes by managing complex, non-
linear interactions among variables (Hu et al., 2024). Unlike LR and
SVM commonly used in earlier prescription optimization studies
(Chalasani et al., 2023; Couronné et al., 2018; Marchi et al., 2022), RF
showed superior adaptability to patient, surgical, and prescription-
related factors (Hassan et al., 2023). Furthermore, feature reduction
confirmed the RF’s ability to maintain high predictive accuracy with
fewer variables. The 12-feature model selected through SHAP
analysis maintained strong performance comparable to the full
15-feature model, as confirmed by DCA, PR-AUC, and statistical
tests. The RF model’s capacity to handle large feature sets and
provide interpretable results through SHAP aligns with the
complexities of clinical decision-making in surgical settings.

The SMPOP service integrated an ML-based warning system into
the EPR process, improving the identification of high-risk prescriptions.
Predictive analytics established key intervention nodes, facilitating
collaboration between pharmacists and the healthcare team. This
framework was implemented and calibrated through continuous
feedback, ensuring alignment with clinical practices and enhancing
its utility in optimizing surgical medication use. In this study, the RF
within SMPOP demonstrated strong predictive accuracy and efficiency,
even after feature reduction that integrated patient factors, surgical
complexities, prescription details, and both pharmacist and prescriber
characteristics. Traditional pharmacist-led interventions, though
effective, often faced limitations in comprehensiveness and scalability
(Jaam et al., 2021; Li et al., 2024; Moon et al., 2020; Mostafa et al., 2020)
This integrated approach contrasts with earlier models that focused on
fewer variables or lacked a holistic view of factors affecting prescription
appropriateness (Bates et al., 2021; Alotaibi and Federico, 2017).

ML model have demonstrated significant advantages in
detecting inappropriate prescriptions and identifying factors
leading to prescription errors, as confirmed by studies conducted
by Johns et al. (2024), Mahomedradja et al. (2023). After the
introduction of ML model, this study shows that the acceptance
rate of pharmacists’ recommendations increased from 43.9% to
71.3%, indicating that the model enhanced the scientific rigor
and credibility of pharmacists’ advice. In terms of types of
medication errors, this study found that “Wrong utilisation”
accounted for 67.76%, being the most common type. Similarly, a
10-year retrospective analysis also indicates that dosage and drug
selection errors are the most frequent types of errors
(Tansuwannarat et al., 2023). In short, by combining ML models
with pharmacist-led intervention services, this study further
improves the effectiveness of prescription optimization.

7 Conclusion and limitations

This study demonstrates the effectiveness of an ML-based
pharmacist-led prescription intervention in optimizing
prescriptions, improving appropriateness, reducing ADEs,
shortening hospital stays, and lowering healthcare costs. By
integrating advanced technologies with medication management
expertise, this approach offers a promising strategy for improving
patient outcomes and underscores the importance of continuous
pharmacist-led innovation in medication safety.
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However, because this study was conducted in a single tertiary
hospital, its findings may have limited generalizability to other
healthcare settings. Future research should explore the
intervention’s applicability across diverse hospital environments
and patient populations, further refine the ML models to
improve predictive accuracy, identify additional features, and
evaluate the intervention’s long-term impacts on clinical outcomes.
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