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Background: Breast cancer (BRCA) has a high incidence among women, with
poor prognosis and high mortality, which is increasing year by year. Efferocytosis
is a process of phagocytosis of abnormal cells and is of great value in tumor
research. Our study seeks to create a predictive model for BRCA using
efferocytosis-related genes (ERGs) to explore the significance of efferocytosis
in this disease.

Methods: In this research, Differential analysis, and univariate Cox regression
were employed to identify genes linked to prognosis in BRCA patients. Then the
BRCA patients were categorized into distinct groups using consensus clustering
based on prognosis genes. Survival analysis, PCA, and t-SNE were performed to
verify these groups. The enrichment of metabolic pathways within the detected
clusters was evaluated using gene set variation analysis (GSVA) and gene set
enrichment analysis (GSEA). Additionally, single-sample GSEA (ssGSEA) was used
to examine changes in immune infiltration and enrichment. A risk prognostic
model was constructed utilizing multivariable Cox regression and Least Absolute
Shrinkage and Selection Operator (LASSO) analyses, and subsequently validated
its predictive accuracy by stratifying patients according to the median risk score.
Ultimately, some crucial independent prognostic genes were pinpointed and
their expression, roles, and immune characteristics were explored in both
laboratory and live models.

Results: Findings revealed 52 differentially expressed genes (DEGs), of which
21 were significantly linked to BRCA outcomes. These 21 genes were utilized for
consensus clustering to categorize BRCA patients into two subtypes. Subtype B
was linked to a worse prognosis compared to Subtype A, though both subtypes
were distinguishable. The enriched pathways were mainly concentrated in
Subtype A and were actively expressed in this group. Following this, a
prognostic risk model was constructed using five risk genes, which was
proven to possess significant predictive value. A significant link was identified
between the immune microenvironment and the risk-associated genes and
scores. IL33 was identified as an independent prognostic gene with important
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research value. Its in vivo expression results aligned with the data analysis findings,
showing low expression in BRCA. Furthermore, overexpression of IL33 significantly
inhibited BRCA growth and motility in vitro and in vivo, while also enhancing their
vulnerability to destruction by activated CD8+ T cells.

Conclusion: The ERG-based risk model effectively predicts the prognosis of BRCA
patients and shows a strong link with the immune microenvironment. IL33 stands
out as a significant prognostic marker, crucial in the onset and advancement of
BRCA. This highlights the necessity for additional studies and indicates that
IL33 might be a potential target for BRCA treatment.
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1 Introduction

Breast cancer (BRCA) is the most prevalent cancer among
women worldwide and the leading cause of cancer-related
mortality in women (Sung et al., 2021). In recent years, due to
the continuous improvement of technological means, the mortality
rate of BRCA has dropped significantly, but its incidence rate has
been slowly increasing (Siegel et al., 2021). Numerous factors
influence the incidence of BRCA, including obesity, alcohol
consumption, and genetic predispositions, among others (Tamimi
et al., 2016; Cathcart-Rake et al., 2018). The most common
diagnostic method to confirm BRCA is pathological biopsy. Once
determined, biomarker detection is required, because these markers
have a predictive effect on the prognosis and treatment of BRCA
(Allison, 2021). Therefore, it is necessary to find the diagnosis and
biomarkers with predictive value of BRCA.

Efferocytosis is the mechanism through which phagocytes
eliminate apoptotic cells. This process is crucial for maintaining
tissue homeostasis under normal physiological conditions and for
restoring balance after disease (Arandjelovic and Ravichandran,
2015; Bäck et al., 2019). In chronic inflammatory diseases where
efferocytosis is impaired, apoptotic cells accumulate due to defective
clearance. This buildup of dead cells can result from necrosis and
contribute to autoimmunity, tissue damage, and persistent
inflammation (Yurdagul et al., 2017; Kawano and Nagata, 2018;
Szondy et al., 2014). Molecules and pathways related to the
efferocytosis process are closely related to cancer progression,
metastasis, and treatment resistance (Tajbakhsh et al., 2021a).
Efferocytosis can alter the tumor microenvironment (TME) by
inducing immunosuppressive and tolerant conditions through
complex signaling pathways. This alteration influences crucial
immune mechanisms within tumors, such as the polarization of
tumor-associated macrophages (TAMs), T-cell growth, and the
secretion of immunosuppressive cytokines. Together, these
alterations allow cancer cells to escape immune detection and
promote tumor growth (Zhou et al., 2020; Tajbakhsh et al.,
2021b; Lei et al., 2020). Studies have found that blocking
efferocytosis can improve the function of CD8+ cells, thereby
reducing pancreatic cancer liver metastasis (Astuti et al., 2024).
CD276 can activate lysosomal signaling pathways and transcription
factors, thereby enhancing efferocytosis in TAMs, which is crucial in
the immunotherapy of bladder cancer (Cheng et al., 2024). In short,
the significance of efferocytosis in cancer studies has garnered
increasing attention. Although advancements have been made,

the exact function of efferocytosis in BRCA is still mostly
unknown and not well-defined.

IL33 is a member of the IL-1 cytokine family and is an
endogenous alarmin (Schmitz et al., 2005). During
inflammation or other types of stress, IL-33 is upregulated and
released from necrotic or damaged cells to exert its effects (Rider
et al., 2017). In tumors, IL33 has also been found to be involved in
the tumor’s pro-oncogenic and anti-oncogenic functions, with its
main effects focused on the immune microenvironment, immune
occurrence, and tumor-related inflammation (Shen et al., 2018).
In head and neck squamous cell carcinoma, cancer-associated
fibroblasts were found to release IL-33, which in turn led to
migration and invasion through epithelial-mesenchymal
transition (Chen et al., 2013). IL-33 is elevated in human
BRCA and non-small cell lung cancer (NSCLC) tissues
compared to adjacent non-tumor tissues (Liu et al., 2014; Kim
et al., 2015). These studies suggest that IL-33 plays a key role in
tumors, but research in BRCA is not clear enough.

This study aims to explore the prognostic and immune-related
effects of efferocytosis in BRCA through bioinformatics analysis. By
validating the role of IL33 both in vitro and in vivo, the research
seeks to clarify how efferocytosis influences BRCA development and
progression. The findings could provide new insights and potential
treatment strategies for BRCA patients.

2 Methods and materials

2.1 Data collection

The mRNA sequencing data and clinical details for BRCA
individuals were sourced from TCGA (https://cancergenome.nih.
gov/), which included 113 normal and 1,118 tumor samples. Initial
count data were converted to transcripts per million (TPM), and
data were normalized and subsequently transformed to log2 for
further analysis. After excluding unusable samples, 1,097 clinical
samples were retained for analysis, with detailed clinical information
provided in Supplementary Table 1. The GSE58812, GSE21653, and
GSE42568 datasets were accessed fromGEO (https://www.ncbi.nlm.
nih.gov/geo). This dataset underwent both quantile normalization
and log2 transformation before being analyzed. A total of 272 ERGs
were identified from the GeneCards database (https://www.
genecards.org/) and the KEGG database (https://www.kegg.jp/
entry/hsa04148), as listed in Supplementary Table 2.
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2.2 Differential gene identification and
mutation frequency analysis

The “limma” package was utilized to identify DEGs between
healthy and cancerous samples, applying thresholds of |logFC| >
1 and a p-value <0.05. The “pheatmap” package was employed to
generate a heatmap illustrating the DEGs. Following this, a
univariate Cox regression analysis was conducted to pinpoint
genes linked to prognosis. Finally, the “RCircos” package in R
was used to map copy number variation (CNV) alterations of
prognosis-related genes across 23 chromosomes.

2.3 Consistent clustering analysis of ERGs

The BRCA dataset was analyzed to identify unsupervised
subgroups and clusters based on DEGs using the R package
“ConsensusClusterPlus”. The authenticity of these clusters was
additionally verified using principal component analysis (PCA),
t-distributed stochastic neighbor embedding (t-SNE), and
uniform manifold approximation and projection (UMAP), with
the help of the R packages “ggplot2″, “Rtsne”, and “ump”,
respectively. The Kaplan-Meier (K-M) survival plots for each
subgroup and cluster were examined and displayed utilizing the
“survival” and “survminer” packages in R.

2.4 GSVA and functional enrichment analysis
of ERGs

We employed the R package “GSVA” alongside the KEGG
pathway database to explore biological mechanisms across
various subgroups. We applied the ssGSEA algorithm to
investigate the association between immune cell infiltration and
the various subgroups. Immune cell infiltration outcomes were
depicted with the R package “ggplot2”.

2.5 Construction and validation of
prognostic model of ERGs

BRCA patients were split into training and test groups in equal
proportions through random assignment. We employed the LASSO
Cox regression method to identify possible prognostic indicators
and create ERG prognostic scoring models. The risk score of the
model is derived by calculating the expression levels of selected
genes in conjunction with their respective regression coefficients,
utilizing the fundamental formula: Prognostic Risk Score =
∑n

i�1 exp − genei * coef − genei. During the evaluation,
individuals from both the training and testing datasets were
divided into high-risk and low-risk categories according to the
median risk score. To assess variations in survival, K-M survival
plots were created with the R package “survival” and overall survival
(OS) was contrasted between the two cohorts. We evaluated the
model’s effectiveness over time by generating ROC curves at 1, 3,
and 5-year intervals using the “timeROC” package in R.
Additionally, a nomogram for predicting overall survival was
constructed using the R package “rms”, incorporating risk scores

along with clinicopathological characteristics such as age, sex, and
stage. Visualization of cluster distributions and survival outcomes
was accomplished using Sankey plots created with the R packages
“dplyr”, “ggplot2″ and “ggalluvial”. Ultimately, the dependability
and efficiency of the nomograms were assessed using various
measures, such as the concordance index (C-index), calibration
plots, and decision curve analysis (DCA) (Kerr et al., 2016;
Vickers et al., 2016).

2.6 Analysis of drug response and immune
cell presence

The CIBERSORT algorithm was applied to explore the
associations between prognostic genes, risk scores, and the
immune cell populations infiltrating tumors. To assess the
stromal, immune, and ESTIMATE scores for BRCA, we utilized
the R package “estimate”. The CIBERSORT R script v1.03 was
utilized to approximate the ratios of 22 distinct immune cell types.

Furthermore, to explore BRCA’s responsiveness to different
anti-cancer medications, we utilized the Genomics of Drug
Sensitivity in Cancer (GDSC) portal at https://www.cancerrxgene.
org/ (accessed on 18 March 2024) for drug profile information
(Yang et al., 2013). The “pRRophetic” R package was utilized to
determine the half-inhibitory concentration (IC50) values, which
were then used to assess drug sensitivity among various samples.

2.7 Screening of independent prognostic
genes with research value

The research identified crucial predictive genes through the
application of both univariate and multivariate Cox regression
methods. The “forestplot” package was utilized to create visual
depictions of the results, illustrating p-values, hazard ratios (HR),
and 95% confidence intervals (CI) for each gene. The expression
levels of these genes in both BRCA and normal tissues were
illustrated utilizing the “ggplot2″ package. Survival differences
between groups with elevated and reduced gene expression were
assessed using K-M survival analysis and the Log-rank test. The K-M
plots offered p-values and HR (95% CIs) to evaluate survival
outcomes according to the expression levels of prognostic genes.

2.8 Statistical analysis

PERL (v5.30.0) was utilized to annotate and curate
transcriptome, clinical, and gene expression information. Data
analysis was conducted using R software (v4.3.3), with a p-value
under 0.05 deemed significant.

2.9 Tissue samples

From January to June 2024, twelve pairs of BRCA and adjacent
normal tissues were gathered from the Affiliated Cancer Hospital of
Xiangya School of Medicine of Central South University. These
samples are primarily used for verifying IL33.
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2.10 Immunohistochemical staining

The adjacent and BRCA tissue samples were preserved in 4%
paraformaldehyde, embedded in paraffin, and cut into 6 μm thick slices.
These slices underwent a process of dewaxing and rehydration to
prepare them for immunohistochemical staining. First, the paraffin-
embedded tissue sections were dewaxed and rehydrated to remove the
paraffin and restore hydration. Next, to unmask the antigens and block
endogenous peroxidase activity, the rehydrated tissue sections were
treated with a Tris-EDTA buffer solution containing 10 mM Tris-HCl
and 1 mM EDTA. The sections then underwent heat-induced epitope
retrieval by being heated in a pressure cooker for 5 min until boiling.
After this, the sections were washed three times to eliminate any
residual buffer. Following the washes, the tissue sections were
incubated with a blocking solution, such as bovine serum albumin
(BSA), for 30 min to prevent non-specific binding. Subsequently, the
sections were incubated overnight at 4°C with the primary antibody
IL33 to facilitate specific antigen-antibody binding. The next day, the
tissue sections were incubated with a secondary antibody for 1 h at
room temperature to amplify the signal generated by the primary
antibody. To visualize the nuclei, the sections were counterstained with
hematoxylin. Finally, the tissue sections were dehydrated,mountedwith
a neutral resin, and coverslipped for microscopic examination. This
detailed protocol ensured proper antigen retrieval, specific antibody
binding, and visualization of the target protein in the tissue samples,
allowing for accurate immunohistochemical analysis of IL33 expression
in both the adjacent normal and BRCA tissues.

2.11 Quantitative real-time PCR

The process of total RNA extraction, cDNA synthesis, and PCR
amplification for gene expression analysis involved several detailed
steps to ensure accurate and reliable results. We extracted total RNA
using the RNeasy Mini Kit (QIAGEN, Beijing, China). The
concentration and purity of RNA were determined using a
Nanodrop luminometer (an A260/A280 ratio between 1.8 and
2.0 is generally considered pure). cDNA synthesis was carried out
with a high-capacity cDNA reverse transcription kit (Thermo,
Shanghai, China). PCR was conducted using TaqMan Gene
Expression Master Mix (Bio-Rad, Shanghai, China) according to
the manufacturer’s instructions, with TaqMan probes for human
IL33 and actin obtained from Sangong Biotechnology
(Shanghai, China).

2.12 Western blot

Cells were transfected with a lentivirus carrying either an
IL33 overexpression plasmid (OE) or a control plasmid (OC) for
48 h. Following transfection, proteins were isolated and analyzed
using SDS-PAGE. Subsequently, the proteins were moved onto a
PVDF membrane. Detection of the antigen-antibody interaction
was achieved using an IL33 primary antibody for 16–18 h. After the
membranes were washed by TBST 5 times, this interaction was
visualized using a secondary antibody linked to peroxide and the
ChemiDoc system. The strength of the bands was quantified with
ImageJ software.

2.13 MTT

Cells were infected with lentivirus containing
IL33 overexpression vector or control vector. After 1 day of
infection, cells were seeded in 96-well plates at a concentration of
6,000 cells per well. After cell seeding, they were allowed to fully
adhere to the wall and recover to normal growth conditions. Next,
50 μMMTT solution (concentration of 2 mg/mL) was added to each
well and incubated for another 4 h so that MTT was reduced by
mitochondria in the cells to form purple Formazan crystals. After
the incubation, the medium in each well was carefully discarded, and
the cells were washed twice with PBS to remove the unreduced MTT
solution. Subsequently, 150 μL of DMSO was added to each well to
fully dissolve the Formazan crystals. To ensure complete dissolution,
each well was treated with gentle stirring or shaking for 10 min.
Finally, the absorbance (OD value) of each well was measured at a
wavelength of 490 nm using a microplate reader, which reflects the
number of surviving cells. The absorbance value is positively
correlated with the degree of cell survival and can reflect the
effect of IL33 overexpression on cell growth or proliferation.

2.14 Clonogenic assay

Cells were infected with lentivirus containing
IL33 overexpression plasmid or control plasmid for 24 h, then
placed in 24-well plates, 1,000 cells per well, and stored in 10%
formaldehyde after 6–8 days, usually incubated for 10–15 min to
ensure that the cells are fully fixed. After fixation, the formaldehyde
solution was discarded, and the cells were washed 2–3 times with
PBS to remove excess formaldehyde. Then they were stained with
0.1% crystal violet and incubated at room temperature for
10–20 min. After staining, the cells were washed again with PBS
to remove unbound crystal violet. The absorbance was measured
at 550 nm.

2.15 Scratch assay

Cells were infected with a lentivirus containing either an
IL33 overexpression plasmid or a control plasmid for a period of
24 h. Post-transfection, the cells were seeded into a 12-well plate at a
density of 3×105 cells per well. After an additional 24 h, a scratch was
introduced into the cell monolayer using a 200 μL pipette tip. The
cells were subsequently washed twice with phosphate-buffered
saline and incubated in serum-free medium for a defined period.
Wound images were captured using a microscope at 0 h and 24 h
post-scratch. The width and area of the scratches were quantified
using ImageJ software.

2.16 Transwell assay

For a duration of 24 h, cells were infected with a lentivirus
harboring either an IL33 overexpression plasmid or a control
plasmid. Post-transfection, 40,000 cells suspended in 200 μL of
serum-free medium were seeded into the upper chamber of a
Transwell apparatus, while 600 μL of medium containing 10%
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FIGURE 1
Acquisition of ERGs and CNV analysis. (A) The heatmap illustrates the expression levels of DEGs in both BRCA and normal tissues. In this visualization,
red signifies a positive correlation, indicating elevated expression levels, whereas blue represents a negative correlation, denoting reduced expression
levels. (B) The volcano plot delineates the ERGs that satisfy the criteria of |logFC| ≥ 1 and a p-value <0.05. Genes are graphically represented based on their
fold change and statistical significance, with those meeting the specified thresholds distinctly marked. (C) The forest plot illustrates the 21 most
significant differentially expressed genes (DEGs) identified through univariate Cox regression analysis, each exhibiting a p-value <0.05. This plot visually
depicts the hazard ratios (HR) and their corresponding 95% confidence intervals (CI) for each gene, thereby underscoring their prognostic relevance. (D)
The network diagram depicts the relationships among the top 21 DEGs. This visualization shows how these genes interact or correlate with each other,
providing insights into their collective role in BRCA and their potential interactions within the biological network. (E) In the visualization, red spots

(Continued )
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serum was utilized as a chemoattractant in the lower chamber. After
an additional 24-h incubation period, the cells were fixed with 4%
paraformaldehyde and subsequently stained with 0.1% crystal violet.
Non-invasive cells located on the apical surface of the membrane
were carefully removed using a cotton swab, and the residual cells
were subsequently imaged using microscopy.

2.17 In vivo tumor models

Female BALB/c nude mice, 5–6 weeks old, were obtained from
Skajingda Biotechnology and kept in specific pathogen-free
conditions. The environment was maintained at 22°C–26°C, with
about 55% humidity and a 12-h light/dark cycle. Mice, five per cage,
were randomly assigned to different experimental groups to
minimize bias. For xenograft modeling, they were subcutaneously
injected with 2×106 MDA-MB-231-OC or MDA-MB-231-OE cells.
Tumor size was calculated using formula 1/2 × (long diameter ×
short diameter2), and mouse weight was recorded every other day
once tumors reached 70–100 cm3. All procedures adhered to China’s
regulations for laboratory animal use and care.

2.18 CD8+ T cell cytotoxic assay

CD8+ T cells were isolated following established protocols from
the literature (Shen et al., 2022). Tumor cells were transfected with
lentivirus-packaged overexpressed IL33 plasmid or control plasmid
and incubated for 24 h. Subsequently, the cells were placed into a 96-
well plate, with each well containing 10,000 cells. CD8+ T cells were
introduced into the wells following 12 h. The culture was incubated
for 2 days, after which the medium was discarded, and the tumor
cells were rinsed twice with PBS to eliminate the T cells.
Subsequently, the MTT test was conducted to evaluate the
cytotoxic impact of CD8+ T lymphocytes on cancer cells.

3 Results

3.1 Validation and mutation frequency
analysis of differentially expressed genes
in BRCA

In our study, we investigated the differential expression of ERGs
in BRCA on the TCGA-BRCA cohort. Our analysis revealed
52 genes with differential expression, out of which 32 genes
showed higher expression in normal tissues and 20 genes
exhibited higher expression in BRCA (Figure 1A). Figure 1B
illustrates a volcano plot that shows gene expression, where green
indicates genes that are downregulated and red signifies those that
are upregulated. These identified genes are referred to as

differentially expressed genes (DEGs). Then we verified the GO
enrichment of these 32 DEGs. GO includes three parts: BP
(Biological Process), CC (Cellular Component), and MF
(Molecular Function). In BP, it is mainly enriched in pathways
such as LOCOMOTION and CELL_MIGRATION (Supplementary
Figure S1A). In CC, it is mainly enriched in pathways such as CELL_
SURFACE and INTRINSIC_COMPONENT_OF_PLASMA_
MEMBRANE (Supplementary Figure S1B). In MF, it is mainly
enriched in pathways such as SIGNALING_RECEPTOR_
BINDING and MOLECULAR_TRANSDUCER_ACTIVITY
(Supplementary Figure S1C). This insight allows us to have a
deeper understanding of the biological functions and potential
impacts of these DEGs in the context of the study. To enhance
the ERG signature, we conducted a univariate Cox regression
analysis on these DEGs and discovered 21 key genes linked to
BRCA prognosis. Among these, 15 genes were categorized as low-
risk (labeled in blue, HR < 1), and six genes were classified as high-
risk (labeled in red, HR > 1) (Figure 1C). The correlation between
these genes is illustrated in Figure 1D, showing predominantly
positive correlations. These discoveries underscored the crucial
significance of these genes in predicting BRCA and warrant
further investigation.

Subsequently, we analyzed the copy number variation (CNV)
status of prognosis genes, recognizing the potential impact of CNV
on BRCA development and progression. Our results indicated that
13 genes, including CPR18 and IL33, exhibited a higher frequency of
copy number amplification compared to copy number deletion,
while eight genes, including C3 and ANO9, demonstrated a lower
frequency of copy number amplification than copy number deletion
(Figure 1E). Furthermore, the circular plot illustrating copy numbers
showed the mutation sites of these 21 genes across 23 chromosome
pairs, revealing mutations on 13 of them (Figure 1F). These
mutation results are crucial for elucidating the pathogenesis of
BRCA and identifying potential therapeutic targets.

3.2 Consensus clustering identifies two
subtypes of BRCA

Performing unsupervised consensus clustering analysis is crucial
for identifying subtypes within different subgroups. In this study, we
used consensus cluster analysis based on 21 important ERGs and
found that K = 2 was the best classification for BRCA. This division
resulted in two patient groups (Figures 2A–C). Analyzing the
survival difference between these two groups revealed that both
groups experienced a decrease in survival probability over time, with
group A exhibiting a higher median survival time than group B.
Figure 2D illustrated a notable disparity in the likelihood of survival
between the two cohorts. Both PCA and tSNE analyses were able to
differentiate between the two patient groups, suggesting that these
genes could effectively classify the two subtypes (Figures 2E, F).

FIGURE 1 (Continued)

represent areas where copy number amplification is frequent (gain) for each ERG, while blue spots indicate regions with copy number deletions
(loss) for these genes. (F) The CNV cycle diagram illustrates the distribution and CNVs of ERGs across different chromosomes. This diagram shows where
ERGs are located on the chromosomes and whether there are amplifications or deletions in their copy numbers.
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Further analysis of the gene expression of these 21 genes between the
two subtypes showed that 17 genes exhibited significant differences.
Interestingly, 14 genes including ALDH2 and ANO6 showed
significant expression in cluster A. Furthermore, three genes,
including SLC2A1, EPO, and SIAH2, exhibited high expression
levels in cluster B (Figure 2G). Upon combining these findings with
the clinical characteristics of BRCA, the heatmap illustrating gene
expression between the two subtypes also revealed differences in
expression (Figure 2H). These results demonstrated that the
characteristics based on these 21 genes can effectively distinguish
different clusters and offer the potential to provide diverse treatment

strategies to optimize treatment methods for patients with varying
types of BRCA.

3.3 Identification of enriched pathways and
immune preliminary validation of
different subtypes

Identifying differences in pathway expression in patients with
different clustering types of BRCA can potentially help us
understand the development of BRCA and provide potential

FIGURE 2
Consensus clustering and validation based on 21 key DEGs. (A–C)Consensus clustering of the 21 significant DEGs revealed that the optimal number
of clusters is k = 2, effectively categorizing BRCA patients into two distinct groups. (D) The survival probability for patients in groups A and B varies with
survival events, reflecting differences in their overall survival rates over time. (E, F) Principal Component Analysis (PCA) and t-distributed Stochastic
Neighbor Embedding (t-SNE) were performed to differentiate between the two clusters. In the visualizations, blue denotes cluster A, and yellow
denotes cluster (B) A clearer separation between the two clusters indicates a more accurate grouping based on the 21 significant DEGs. (G) The
expression differences of these DEGs between the two groups were analyzed to assess how the levels of these genes vary between cluster A and cluster
B. (H) The expression of these DEGs between the two subgroups was evaluated, taking into account clinical characteristics such as age, gender, and T and
N stages. Statistical significance was determined with the following thresholds: *p < 0.05, **p < 0.01, and ***p < 0.001.
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pathways for treatment. To achieve this, we conducted KEGG and
GO pathway validation for the dichotomous classification. Among
the 20 pathways identified, they are mainly enriched in cluster A,
regardless of KEGG or GO enrichment analysis (Figures 3A, B).
Validation of KEGG enriched pathways by GSEA revealed that
CELL_ADHESION_MOLECULES_CAMS, CHEMOKINE_
SIGNALING_PATHWAY, CYTOKINE_CYTOKINE_
RECEPTOR_INTERACTION, HEMATOPOIETIC_CELL_
LINEAGE, and T_CELL_RECEPTOR_SIGNALING_PATHWAY
were all enriched in cluster A (Figures 3C, D). The verification of
GO pathway enrichment also indicated that B_CELL_RECEPTOR_
SIGNALING_PATHWAY, POSITIVE_REGULATION_OF_
LEUKOCYTE_CELL_CELL_ADHESION, POSITIVE_
REGULATION_OF_T_CELL_PROLIFERATION, REGULATION
_OF_CELL_KILLING, and T_CELL_SELECTION were enriched in
cluster A (Figures 3E,F). These routes are intimately connected to
the onset and progression of BRCA. Hence, identifying their
enrichment in different clusters may aid in explaining why
different clusters have different survival statuses and finding

practical and important targets for the treatment of BRCA. In
the end, we analyzed the infiltration of immune cells across the
two different subtypes. Using ssGSEA, we discovered notable
variations in the infiltration of 23 immune cells between the two
subgroups. Cluster A exhibited a high infiltration of most immune
cells, whereas cluster B showed significant infiltration
predominantly by CD56dim natural killer cells (Supplementary
Figure S2). Differences in the extent of immune cell infiltration
might explain the survival disparity between the two subtypes.

3.4 Build an accurate prognostic risk model

In order to assess the impact of ERGs on BRCA, we developed a
prognostic risk model. We initially employed LASSO regression to
analyze 21 important genes. After addressing multicollinearity and
model overfitting, we identified five genes (ANO6, IL33, MIAT, SIAH2,
SIRPG) for the risk model (Figures 4A, B). Subsequently, we calculated
the risk score formula as follows: risk score =

FIGURE 3
Performing gene set enrichment analysis. (A) The KEGG enrichment analysis of DEGs highlighted potential mechanisms associated with the two
DEG patterns. (B) The GO enrichment analysis of DEGs revealed potential mechanisms underlying the two identified DEG patterns. (C, D) Gene Set
Enrichment Analysis (GSEA) revealed that the top five KEGG signaling pathways are most active in cluster A. (E, F) GSEA also showed that the top five GO
signaling pathways are highly active in cluster A.
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FIGURE 4
Constructing a prognostic model. (A, B) LASSO regression analysis was employed to determine the optimal coefficients and lambda values for the
prognostic DEGs, thereby enhancing the model’s predictive accuracy. (C, D) Kaplan-Meier (K-M) survival curves were utilized to illustrate variations in
prognosis among different risk groups: (C) representing the test group and (D) representing the training group. (E, F) Time-dependent Receiver Operating
Characteristic (ROC) curves for Overall Survival (OS) were evaluated at 1-year, 3-year, and 5-year intervals: (E) for the test group and (F) for the
training group. (G) Univariate Cox regression analysis was established on all clinical features included in the risk model, with a specified significance
threshold set at p < 0.05.
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ANO6×0.637634391712056 - IL33 × 0.220865917940123 -
MIAT×0.223869462386534 - SIAH2×0.496867864577252 -
SIRPG×0.224643319313097, seeing Supplementary Table 2. The
study included BRCA patients who were randomly assigned to a
training group and a testing group. Subsequently, each cohort was
categorized into high-risk and low-risk segments according to their risk
scores. Examining the survival disparities between high- and low-risk
segments revealed a decline in survival probability over time, with the
high-risk group exhibiting notably lower survival rates and shorter
median survival duration compared to the low-risk group. This pattern
was consistent in both the test and training groups (Figures 4C, D). The
subsequent ROC curve analysis revealed that themodel constructedwas
effective in predicting patient survival time, as indicated by AUC values
greater than 0.6 (Figures 4E, F). Additionally, an independent
prognostic analysis combining the risk score with clinicopathological
characteristics found that age, N stage, and risk score were all related to
patient prognosis (Figure 4G). This indicated that the survival time of
patients can be precisely forecasted using the risk score derived from
these genes. The risk heatmap indicated that, apart from ANO6, the
remaining genes were low-risk genes (Supplementary Figure S3A).
Additionally, examining the relationship between gene clusters and risk
models revealed a notable disparity in risk scores, with cluster B
exhibiting a marginally higher risk score compared to cluster A
(Supplementary Figure S3B). Individuals with elevated risk scores

tended to be part of cluster B and progress to high-risk status,
whereas those with lower risk scores were more often associated
with cluster A and remained low-risk (Supplementary Figure S3C).
This could be linked to the varying enrichment outcomes of the two
clusters across distinct pathways. Analysis of the risk group revealed
that only a small number of patients in this group died, indicating an
improved cure rate for BRCA patients.

We confirmed the situation by using risk scores and patients’
clinicopathological characteristics to create a nomogram. Each of the
patient’s characteristics corresponds to a score, and their overall
score determines their predicted score. This score corresponds to the
survival probability at different time points. As shown in Figure 5A,
the patient achieved a total of 327 points, indicating survival chances
of 93.4% at 1 year, 66.9% at 3 years, and 45.4% at 5 years. Figure 5B
shows that the patient’s typical curve is very similar to the optimal
curve, suggesting that the model predicts accurately. The likelihood
of risk escalated over time, with individuals in the high-risk category
encountering more danger compared to those in the low-risk
category (Figure 5C). The C-index graph demonstrated that the
developed risk model was the most accurate in forecasting survival
when compared to clinical factors such as age, gender, and stage
(Figures 5D–F). This indicates that our model has strong predictive
value for assessing the prognosis and survival probability of
BRCA patients.

FIGURE 5
Nomogram further validates risk model. (A) A nomogram plot has been developed that integrates ERG scores with clinicopathological features. This
tool facilitates the prediction of individual patient outcomes based on their specific scores and characteristics. (B) A calibration plot is employed to
validate the nomogram by comparing the predicted probabilities of outcomes with the actual observed outcomes. It visually assesses the accuracy of the
nomogram’s predictions against real data, with the plot typically featuring a 45-degree line representing perfect agreement. The closer the plotted
points are to this line, the more accurate the predictions made by the nomogram. (C) The cumulative hazard curve illustrates the probability of survival
over time by showing the cumulative risk of experiencing the event as time progresses. The curve typically slopes upward, indicating an increasing hazard
over time, and helps in assessing how different factors or interventions affect survival chances. (D–F) The Decision Curve Analysis (DCA) curves illustrate
the predicted survival rates for BRCA patients at 1, 3, and 5 years as derived from the nomogram. These curves are utilized to assess the clinical utility of the
prognostic model by demonstrating the net benefit of using the model at different threshold probabilities.
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FIGURE 6
Analyzing immune cell infiltration, the TME and drug sensitivity analysis. (A) The proportion of immune cells in each patient is analyzed. (B) The correlation
between immune cell populations is represented by color intensity, with red indicating a positive correlation and blue indicating a negative correlation. (C)
Differences in immune cell expression between high-risk and low-risk groups are considered statistically significant if p < 0.05. (D) The correlation between risk
genes and risk scores, which is essential for model construction and immune cell analysis, is illustrated using color intensity: red denotes a positive
correlation, whereas blue denotes a negative correlation. (E) The variations in Tumor Microenvironment (TME) scores, encompassing ESTIMATEScore,
ImmuneScore, and StromalScore, between high-risk and low-risk groups are analyzed to evaluate differences in the tumor microenvironment. (F) The drug
sensitivity analysis indicates that certain drugs exhibit increased efficacy in high-risk groups. (G) Conversely, the drug sensitivity analysis identifies drugs that are
particularly effective in low-risk groups. Statistical significance is denoted as follows: *p < 0.05, **p < 0.01, and ***p < 0.001.
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3.5 Immune microenvironment analysis

The immune system is vital in the onset of illnesses. We are
currently investigating the relationship between efferocytosis and
immunity. Initially, we adopted the CIBERSORTmethod to evaluate
the prevalence of immune cells. Upon comparison, we discovered a
significant correlation between the content of immune cells and risk
scores. The distribution of immune cell content varies among
different risk groups, and each sample also exhibits differences in
immune cell content and type (Figure 6A). In Figure 6B, the
relationship between immune cells is illustrated, with red
indicating a positive correlation and blue indicating a negative
one. A deeper hue indicates a more significant correlation. Out
of the identified immune cells, 15 are significantly correlated with
the risk score, with four showing a positive correlation and the
remainder showing a negative correlation (Supplementary Figure
S4). Analysis of the differential expression of these immune cells in
high- and low-risk groups revealed that 16 immune cells had varying
expression levels (Figure 6C). Further analysis showed correlations
between IL33, SIRPG, and most immune cells, as well as the risk
scores and five genes involved in the model construction
(Figure 6D). After conducting an immune correlation analysis on
the risk model, we proceeded to investigate the TME in the high- and
low-risk categories. Our analysis revealed that the low-risk cohort
demonstrated elevated TME scores in StromalScore, ImmuneScore,
and ESTIMATEScore (Figure 6E). These results point to significant
differences in the immune microenvironment among subgroups
identified based on efferocytosis-related risk scores. This may
explain why BRCA patients with different risk levels experience
varying immunotherapy effects, providing a basis for personalized
immunotherapy and patient-specific treatment targets.

3.6 Screening potential therapeutic drugs

The analysis of the relationship between the drug’s IC50 value
and the risk score revealed 105 drugs with notable variations in
IC50 values across the two groups. In particular, 98 medications
demonstrated significant sensitivity in the high-risk category,
whereas seven medications showed notable sensitivity in the low-
risk category. Figure 6F showcased four medications that exhibited
significant sensitivity in the high-risk cohort, indicating their
possible efficacy for treating these patients. On the other hand,
Figure 6G showcased four drugs with high sensitivity in the low-risk
group, indicating their potential therapeutic benefits for low-risk
patients. These findings provided diverse drug options for BRCA
patients at different stages, aiming to enhance drug effectiveness and
utilization, and ultimately alleviate patients’ symptoms. For more
details on the drugs, please refer to Supplementary Table 4.

3.7 Screening for genes with independent
prognostic value

In our research investigating the impact of ERGs on BRCA, we
adopted both univariate and multivariate Cox regression analyses to
assess the p-values, HRs, and 95% CIs for five significant genes,
along with clinical features incorporated into our model. The

analysis identified ANO6, IL33, and SIAH2, along with age, pT
stage, and pN stage, as independent prognostic factors for BRCA
(Figures 7A, B; p < 0.05). Our analysis of differential expression
indicated that ANO6 and IL33 were markedly downregulated in
cancerous tissues relative to normal ones (Figures 7C, D), whereas
SIAH2 showed elevated expression in tumor samples (Figure 7E).
Finally, we compared the survival expression of these three genes
and found that except for SIAH2, the other two had survival
differences (Supplementary Figure S5). Among them, the survival
rate of the ANO6 high expression group was significantly lower than
that of the low expression group, while the survival rate of the
IL33 high expression group was significantly higher than that of the
low expression group (Figures 7F, G). Specifically, high expression of
ANO6 correlated with poorer survival, while high expression of
IL33 was associated with better survival. Given the adverse survival
outcomes linked to low IL33 expression in BRCA, we chose to focus
on IL33 for further investigation. Then, we screened GSE42568
(including 104 BRCA samples and 17 normal samples) from the
GEO database to verify the expression of IL33 and construct the
ROC curve. The results showed that IL33 was lowly expressed in
BRCA (Figure 7H), and the ROC curve showed an AUC value of
0.833 (Figure 7I), indicating that IL33 had a high contribution to the
constructed model.

3.8 Assessment of IL33 levels and prognostic
role in BRCA

To evaluate IL33 expression in BRCA, we conducted
IL33 staining on three adjacent tissue samples and three BRCA
tissue samples. Immunohistochemistry (IHC) and Western blot
(WB) analyses revealed significantly lower levels of IL33 in
BRCA tissues compared to adjacent tissues (Figures 8A, B). We
evaluated IL33 levels in two breast cancer cell lines and a normal cell
line throughWB and PCR techniques. The BRCA cell lines exhibited
a significant decrease in both IL33 protein and mRNA levels when
compared to the normal cell line (Figures 8C, D).

Furthermore, considering the role of IL33 in BRCA, we validated
its overexpression (OE) through WB and PCR techniques (Figures
9A, B). Subsequently, we assessed the effects of IL33 on BRCA using
MTT, clonogenic, scratch, and transwell tests. Overexpression of
IL33 significantly inhibited cell proliferation, clonogenicity, and
migration (Figures 9C–G). Furthermore, co-incubation of human
BRCA cells with CD8+ T cells demonstrated that activated T cells
were more effective at eliminating cancer cells in the presence of
overexpressed IL33 (Figure 9H). These results underscore IL33’s
significant role in BRCA cell proliferation, metastasis, and
immune evasion.

3.9 Increased IL33 levels suppressed the
proliferation and movement of BRCA cells in
a living organism

We also examined the influence of IL33 overexpression on
tumor development in vivo using a subcutaneous xenograft
model in nude mice. Mice were injected with cells that
overproduce IL33 (OE) and with control cells (OC). Results
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FIGURE 7
Screening for independent prognostic genes. (A, B) Hazard ratios and p-values for the components in BRCA were estimated utilizing univariate and
multivariate Cox regression models, which integrated both clinical parameters and five prognostic ERGs. (C–E) The expression levels of ANO6, SIAH2,
and IL33 were examined in BRCA tissues in comparison to adjacent normal tissues. (F, G) The overall survival (OS) of BRCA patients exhibiting high versus
low expression levels of ANO6 and IL33 was compared. (H) The expression level of IL33 in normal tissues and BRCA was verified using the
GSE42568 dataset. (I) The ROC curve of IL33 was constructed using the GSE42568 dataset to study the contribution of IL33 to the model. Statistical
significance was determined with thresholds set at *p < 0.05, **p < 0.01, and ***p < 0.001.

Frontiers in Pharmacology frontiersin.org13

He et al. 10.3389/fphar.2025.1533571

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1533571


showed a significant reduction in tumor growth in the OE group
compared to the OC group (Figures 10A, B). Furthermore, the
tumors in the OE group were significantly less heavy compared to
those in the OC group, as shown in Figure 10C. Importantly, the
average body weight of the mice remained stable regardless of
IL33 overexpression (Figure 10D). The immunohistochemical
examination of proliferation indicators Ki-67 and PCNA showed
a significant reduction in cells positive for Ki-67 and PCNA in the
OE group compared to the OC group (Figure 10E). Moreover,
IL33 overexpression led to reduced levels of the migration-related
protein E-Cadherin in vivo (Figure 10E). These results strongly
indicate that IL33 overexpression impedes BRCA cell growth and
migration in vivo by downregulating Ki-67, PCNA, and E-Cadherin.

4 Discussion

Efferocytosis is a mechanism where the body removes dying cells
to preserve tissue balance. Irregular cytosis may lead to a range of
illnesses, including heart conditions, metabolic disorders,
neurodegenerative diseases, and cancer (Doran et al., 2020).
Therefore, it is crucial to improve therapeutic strategies and
discover potential therapeutic mechanisms by improving
efferocytosis. In recent years, research on efferocytosis in cancer
has made great progress. Research indicates that molecules and
pathways involved in efferocytosis are intimately linked to cancer
progression, metastasis, and treatment resistance. Efferocytosis also
creates an immunosuppressive environment within the tumor and
enables cancer cells to evade immune surveillance (Qiu et al., 2023).
The process of efferocytosis mainly includes three stages:
intracytoplasmic cell sensing and chemotactic migration to
apoptotic cells (AC), intracellular cell recognition of AC, and

phagocytosis and digestion of AC (Boada-Romero et al., 2020).
When a process occurs abnormally, it can lead to disease.
Efferocytosis may also trigger the creation of a tumor
microenvironment that suppresses the immune system, resulting
in reduced immune activity. This can cause tumor cells to grow
uncontrollably and speed up the development of the disease (Qiu
et al., 2023). Efferocytosis significantly contributes to the resistance
observed in cancer therapies. Gene groups linked to efferocytosis,
including Tyro3, Axl, MerTK, Gas6, BAI-1, CX3CL1, CD31, CD47,
Rac1, and the TIM family, represent significant targets for
prospective cancer therapies. Changes in these processes can lead
to drug resistance and diminish the effectiveness of cancer therapy
(Zhou et al., 2020; Werfel and Cook, 2018; Cheng et al., 2022).
However, there are few studies on the role of efferocytosis in BRCA.
Our research involved a comprehensive bioinformatics examination
of ERGs in BRCA, and we identified the significance of specific genes
for the first time. This provides a valuable reference for
future research.

In this study, researchers attempted to establish a prognostic
model of ERGs based on BRCA. They included a total of five
prognosis-related genes (ANO6, IL33, MIAT, SIAH2, SIRPG) in
the model construction. Various studies have demonstrated that
these genes are intimately linked to the development and
progression of cancer. Anoctamin 6 (ANO6) is part of the
anoctamin family, which consists of 10 proteins (ANO1-10).
ANO6 plays a role in cell movement, regulation of cell size, and
the exposure of phosphatidylserine on the cell surface. Studies
suggest it serves as a prognostic indicator for BRCA, potentially
by triggering stroma-associated pathways and encouraging
macrophage polarization, thereby influencing BRCA development
(Tang et al., 2023). However, further validation is needed.
Interleukin-33 (IL-33), a member of the IL-1 family, is an

FIGURE 8
(A) Immunohistochemistry (IHC) was employed to detect IL33 expression in BRCA tissues and adjacent normal tissues. (B) IL33 expression in BRCA
and adjacent tissues was evaluated usingWestern blot (WB) analysis. (C) The expression of IL33 in two BRCA cells and one normal cell line was determined
by WB. (D) chain reaction (PCR) was also utilized to assess IL33 expression in the same cell lines. The scale for plotting was set at 100 μm.
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alarmin cytokine that plays an important role in tissue homeostasis
and repair, cancer, etc (Cayrol and Girard, 2022). IL33 is an
important gene whose expression level is also related to the
immune microenvironment. By targeting IL-33, the therapeutic
effect of BRCA can be enhanced by regulating excessive immune
responses, reducing inflammatory damage, or fighting tumor cells
by enhancing immune responses (Donahue et al., 2024). In BRCA,
studies have found that IL-33 is involved in the metastasis process
of BRCA, mainly by changing the immune microenvironment of
the type 2 inflammatory metastasis microenvironment (Shani
et al., 2020) and promoting BRCA lung metastasis. This may be
related to the involvement of IL33 in cell adhesion molecules cams,
chemokine signaling pathways, etc., which jointly regulate the

occurrence and development of BRCA. MIAT is a long non-
coding RNA whose expression levels vary in different breast
cancers. MIAT silencing can lead to tumor cell growth arrest,
thereby increasing the sensitivity of BRCA treatment (Almnaseer
and Mourtada-Maarabouni, 2018). SIAH2 can mediate
ubiquitination and degradation of substrates and regulate
multiple signaling pathways in response to hypoxic stress,
thereby promoting tumor occurrence and progression (Chan
et al., 2017; Liu et al., 2022). SIRPG is upregulated in human
lung adenocarcinoma, and its overexpression predicts poor
survival outcomes (Xu et al., 2022). In BRCA, SIRPG also has
good predictive performance and is beneficial for the treatment of
BRCA (Xing et al., 2023).

FIGURE 9
Assessment of IL33 prognostic role in BRCA. (A) We assessed IL33 expression using WB following its overexpression. (B) PCR was employed to
measure IL33 expression in tumor cells following its overexpression. (C) Cell proliferation was assessed by using the MTT assay following
IL33 overexpression in tumor cells. (D) The clonogenic assay was employed to assess colony formation suppression following IL33 overexpression in
tumor cells. (E–G)We utilized scratch and transwell assays to assess the suppression of migration in tumor cells following IL33 overexpression. (H)
We assessed the survival of OC and OE tumor cells following treatment with CD8+ T cells. Statistical significance was determined with thresholds set at
*p < 0.05, **p < 0.01, and ***p < 0.001.

Frontiers in Pharmacology frontiersin.org15

He et al. 10.3389/fphar.2025.1533571

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1533571


Determining the immune profile of the TME is crucial for
immunotherapy (Gajewski et al., 2017). Our study analyzed immune
expression levels across different risk categories, revealing variations
between groups at high and low risk.We also observed variations in the
distribution of different immune cells, suggesting that patients with
different risks may exhibit different symptoms. Tailoring treatment
based on individual needs can lead to more effective treatment plans.
Research has shown that the infiltration patterns of immune cells
contribute to the complexity and variety of the TME. This involvement
can help regulate the biological processes, clinical outcomes, genetic
variation, and more in tumors, ultimately benefiting the precise
immunotherapy of those with cancer (Xu et al., 2021). Moreover,
there is an inseparable relationship between immune processes and
treatment resistance. By enhancing the patient’s immune function, the
patient’s drug resistance can be effectively reduced and the patient’s

therapeutic effect can be improved (Chang et al., 2023). In our study, we
found that there were differences in the sensitivity of 105 drugs between
the high-risk group and the low-risk group. This may be related to the
biological characteristics, immune microenvironment, gene mutation
status, etc., of different patients. Therefore, it is of great reference value
to select more sensitive drugs for different populations to achieve
personalized treatment. In recent years, immunotherapy has been
highly successful in treating BRCA. Dendritic cells are adaptable
antigen-presenting cells essential for starting and managing both
innate and adaptive immune reactions. Research on the impact of
dendritic cell vaccines is essential for understanding immune regulation
and other aspects of BRCA (Qian et al., 2023). Consequently,
identifying and developing specific markers is crucial for
comprehending BRCA subtypes and selecting precise treatment
strategies. IL33 can be a therapeutic target for BRCA and has strong

FIGURE 10
IL33 overexpression inhibited the growth and migration of BRCA cells in vivo. (A, B) Cell suspensions of 2 × 106 MDA-MB-231-OC and MDA-MB-
231-OE were injected into the right flank of mice. Tumor volume was measured every 2 days once it reached 70–100 mm³, approximately 8 days after
injection. After 22 days, the tumors were excised and photographed. (C) The tumor weight was statistically analyzed at 22 days post-injection to evaluate
differences between the MDA-MB-231-OC and MDA-MB-231-OE groups. (D) Changes in the body weight of each group of mice were monitored
and recorded throughout the experiment to assess the effects of IL33 overexpression on overall health and to ensure that any observed tumor-related
effects were not confounded by significant weight loss. (E) Immunohistochemistry was employed to detect the expression levels of IL33, Ki67, PCNA, and
E-Cadherin in tumor tissues. The images were captured with a scale of 100 μm.
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research prospects. However, there are still many challenges. First,
IL33 has a strong immune effect in tumor response, but in some cases,
IL33 can also inhibit immune escape, which makes IL33 a strategy for
targeted therapy complicated (Ryan et al., 2020). Second, the research
mechanism of IL33 in tumors needs to be further explored to show its
practical application. In the future, we will continue to explore the role
of IL33 in BRCA to provide more evidence that IL33 can become a
therapeutic target for BRCA.

In our research, we examined the prognostic significance and
expression profile of ERGs in BRCA for the first time. Nevertheless,
there are certain constraints in our research. Firstly, we only
analyzed the general categories of BRCA, but we lacked
prognostic validation for different types of BRCA, such as triple-
negative breast cancer, which possess unique characteristics.
Secondly, our study primarily relied on public databases, which
lacked clinical patient data from specific medical institutions and did
not represent local characteristics. Lastly, we only performed basic in
vivo and in vitro validation of important genes, and further
fundamental experiments are necessary to enhance our research.

5 Conclusion

This study highlights the critical role of ERGs in the progression
of BRCA and identifies key prognostic markers. Our research
demonstrates that a prognostic model based on ERGs effectively
predicts survival outcomes and immune responses in BRCA
patients. IL33 stands out as an important indicator, with both
live and laboratory tests verifying its significance in the
advancement of BRCA. This research, for the first time, clarifies
the function of efferocytosis in BRCA and provides new perspectives
for possible treatment approaches.
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