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Objective: The incidence of ischemic cardiomyopathy increases annually
worldwide, and it is the leading cause of mortality in China. Although
interventional diagnostic and therapeutic techniques can promptly open the
culprit vessels, myocardial ischemia-reperfusion injury (MIRI), resulting from
restored blood flow, is often inevitable. Semaglutide (Sem), a novel GLP-1
analogue, is primarily utilized in managing Type 2 diabetes mellitus (T2DM).
Recent research indicates that semaglutide may reduce the risk of major
adverse cardiovascular events. Therefore, the purpose of this study is to
explore whether semaglutide can ameliorate MIRI and explore its
potential mechanism.

Methods and results: : A mouse model of myocardial ischemia-reperfusion (I/R)
was created by ligating the left anterior descending coronary artery (LAD) first for
45 min and then reperfusing the heart for 24 h. Assessment of cardiac function
and fibrosis were conducted through small animal ultrasound and Masson’s
staining. It was observed that semaglutide enhanced cardiac function recovery
and diminished fibrosis in the I/R model. In vivo experiments, semaglutide proved
to mitigate oxidative stress and inhibit ferroptosis in cardiomyocytes. RNA
sequencing showed that S100 calcium binding protein A9 (S100A9) was the
target gene of semaglutide to protect against MIRI. In vitro, experiments showed
that semaglutide decreased the expression of S100A9 by activating the Protein
Kinase C(PKC) pathway, thus inhibiting ferroptosis in cardiomyocytes.

Conclusion: Semaglutide can reduce I/R-induced myocardial injury by inhibiting
the ferroptosis of cardiomyocytes. In the mechanism, semaglutide mainly reduce
the expression of S100A9 via the activation of PKC signaling pathway. Therefore,
semaglutide is considered as a potential treatment option for MIRI.
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GRAPHICAL ABSTRACT

1 Introduction

According to the Cardiovascular Health and Diseases Report
in China, the number of people in China suffering from ischemic
heart disease is as high as 11.39 million, accounting for the
highest disease mortality rate (Wang et al., 2023). Although
timely percutaneous coronary intervention, thrombolytic
therapy, and coronary artery bypass grafting have greatly
reduced the complications and risk of death in acute
myocardial infarction (AMI), it is inevitable to encounter
MIRI during the process of blood flow restoration (Zhang
et al., 2024). However, MIRI will still occur during reperfusion
(Heusch, 2020). The mechanism of MIRI is complex and involves
multiple mechanisms, including inflammatory response (Wu
et al., 2021a), increased production of reactive oxygen species
(ROS) (Wu et al., 2020), and calcium overload (Wu et al., 2021b),
mitochondrial dysfunction (Xu et al., 2019), potentially leading
to severe hemodynamic disturbances and endangering patients’
lives. Therefore, it is urgent and important to explore new drug
therapies and specific molecular mechanisms for the treatment of
I/R injury.

There have been reports suggesting that ferroptosis plays a
significant role in the occurrence and development of MIRI
(Wang et al., 2022; Yang and Lin, 2022; Wang et al., 2022; Yang
and Lin, 2022). It was reported in Advanced Science that MIRI
promoted the ferroptosis, which severely impaired cardiac function
recovery. Ferroptosis, a recently identified form of programmed cell
death, has become a focus in cell death research (Dixon et al., 2012).
The main mechanism of ferroptosis is the catalysis of highly
expressed unsaturated fatty acids on cell membranes by divalent
iron or lipoxygenases, leading to lipid peroxidation and ultimately
inducing cell death (Yu et al., 2021). Studies also link ferroptosis to
various cardiovascular diseases, including doxorubicin-induced

cardiac injury, heart failure, and stroke (Tadokoro et al., 2020;
Kitakata et al., 2022; Stockwell et al., 2017; Zhang et al., 2023;
Urquhart and Willis, 2020). During ferroptosis, there is a reduction
in the core enzyme glutathione peroxidase 4 (GPX4), which is
involved in the regulation of the antioxidant system.
Consequently, myocardial I/R triggers severe oxidative stress,
leading to an accumulation of oxygen radicals and ROS, thus
accelerating membrane and organelle dysfunction. Therefore,
inhibiting myocardial cell ferroptosis may enhance cardiac
function recovery (Chen et al., 2023).

Semaglutide, an incretin produced by intestinal L-cells, is
primarily utilized for blood glucose regulation in patients with
T2DM (Marso et al., 2016). In addition, semaglutide reduces the
likelihood of serious adverse cardiovascular events in individuals
with this condition. Semaglutide is a human glucagon-like
peptide-1 (GLP-1) analogue. Its half-life is about a week,
which means that its concentration in the body can be
maintained for about a week. Because it has a long half-life
and can reduce kidney clearance by binding to albumin in
plasma, it can also resist the degradation of endogenous
dipeptidease-4 (DDP-4), thus increasing the stability of the
drug, so it only needs to be injected once a week to achieve
the required therapeutic effect. Currently, there are studies
indicating that semaglutide can activate the PI3K/AKT
signaling pathway to decrease the expression level of BNIP3,
thereby improving mitochondrial function in myocardial cells
and alleviating doxorubicin-induced myocardial injury (Li et al.,
2024). Additional studies suggest that semaglutide prevents
myocardial cell apoptosis by activating the ERK pathway (Zhu
et al., 2023). However, it remains uncertain whether semaglutide
can alleviate MIRI by suppressing myocardial cell ferroptosis.
Thus, the purpose of our study is to investigate the mechanisms
by which semaglutide may reduce MIRI.
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2 Materials and methods

2.1 Mouse myocardial I/R model

The male C57BL/6J mice (6–8 weeks), which are healthy and
weigh around 20 ± 2 g, were acquired from the Experimental Animal
Center of Xuzhou Medical University. Both food and water were
freely available to them. For the I/R model, male C57BL/6J mice
were numbed with an intraperitoneal injection of sodium
pentobarbital (50 mg/kg). A 110 breaths per minute ventilator
was used to intubate the mouse through the mouth. Following a
thoracotomy at the fourth intercostal gap on the left side, the LAD
was ligated under a microscope. Electrocardiogram findings of
substantial elevation of the ST segment, diminished pulse
strength, and noticeable whiteness of the heart near the ligation
site were indicators of a well-established model. The LAD was
ligated 45 min and re-perfused 24 h. In the treatment group,
semaglutide (0.6 mg/kg; Novo Nordisk Denmark) was
administered subcutaneously once weekly for 4 weeks prior to
the I/R model establishment. In the sham group, a similar
procedure was undertaken, including threading through the LAD,
but without the ligation. The following day, post-anesthesia, the
hearts were excised via thoracotomy for evaluation using 2, 3, 5-
triphenyltetrazolium chloride (TTC) (Sigma, United States) and
Evans blue double staining to assess the myocardial infarct
(white area) and reperfusion injury (red risk area) in each
group. During reperfusion, the mice were monitored frequently
to ensure they had adequate food, water, and living conditions.

2.2 Cell culture and hypoxia/
reoxygenation model

In a Petri dish with 10% fetal bovine serum (FBS), 1% penicillin/
streptomycin (PS), 100 μmol/L norepinephrine, and 4 mmol/L
L-glutamine (Claycomb medium, 51800C-500mL, Sigma-
Aldrich), the HL-1 cells (Catalogue numbers: SCC065, Sigma-
Aldrich:St. Louis, MO, United States) were grown with 37°C, 5%
CO2 and 21% O2. After reaching 80% confluency, the cells were
randomly divided into the following groups: control group, H/R
group, H/R + Sem group (5 mmol/L, added to the culture medium at
the beginning of hypoxia). Each group had 3 replicate wells. Hypoxia
was induced by incubating the cells in a glucose-free medium under
conditions of 5% CO2, 95% N2, 37°C for 4 h, followed by
reoxygenation in normal Claycomb medium under conditions of
5% CO2, 21% O2, 37°C for 4 h.

2.3 Tissue collection

Evans blue double staining and TTC were used to assess the
region of myocardial infarction. After 24 h of reperfusion, the mice
were injected intraperitoneally with anesthetic, and Evans blue was
inserted into the aorta. Five sections, each 1–2 mm thick, were cut
from the heart after it was quickly frozen at −80°C for around 5 min
after extraction. After 30min in a 2% TTC solution at 37°C, the slices
were fixed in a 4% paraformaldehyde solution for 24 h. Using a
digital camera, white photographs of the infarct tissue, red images of

the perfusion tissue, and blue images of the normal tissue were
captured. The myocardial infarct area (%) = [infarct tissue/(infarct
tissue + reperfusion tissue)] × 100%. Image analysis was conducted
using ImageJ software.

2.4 Echocardiography

In order to do the echocardiography, VisualSonics of Toronto,
Canada, used their Vevo 2100 ultrasound machine (Chen et al.,
2019). To keep the heart rate of the mice between 430 and 480 beats/
min, they were momentarily sedated with a mixture of 1.5%
isoflurane and 98.5% oxygen. Recordings from at least three
consecutive heartbeats were averaged. B- and M-mode short-axis
images of the parasternal region were captured. Functional
parameters such as left ventricular ejection fraction (LVEF), left
ventricular shortening fraction (LVFS), stroke volume (SV), and
cardiac output (CO) were calculated using Vevo LAB software
(VisualSonics).

2.5 Histological analysis

The left ventricle’s transverse sections were cut into 4 μm slices,
kept at 4°C for 1 day in 4% paraformaldehyde, dehydrated in
ethanol, cleaned in xylene, and finally embedded in paraffin. To
observe changes in histology, hematoxylin and eosin staining was
used. Tunal staining was employed to assess apoptosis. Masson’s
trichrome, Sirius Red staining, and col1, col3 fluorescence staining
were utilized to examine cardiac fibrosis. The size of the
myocardium was measured using CX43+WGA double staining.
To assess ferroptosis levels, fluorescence staining with GPX4 and
prostaglandin-endoperoxide synthase 2 (PTGS2) was carried out.
Image measurement was carried out using ImageJ software.

2.6 Cell surface area measurement

Nuclei were counterstained with 4′, 6-diamidino-2-
phenylindole (DAPI), and α-actinin antibodies were used to stain
the cardiac tissue of mice (G1012, Servicebio China). We used
ImageJ software to quantify cell size after staining with TRITC-
phalloidin.

2.7 Immunofluorescence staining

Antigen retrieval was performed using
Ethylenediaminetetraacetic Acid (EDTA) after deparaffinization
and rehydration. Next, the sections were incubated with 3% BSA
for half an hour. Proteintech Sanying Biotechnology Co., Ltd. of
Wuhan, China, supplied the anti-GPX4 (1:400, ab2909469),
PTGS2(COX2) (1:300, ab2881731), and Col1/Col3 (1:2000/1:200,
ab3073715) primary antibodies, which were incubated at 4°C
overnight. In a dark room, the matching secondary antibodies
were left to incubate for half an hour. CY3 flag goat anti-mouse
IgG (1:300, ab2923552) and goat anti-rabbit IgG (1:500/1:400,
ab2811189/ab2910224) were the antibodies. To counterstain the

Frontiers in Pharmacology frontiersin.org03

Liu et al. 10.3389/fphar.2025.1529652

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1529652


nuclei, DAPI was used. Olympus Fluoview FV300 software, version
3C, was used to process photomicrographs taken with a Nikon
ECLIPSE C1 upright fluorescent microscope. The fluorescence
intensity was quantitatively analyzed using the ImageJ program.

2.8 Measurement of ferroptosis-
related indicator

Lipid peroxidation levels were determined in HL-1 heart cells
and cardiac tissues using a Malondialdehyde (MDA) Assay Kit
(E-BC-K028-M/E-BC-K025-M). To determine the concentrations
of ferrous iron (Fe2+) in HL-1 heart cells and animal tissues, we
utilized the Cellular Fe2+ Colorimetric Assay Kit (E-BC-K881-M)
and the Animal Ferrous Iron Colorimetric Assay Kit (E-BC-K773-
M) manufactured by Elabscience Biotechnology China. The
Superoxide Dismutase (SOD) Assay Kit (S0101S, Beyotime
China), Reduced Glutathione (GSH) Colorimetric Assay Kit
(E-BC-K030-M Elabscience Biotechnology China) was utilized to
evaluate the amounts of SOD, GSH in HL-1 heart cells and animal
cardiac tissues. To assess the amounts of ROS in HL-1 cardiac cells, a
ROS Detection Kit (S0033M, Beyotime China) was utilized. In six-
well plates, the cells were cultivated until they reached 80%
confluence. Following treatment, the cells were incubated at 37°C
for 20 min in a serum-free medium that included 10 μmol/L DCFH-
DA diluted 1:1000. Cells were seen using a confocal laser scanning
microscope. All kits were used according to the manufacturer’s
recommendations.

2.9 Transmission electron microscopy

Myocardial cells from the I/R and I/R + Sem groups were
examined for mitochondrial ultrastructure using TEM. The
hearts were treated to an electron microscopy fixative at 4°C
before being fixed in 1% osmium tetroxide at room temperature
for 2 h in total darkness. A solution of 2% uranyl acetate and 2.6%
lead citrate was used to make ultrathin sections (60 nm) and stain
them. Afterwards, transmission electron microscopy was used to
detect and record the mitochondrial morphology.

2.10 Western blot analysis

Using RIPA lysis buffer, the total protein was recovered from
either cultivated HL-1 cells or tissues of the left ventricle. The
proteins were analyzed by Western blotting in accordance with
the protocol described by Zou et al. (2022). Proteins were resolved by
10% SDS-polyacrylamide gel electrophoresis after being transferred
(30 μg each sample) to PVDF membranes (Millipore, Darmstadt,
Germany). The membranes were incubated with primary antibodies
at 4°C for the night after being blocked withWestern blocking buffer
(CWbio, Taizhou, China) for 1 h. A 1-h incubation with HRP was
performed on the secondary antibodies at room temperature. For
protein detection, an affinity-made enhanced chemiluminescence
kit was utilized. The kit was manufactured in Ancaster, Ontario,
Canada. Band intensities were quantified using T-anon image

analysis software (T-anon, Research article Cell Biology), with β-
Actin serving as a loading control.

2.11 Real-time fluorescence
quantitative PCR

Following the manufacturer’s procedure, total RNA was
extracted from tissues of the HL-1cells using an extraction kit
(G3013, China). The High Capacity cDNA Reverse Transcription
Kit (G337, China) was used for reverse transcription with 200 ng
RNA. The experiment was carried out using a real-time quantitative
PCR (Rt-qPCR) device developed by Beijing Dongsheng Innovation
Biotechnology Co., Ltd. (ETC811). The expression of genes was
normalized using GAPDH as a reference gene. The following table
provides the primer sequences for qPCR.

2.12 RNA-seq analysis

Mice in the I/R and I/R + Sem groups had their cardiac RNA
collected for subsequent testing. Genome sequencing, library
building, quality control, and RNA isolation were all handled by
Guangzhou Jidiao Biotechnology. Illumina Novaseq 6000 was used
for library sequencing. We used edgeR software for bioinformatics
analysis and DESeq2 for differential expression analysis.

2.13 Statistical analysis

We displayed mean ± SD for each data point. A two-tailed test
was employed to assess the differences in mean values between the
two groups, and single-factor design was used for multi-group
anova. We used GraphPad Prism 8 to analyze the data, and we
regarded p < 0.05 to be statistically significant.

3 Results

3.1 Semaglutide inhibits ferroptosis in HL-1
cells in a H/R model

A H/R scenario was established using the HL-1 cardiomyocyte line
in order to evaluate the protective effect of semaglutide. It was observed
that semaglutide significantly reduced ROS levels in cardiomyocytes
compared to the H/R group (Figure 1A). Additionally, semaglutide
markedly elevated the expression levels of intracellular antioxidants
GSH and SOD, compared to the ischemia-hypoxia group (Figures 1B,
C). Further findings revealed that semaglutide decreased the levels of
Fe2+ and MDA in HL-1 cells, indicating its potential to protect HL-1
cells by inhibiting cardiomyocyte ferroptosis (Figures 1D, E). Western
blot analysis verified a reduction in GPX4 expression due to ischemia-
hypoxia, while semaglutide significantly enhanced GPX4 levels (Figures
1F, H). Additionally, the results showed that compared to the ischemia-
hypoxia group, semaglutide significantly reduced COX2 expression
(Figures 1G, I). These findings provide preliminary evidence that
semaglutide protects cardiomyocytes from damage caused by H/R.
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FIGURE 1
Semaglutide Inhibits Ferroptosis in HL-1 Cells in a H/R Model (A) DCFH-DA fluorescent probe was used to detect cellular ROS levels. Scale bar =
25 μm (B)WST-8methodwas used to detect total SOD activity (C–E)Colorimetricmethodwas used to detect reduced glutathione (GSH), cellular ferrous
ion (Fe2+), and lipid peroxidationmarker malondialdehyde (MDA). (F, H)Western blot detection of GPX4 protein expression in HL-1 cardiomyocytes of the
three groups, using β-Actin as internal control. (G, I)Western blot detection of Cox2/PTGS2 protein expression in HL-1 cardiomyocytes of the three
groups, using β-Actin as internal control, *p < 0.05; * *p < 0.01; ** *p < 0.001; * ** *p < 0.0001 (n = 6 per group).
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FIGURE 2
Semaglutide Reduces I/R Myocardial Injury and Promotes Cardiac Function Recovery (A) experimental model of myocardial ischemia-reperfusion
injury in animals (B) representative images of infarct size detected by TTC staining and quantitative data of cardiac infarct size in mice (C)
echocardiography of mice 1 day after surgery, cardiac function indicators:LVEF (left ventricular ejection fraction), LVFS (left ventricular shortening
fraction), SV (stroke volume), and CO(cardiac output),*p < 0.05; * *p < 0.01; ** *p < 0.001; * ** *p < 0.0001 (n = 6 per group).
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FIGURE 3
Semaglutide Inhibits Ferroptosis in an In Vivo Myocardial I/R Model (A) Mitochondrial morphology associated with iron death was observed under
transmission electron microscopy. Scale bar = 25 μm (B) Total SOD activity in mouse myocardial tissue was detected by WST-8 method. (C–E) Reduced
ferrous ion (Fe2+), glutathione (GSH), and malondialdehyde (MDA), a lipid peroxidation marker, were detected by colorimetry. (F, H) Western blot
detection of GPX4 protein expression in myocardial tissue of mice in the three groups, and β-Actin was used as internal control for sample analysis.
(G, I)Western blot detection of Cox2/PTGS2 protein expression inmyocardial tissue of mice in the three groups, and β-Actin was used as internal control
for sample analysis, *p < 0.05; * *p < 0.01; ** *p < 0.001; * ** *p < 0.0001 (n = 6 per group).

Frontiers in Pharmacology frontiersin.org07

Liu et al. 10.3389/fphar.2025.1529652

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1529652


FIGURE 4
Semaglutide Inhibits Ferroptosis in an In VivoMyocardial I/R Model (A, B) Sham operation group, ischemia-reperfusion group, ischemia-reperfusion
+ Sem group 4-HNE Immunohistochemistry and statistical diagram of ischemia-reperfusion mouse heart tissue. Scale bar = 25 μm. (C, D) Sham
operation group, ischemia-reperfusion group, ischemia-reperfusion + Sem group, GPX4 staining image and statistical diagram, Red representsGPX4;
Blue represents DAPI-stained nuclei. Scale bar = 25 μm (E, F) PTGS2/Cox2 staining image and statistical diagram of heart tissue of ischemia-
reperfusion mice in sham operation group, ischemia-reperfusion group, ischemia-reperfusion + Sem group, Green represents PTGS2; Blue represents
DAPI-stained nuclei, Scale bar = 25 μm,*p < 0.05; * *p < 0.01; ** *p < 0.001; * ** *p < 0.0001 (n = 3 per group).
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3.2 Semaglutide reduces I/R myocardial
injury and promotes cardiac
function recovery

The cellular results informed the adoption of a MIRI mouse
model to investigate semaglutide’s impact on cardiac function. As
illustrated in Figure 2A, a cardiac I/R model was developed using
mice. Infarct areas, LVEF, LVFS, SV, and CO were significantly
different between the sham and I/R groups. In the TTC trials,
semaglutide group showed a marked reduction in infarct size and
a considerable improvement in LVFS, LVEF, CO and SV, whereas
the I/R group showed a marked increase in infarct size (Figures 2B,
C). These preliminary results suggest that semaglutide can improve
I/R injury and promote cardiac function recovery.

3.3 Semaglutide inhibits ferroptosis in an in
vivo myocardial I/R model

The fact that semaglutide reduces I/R damage has been proven
in both animal and cell studies. The development of cardiac I/R
damage is dependent on mitochondria. The ultrastructure of
cardiomyocyte mitochondria was examined using transmission
electron microscopy. As shown in Figure 3, after MIRI, there is
mitochondrial membrane shrinkage and a decrease in the clarity of
mitochondrial cristae. Mitochondrial membrane integrity and
cristae visibility were both improved in the semaglutide group as
compared to the I/R group (Figure 3A). Also, in comparison to the
sham group, the I/R group’s myocardial SOD and GSH activity was
much lower, and their MDA release and Fe2+ concentration were
much higher. Myocardial SOD and GSH activity was much
enhanced in the semaglutide group, although MDA release and
Fe2+ concentration were significantly decreased (Figures 3B–E). The
Western blot analysis revealed that the semaglutide group had much
higher GPX4 protein levels and much lower COX2 protein
expression when compared with the I/R group (Figures 3F–I).
The immunohistochemical results demonstrated a significant
reduction in 4-HNE in the semaglutide group compared to the
I/R group (Figures 4A, B). In addition, compared to the I/R group,
the semaglutide group displayed higher levels of GPX4 fluorescence
expression and lower levels of PTGS2(COX2) fluorescence staining
in cardiac tissue (Figures 4C–F). These findings suggest that
semaglutide may protect against I/R damage by avoiding ferroptosis.

3.4 Semaglutide reduces myocardial fibrosis
and apoptosis in an in vivo I/R model

Histopathological examinations corroborated the functional
data. HE stains revealed that the myocardial microstructure was
dense and orderly in the sham group, featuring intact myocardial
fibers without crack. The cells of the cardiac tissue were highly
disordered in the I/R group, and the myocardial fibers were notably
enlarged and broken. Myocardial tissue lesions were considerably
less in the semaglutide group than in the I/R group (Figure 5A). As
shown in Figures 5B, C, compared to the sham group, Masson’s
trichrome and Sirius Red staining indicated a significant increase in
fibrosis in the I/R group. The fibrosis was notably increased after

2 weeks of I/R. Results showed that semaglutide significantly
reduced fibrosis in the semaglutide group, indicating that
semaglutide can reduce I/R-induced myocardial fibrosis and
improve cardiac protection. Figure 6A shows that the
semaglutide group had a substantially decreased apoptosis rate.
Figure 6B shows that Cx43 expression levels were comparatively
higher in the semaglutide group compared to the I/R group. These
results preliminarily confirm that semaglutide effectively reduces
myocardial fibrosis and cardiomyocyte apoptosis post-myocardial
infarction and elevates Cx43 expression in the heart.

3.5 Semaglutide significantly inhibits the
expression of S100A9

To delve deeper into the mechanism of semaglutide’s protective
effects against I/R injury, RNA-seq sequencing was utilized to
examine potential transcriptional changes. 128 genes were found
to be upregulated and 127 genes to be downregulated in the
semaglutide group as compared to the I/R group. GO-related
gene set enrichment analysis (GSEA) was employed to identify
functionally related expressions, revealing that the top 10 GO
analysis terms were predominantly associated with positive
biological processes (Figures 7A–C). Subsequently, the expression
of the top eight differentially expressed genes was validated in mouse
myocardial tissue using qRT-PCR, showing that S100A9, with
significantly reduced expression, exhibited a statistical difference
(p < 0.05) (Figure 7D). Previous studies have shown a certain
association between S100A9 and the occurrence and development
of cardiovascular diseases, which has become a focus of our attention
as well (Averill et al., 2012; Marinković et al., 2020; Zhao et al., 2023;
Chen et al., 2024).

3.6 Semaglutide mitigates MIRI through the
PKC-S100A9 pathway

In order to further investigate the signaling pathways involved in
the biological activity of semaglutide, we will co-culture semaglutide
with cardiomyocytes under H/R conditions. Semaglutide was
discovered to raise PKC phosphorylation levels while lowering
S100A9 expression levels in vitro (Figures 8A, B). Furthermore,
in vivo experiments, we have also found that semaglutide can
increase the expression level of PKC phosphorylation and inhibit
the expression level of S100A9 compared to the I/R group (Figures
8C, D). We also found that incubation of semaglutide and
S100A9 could significantly lessen the effects of semaglutide on
anti-ferroptosis in HL-1 Cells compared with semaglutide and
vector (Supplementary Figure 1). Overall, these findings
substantiate that semaglutide alleviates MIRI via the PKC-
S100A9 pathway.

4 Discussion

Ischemic heart disease is prevalent worldwide, and reperfusion
injury, resulting from opening the culprit vessel, is inevitable (He
et al., 2022). Currently, no effective treatments exist to mitigate I/R
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injury induced by interventional therapy. In this study, two
significant findings were made. First, it was discovered that
semaglutide exerts a cardioprotective effect by inhibiting
cardiomyocyte ferroptosis, thereby reducing myocardial injury
caused by I/R. Second, it was demonstrated that semaglutide

inhibits cardiomyocyte ferroptosis via the PKC/S100A9 pathway,
unveiling a novel mechanism through which semaglutide lowers the
risk of adverse cardiovascular events.

Semaglutide, a long-acting GLP-1A agonist, has received FDA
approval for the treatment of T2DM characterized by inadequate

FIGURE 5
Semaglutide ReducesMyocardial Fibrosis and Apoptosis in an In Vivo I/RModel (A, B) 14 days aftermyocardial ischemia-reperfusion injury with eosin
(HE) and hematoxylin staining and quantitative analysis of cardiac fibrosis in each experimental group. Scale bar = 25 μm (C) sham operation group, Col1,
Col3 staining images and statistical charts of heart tissue of mice with ischemia-reperfusion injury and Sem + ischemia-reperfusion injury group, Red
represents Col1, Green is Col3, Blue represents DAPI-stained nuclei. Scale bar = 25 μm *p < 0.05; * *p < 0.01; ** *p < 0.001; * ** *p < 0.0001
(n = 3 per group).
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glycemic control (Lau et al., 2015). Clinical trials have confirmed its
positive cardioprotective effects. Patients suffering from obesity and
heart failure who have preserved ejection fraction fare better when given
semaglutide, according to the STEP-HFpEF trial (Borlaug et al., 2023;
Kosiborod et al., 2023; Borlaug et al., 2023; Kosiborod et al., 2023). Yu-
Lan Ma et al. reported that semaglutide enhances ventricular
remodeling in mice by optimizing the Creb5/NR4a1 axis (Ma et al.,
2024). Xiao-Ping Li et al. observed that semaglutide mitigates
doxorubicin-induced cardiotoxicity and supports cardiac function

recovery by improving BNIP3-mediated mitochondrial dysfunction
(Li et al., 2024). The current study suggests that semaglutide may be
a viable option for reducing MIRI, primarily by inhibiting
cardiomyocyte ferroptosis. Semaglutide shows promise as a potential
treatment for MIRI due to its cardioprotective effects and metabolic
benefits. However, further studies are needed to optimize its dosing and
timing. It has been reported that investigational drugs such as baicalin
(Fan et al., 2021) and cyanidin-3-glucoside (C3G) (Shan et al., 2021) can
alleviate MIRI by inhibiting ferroptosis, reducing oxidative stress and

FIGURE 6
Semaglutide Reduces Myocardial Fibrosis and Apoptosis in an In Vivo I/R Model (A) TUNEL staining images and statistical graphs of cardiac tissue of
myocardial ischemia-reperfusion mice treated by sham operation group, ischemia-reperfusion group, and Sem + ischemia-reperfusion group. Scale
bar = 25 μm (B) 14-day boundary sections of each experimental group. The expression of Connexin 43 (Cx43) was detected by immunofluorescence
staining. Red represents Connexin 43; Green is WGA; Blue represents DAPI-stained nuclei. Scale bar = 25 μm. Continuous variables were expressed
as mean ± SEM, *p < 0.05; * *p < 0.01; ** *p < 0.001; * ** *p < 0.0001 (n = 3 per group).
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Fe2+ content, or inhibiting lipid peroxidation. These findings highlight
the potential of targeting ferroptosis in the treatment ofMIRI. However,
a common limitation is that these investigational drugs have not yet
been used in clinical practice. Given this gap, our study focused on
identifying drugs that are already in clinical use and have the potential
to reduce ferroptosis to alleviate MIRI.

Although the mechanisms underlying I/R injury remain
incompletely understood, oxidative stress, apoptosis (Zhai et al.,
2017), calcium overload (Wu et al., 2021b), and the release of
inflammatory mediators (Wu et al., 2021a) are recognized as
possible contributors. The current research finds that MIRI
exacerbates oxidative stress and induces cardiomyocyte

ferroptosis, which semaglutide can alleviate. RNA-Seq sequencing
indicated that S100A9 might be a regulated target gene of
semaglutide, controlling cardiomyocyte ferroptosis. S100A9, an
important component of inflammatory and immunological
response pathways, is a calgranulin family member that normally
occurs as a heterodimer (Wang et al., 2018; Sreejit et al., 2020; Pan
et al., 2024; Jakobsson et al., 2023). Research (Li et al., 2019) has
indicated that S100A9 can inhibit mitochondrial respiratory
response, exacerbating cellular damage. The expression level of
S100A9 was significantly diminished following semaglutide
administration, suggesting that S100A9 could be a potential
target for semaglutide in alleviating MIRI.

FIGURE 7
Semaglutide Significantly Inhibits the Expression of S100A9 (A) Go-related gene set enrichment analysis (GSEA) to search for functional expression
association (B) volcano gene expression map between ischemia-reperfusion group and Sem + ischemia-reperfusion group (C) Bubble gene expression
map between ischemia-reperfusion group and Sem + ischemia-reperfusion group (D) ischemia-reperfusion + Sem group qRT-PCR results of
8 differentially expressed genes in ischemia-reperfusion group were compared (n = 3, *p < 0.05).
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The obesity marker FABP4 induces vascular inflammatory
atherosclerosis (García-Vega et al., 2024) and prior research has
demonstrated that GLP-1 can affect the course of this disease (Park
et al., 2024; Rakipovski et al., 2018; Saraiva and Franco, 2021).
Further research has shown that GLP-1 inhibits cardiomyocyte
death via activating the PKG/ERK pathway, hence decreasing the
fibrosis area in the infarct site (Zhu et al., 2023). The role of the PKC/
S100A9 pathway in semaglutide’s mitigation of I/R injury was
validated by this research. Additionally, semaglutide was found to
activate the PKC pathway according to immunoblotting data.
Semaglutide prevents ferroptosis and lowers oxidative stress
damage in cardiomyocytes, as confirmed by both in vivo and
in vitro tests. In conclusion, this study showed that semaglutide
can reduce cardiac damage after I/R via regulating the PKC/
S100A9 pathway and inhibiting ferroptosis in cardiomyocytes.

5 Conclusion

In summary, semaglutide can inhibit ferroptosis in
cardiomyocytes through the PKC/S100A9 pathway, thereby
diminishing myocardial damage following I/R and enhancing
cardiac function recovery. Therefore, semaglutide represents a
potential novel therapeutic strategy for treating MIRI.
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