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Background: Osteosarcoma (OS) exhibits significant epigenetic heterogeneity,
yet its systematic characterization and clinical implications remain largely
unexplored.

Methods: We analyzed single-cell transcriptomes of five primary OS samples,
identifying cell type-specific epigenetic features and their evolutionary trajectories.
An epigenetics-based Random Survival Forest (RSF) model was constructed using
801 curated epigenetic factors and validated in multiple independent cohorts.

Results: Our analysis revealed distinct epigenetic states in the OS
microenvironment, with particular activity in OS cells and osteoclasts. The RSF
model identified key predictive genes including OLFML2B, ACTB, and C1QB, and
demonstrated broad applicability across multiple cancer types. Risk stratification
analysis revealed distinct therapeutic response patterns, with low-risk groups
showing enhanced sensitivity to traditional chemotherapy drugs while high-risk
groups responded better to targeted therapies.

Conclusion: Our epigenetics-based model demonstrates excellent prognostic
accuracy (AUC>0.997 in internal validation, 0.832–0.929 in external cohorts) and
provides a practical tool for treatment stratification. These findings establish a
clinically applicable framework for personalized therapy selection in OS patients.
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1 Introduction

Osteosarcoma (OS) is the most common primary malignant bone tumor, accounting
for 56% of all bone sarcomas (Chen et al., 2021). The overall incidence rate is 4.5 per million
(Siegel et al., 2024), with the incidence rate in the 0–24 age group significantly higher at
8.2 per million, showing a clear trend toward younger populations (Nie and Peng, 2018;
Cole et al., 2022). OS primarily occurs in the metaphysis of long bones in extremities,

OPEN ACCESS

EDITED BY

Dawei Chen,
University of Kiel, Germany

REVIEWED BY

Zixu Chen,
Shandong University, China
Panpan Feng,
Shandong Provincial Hospital, China

*CORRESPONDENCE

Binshan Zhang,
13600298950@163.com

Cailiang Cai,
caicailiang1402@163.com

†These authors have contributed equally to
this work

RECEIVED 17 November 2024
ACCEPTED 08 January 2025
PUBLISHED 22 January 2025

CITATION

Yin C, Chi K, Chen Z, Zhuang S, Ye Y, Zhang B
and Cai C (2025) Development and pan-cancer
validation of an epigenetics-based random
survival forest model for prognosis prediction
and drug response in OS.
Front. Pharmacol. 16:1529525.
doi: 10.3389/fphar.2025.1529525

COPYRIGHT

© 2025 Yin, Chi, Chen, Zhuang, Ye, Zhang and
Cai. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 22 January 2025
DOI 10.3389/fphar.2025.1529525

https://www.frontiersin.org/articles/10.3389/fphar.2025.1529525/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1529525/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1529525/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1529525/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1529525/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1529525/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2025.1529525&domain=pdf&date_stamp=2025-01-22
mailto:13600298950@163.com
mailto:13600298950@163.com
mailto:caicailiang1402@163.com
mailto:caicailiang1402@163.com
https://doi.org/10.3389/fphar.2025.1529525
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2025.1529525


particularly the distal femur, proximal tibia, and proximal humerus,
with potential metastasis to adjacent bone tissues or distant organs
(primarily lungs) (Chen et al., 2021; Yu and Yao, 2024). The disease
originates frommalignant transformation of osteoblasts (Aran et al.,
2021), characterized by high invasiveness, early metastatic tendency,
poor prognosis, and high rates of disability and mortality. Currently,
the standard treatment protocol includes neoadjuvant
chemotherapy, surgical resection, and consolidation
chemotherapy (Thanindratarn et al., 2019). Despite recent
advances in surgical techniques and chemotherapy regimens,
while the 5-year relative survival rate for localized disease reaches
70%, 30%–40% of patients develop pulmonary metastases and
recurrence, with post-progression survival rates dramatically
declining to 20%–30% (Shaikh et al., 2016), resulting in no
significant improvement in overall survival rates over the past
decades (Mirabello et al., 2009; Czarnecka et al., 2020; Mialou
et al., 2005). Therefore, elucidating metastatic mechanisms and
predicting metastatic timing remain key challenges.

Epigenetic regulation plays a crucial role in gene expression and
cell fate determination (Recillas-Targa, 2022). Its dysregulation can
lead to gene dysfunction and malignant cell transformation,
representing a key characteristic of tumor development. In OS,
widespread alterations in DNA methylation patterns and histone
modifications are observed (Tang et al., 2008), potentially
contributing to tumorigenesis by interfering with mesenchymal
stem cell differentiation into osteoblasts. Studies have shown that
changes in methylation levels of tumor-suppressor microRNAs and
hypomethylation of IGF2 growth factor and its promoter are closely
associated with OS development (Azevedo et al., 2019). Unlike
irreversible genetic mutations, epigenetic alterations are
reversible, offering new therapeutic opportunities. However, due
to the relative rarity of OS, research on its epigenetic mechanisms
remains limited, hindering the establishment of precise prognostic
models and personalized treatment strategies.

With advances in single-cell RNA sequencing technology (Grün
and van Oudenaarden, 2015), analyzing tumor epigenetic heterogeneity
at the single-cell level has become feasible. This study systematically
evaluated epigenetic characteristics across different cell types in OS
using single-cell sequencing data, revealing intercellular epigenetic
differences and interaction networks. By integrating multiple large-
scale datasets, we employed machine learning approaches, particularly
random survival forestmodels (Rigatti, 2017), to construct an epigenetic
feature-based risk scoring system and prognostic prediction model.
Furthermore, we explored the model’s pan-cancer applicability and
identified potential therapeutic targets through drug sensitivity analysis,
providing new perspectives for precision medicine. This research not
only deepens our understanding of epigenetic regulatory mechanisms
in OS but also provides novel tools for patient prognostic assessment
and individualized treatment decisions, holding significant clinical
translational value. Notably, by incorporating immune
microenvironment analysis, we further revealed associations between
epigenetic alterations and tumor immune responses, offering new
insights for optimizing immunotherapy strategies.

2 Materials and methods

All analytical processes are illustrated in the flowchart (Figure 1).

2.1 Data source

In this study, we conducted single-cell RNA sequencing
analysis on five primary OS samples (BC2, BC3, BC5, BC6, and
BC16) obtained from the Gene Expression Omnibus database
(GEO, https://www.ncbi.nlm.nih.gov/geo/, accession number:
GSE152048). These samples were carefully selected from the
original dataset containing 11 OS samples, specifically excluding
recurrent and metastatic samples to minimize sample
heterogeneity, following the clinical annotation provided by
Zhou et al. (2021). To establish the epigenetic regulatory
framework, we incorporated 801 epigenetics-related genes
curated from the EpiFactors database (Medvedeva et al., 2015)
(https://epifactors.autosome.org/). For validation purposes, we
integrated additional OS datasets: expression profiles and
survival information of 88 OS samples from the Therapeutically
Applicable Research to Generate Effective Treatments (TARGET)
Project (https://portal.gdc.cancer.gov/), and an independent
cohort of 54 OS samples with survival data from GEO
(accession number: GSE21257).

2.2 Single-cell analysis

2.2.1 Data preprocessing and quality control
The single-cell RNA sequencing data analysis was performed

using the Seurat package (version 5.0.0) in R (Huang et al., 2021).
Initially, we filtered cells based on multiple quality control metrics:
cells with less than 200 or more than 5,000 genes, UMI counts
exceeding 20,000, mitochondrial gene percentage above 10%, and
hemoglobin gene percentage above 1% were excluded. After quality
control, gene expression matrices were normalized using the
LogNormalize method, and the top 3,000 variable genes were
identified for downstream analysis.

2.2.2 Dimension reduction and batch effect
correction

To minimize batch effects across different samples (Tran et al.,
2020), we employed the Harmony algorithm for data integration
(Korsunsky et al., 2019), followed by principal component analysis
(PCA). The first 30 principal components were selected for uniform
manifold approximation and projection (UMAP) dimensionality
reduction and graph-based clustering (Becht et al., 2018)
(resolution = 0.5).

2.2.3 Cell type annotation and classification
Cell type annotation was performed using multiple approaches.

We first utilized the SingleR package with the Human Primary Cell
Atlas (https://www.humancellatlas.org/) as the reference database
for automated annotation. This was followed by manual verification
through examination of canonical cell type-specific markers:
COL1A1, CDH11, and RUNX2 for OS cells; CTSK and
MMP9 for osteoclastic cells; IL7R, CD3D, and NKG7 for tumor-
infiltrating lymphocytes; CD74, CD14, and FCGR3A for myeloid
cells; and PECAM1 and VWF for endothelial cells. Based on these
analyses, we identified five major cell types in the tumor
microenvironment: OS cells, osteoclastic cells, myeloid cells,
endothelial cells, and tumor-infiltrating lymphocytes.
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2.2.4 Epigenetic score analysis and cell-cell
communication

For epigenetic analysis, we calculated an epigenetic score for
each cell using the single-sample Gene Set Enrichment Analysis
(ssGSEA) method based on epigenetics-related genes obtained from
the EpiFactors database Cells were then categorized into high and
low epigenetic score groups based on the median score. Differential
gene expression analysis between these groups was performed using
the Wilcoxon rank-sum test, with adjusted p-value <0.05 and |
log2FoldChange| > 0.5 as thresholds for significance. Cell-cell
communication analysis was conducted using the CellChat
package (Song et al., 2019), focusing on ligand-receptor
interactions and signaling pathways between different cell types
in both high and low epigenetic score groups (Jin et al., 2024).

2.2.5 Trajectory analysis of OS cells
To investigate the developmental trajectory and potential state

transitions of OS cells, we performed pseudotime analysis using
Monocle2 (Hou et al., 2023). First, we subset the OS cells from the
total cell population based on the previous cell type annotation. The
expression matrix was converted to a Monocle object and filtered to
retain genes expressed in at least 10 cells. Differentially expressed
genes between high and low epigenetic score groups (adjusted
p-value <0.05) were used as ordering genes for trajectory
reconstruction. Dimensional reduction was performed using the

DDRTree algorithm with default parameters, and cells were ordered
along the trajectory. The root state was automatically determined
based on the expression patterns of known early developmental
markers. The resultant trajectory revealed distinct cell states and
potential developmental paths of OS cells, which were visualized and
colored by pseudotime, cell states, and cell subtypes to interpret the
biological progression and heterogeneity of tumor cells.

2.3 Weighted gene co-expression
network analysis

To explore the relationship between epigenetic scores and gene
expression patterns, we performed Weighted Gene Co-expression
Network Analysis (WGCNA) using the WGCNA R package (Liu
et al., 2017; Langfelder and Horvath, 2008). The analysis was
conducted on differentially expressed genes identified between
high and low epigenetic score groups from the TCGA OS
dataset. Prior to network construction, we filtered out genes
with zero variance and samples with excessive missing values.
The soft-thresholding power was determined by analyzing the
scale-free topology fit index, with a power of five selected to achieve
approximate scale-free topology (R2 > 0.85). Network construction
was performed using unsigned Topological Overlap Matrix (TOM)
with a minimum module size of 50 genes and a merge cut height of

FIGURE 1
Study flowchart.
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0.15 (Shuai et al., 2021). Module-trait relationships were assessed
by correlating module eigengenes with epigenetic scores, and the
significance of these correlations was determined using Student’s
t-test. The pink module showed the strongest correlation with
epigenetic scores (correlation coefficient = 0.75, p < 0.001). Gene
significance and module membership were calculated to identify
hub genes within the pink module, and the relationship between
module membership and gene significance for epigenetics was
visualized through scatter plots. The identified hub genes from the
pink module were subsequently subjected to functional
enrichment analysis to understand their biological implications
in OS development.

2.4 Machine learning model development
and validation

To establish a robust prognostic model, we employed
multiple machine learning algorithms and their combinations.
The expression data and survival information from TARGET
database were randomly split into training (70%) and internal
testing sets (30%). The GSE21257 dataset served as an
independent external validation cohort. Prior to model
development, all expression data were standardized using
z-score normalization.

2.4.1 Base models
• Random Survival Forest (RSF) with 1000 trees and node
size of five

• Elastic Net (Enet) with nine different α values (0.1–0.9)
• Ridge regression (α = 0)
• Lasso regression (α = 1)
• CoxBoost regression
• Gradient Boosting Machine (GBM)
• Supervised Principal Components (SuperPC)
• Support Vector Machine for survival analysis (survival-SVM)

2.4.2 Ensemble methods
We developed a series of RSF-based combination models and a

hybrid Lasso-StepCox model to enhance prediction accuracy. The
RSF was integrated with various statistical and machine learning
approaches. For the CoxBoost combination, we optimized the
penalty parameter through optimCoxBoostPenalty and
determined optimal boosting steps via 10-fold cross-validation,
ultimately employing an optimized penalty of 500. The Elastic
Net series involved systematic variation of α values (0.1–0.9) with
lambda optimization through cv.glmnet, selecting the best model
based on minimal cross-validation error using 10-fold validation.
For the GBM integration, we initialized 10,000 trees with interaction
depth 3, minimum 10 observations per node, and 0.001 learning
rate, optimizing the final tree number through cross-
validation error.

The Lasso (α = 1) and Ridge (α = 0) combinations underwent 10-
fold cross-validation with lambda optimization via cv.glmnet,
utilizing RSF-selected features. The Stepwise Cox integration
employed forward, backward, and bidirectional approaches with
AIC-based selection criteria until reaching optimal model fit. For the
SuperPC combination, we implemented feature standardization

with 50th percentile threshold, developing a three-component
model validated through 10-fold cross-validation, with threshold
optimization based on cross-validated scores and single-component
final prediction. The plsRcox integration determined optimal
component numbers through 10-fold cross-validation, with
selection based on prediction error minimization.

Additionally, we constructed a two-stage hybrid Lasso-StepCox
model. The initial stage employed Lasso feature selection through
elastic net regularization (α = 1), where predictive variables were
transformed into matrix format alongside a survival outcome
matrix. This Lasso implementation utilized 10-fold cross-
validation via cv.glmnet under Cox proportional hazards
specification, with optimal λ selection based on minimum cross-
validation error. The second stage applied stepwise Cox regression
to the Lasso-selected features in three directional approaches:
forward selection (initiating with an empty model), backward
selection (starting with all Lasso-selected variables), and
bidirectional selection (combining both approaches). This hybrid
approach leveraged both Lasso’s regularization and stepwise
selection’s interpretability advantages.

2.4.3 Model evaluation and validation strategy
Model performance was assessed using Harrell’s concordance

index (C-index) (Cheung et al., 2019). For the training set (70% of
TARGET data), we employed 10-fold cross-validation to avoid
overfitting. Model performance was then evaluated on both the
internal testing set (remaining 30% of TARGET data) and the
external validation cohort (GSE21257). This multi-level validation
strategy enables assessment of both internal generalizability within
the TARGET cohort and external generalizability to independent
datasets. Higher C-index values indicate better predictive accuracy,
with one representing perfect prediction and 0.5 indicating random
prediction.

2.4.4 Optimal model analysis and validation
Among all tested algorithms, the Random Survival Forest (RSF)

model demonstrated superior performance and was selected for
detailed analysis. The final RSF model was constructed using the
‘randomForestSRC’ package with optimized parameters including
1000 trees and a node size of 5, employing log-rank splitting criteria
to maximize survival differences between nodes. Variable selection
was performed using a conservative ‘high’ threshold in the var.select
function, which helped identify the most robust predictive features.
The model utilized proximity matrices to assess sample similarity
and out-of-bag (OOB) error estimates for internal validation.

Feature importance analysis was conducted using the built-in
RSF algorithm’s Variable Importance (VIMP) scores, identifying
and ranking the top 10 prognostic features based on their
contribution to prediction accuracy. For risk stratification (Wang
et al., 2023), we calculated individual risk scores using the RSF
model’s mortality predictions and classified patients into high- and
low-risk groups based on the median score. The model’s
discriminative ability was assessed using time-dependent ROC
curves at 1-, 3-, and 5-year time points, with AUC values
calculated for both internal (30% TARGET) and external
(GSE21257) validation cohorts. All statistical analyses were
performed using R (version 4.1.0), with p < 0.05 considered
statistically significant.
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2.5 Pathway analysis and functional
annotation

To investigate the biological implications of the RSF-based
risk stratification, we performed comprehensive pathway
analyses using multiple approaches. Gene set enrichment
analysis (GSEA) was conducted using the Hallmark gene sets
from MSigDB (Hanahan, 2022; Liberzon et al., 2015) (v2023.1).
Differential expression analysis between high- and low-risk
groups was performed using limma, with adjusted
p-value <0.05 considered significant. Gene Set Variation
Analysis (GSVA) was then applied to quantify pathway
activities in individual samples. Pathway-specific survival
analyses were performed using Kaplan-Meier estimates and
log-rank tests to identify clinically relevant pathways. For
significant pathways (log-rank p < 0.05), hazard ratios and
95% confidence intervals were calculated using Cox
proportional hazards models. Correlation analysis was
performed to explore the relationships between risk scores and
pathway activities. All analyses were conducted using R with the
clusterProfiler, GSVA, and survival packages.

2.6 Tumor microenvironment analysis

The tumor microenvironment (TME) characteristics between
high- and low-risk groups were systematically evaluated using
multiple approaches (Bejarano et al., 2021). We first employed
the ESTIMATE algorithm to quantify stromal and immune cell
infiltration levels, generating StromalScore, ImmuneScore, and
ESTIMATEScore for each sample (Luo et al., 2020). The
differences in these scores between risk groups were assessed
using Wilcoxon rank-sum test.

For a more comprehensive understanding of immune-related
pathways, we conducted ssGSEA (single-sample Gene Set
Enrichment Analysis) using curated immune-related gene sets.
The pathway activity differences between risk groups were
evaluated using Student’s t-test, with p < 0.05 considered
statistically significant. The results were visualized using
heatmaps with row-wise z-score normalization.

Furthermore, for immune cell composition analysis, we
employed a dual-method validation approach using the IOBR
package (Zeng et al., 2021). Initially, immune cell abundance was
quantified using ssGSEA based on a well-established set of
28 immune cell signatures. Subsequently, we validated these
findings using the xCell algorithm, which provides an
independent assessment of cellular composition in the tumor
microenvironment. Cell-type-specific enrichment scores were
calculated for both methods, and differences between risk groups
were assessed using the Wilcoxon rank-sum test with
Benjamini–Hochberg correction for multiple testing.
Concordance between the two deconvolution methods was
evaluated using Spearman’s correlation analysis. Only cell
populations consistently identified as differentially abundant by
both methods (adjusted P < 0.05) were considered robust
findings. This dual-algorithm strategy was implemented to
minimize method-specific biases and enhance the reliability of
our immune cell infiltration analysis.

2.7 Drug sensitivity analysis

To explore potential therapeutic strategies for different risk
groups, we performed drug sensitivity analysis using the
pRRophetic package. Drug response predictions were based on
the Genomics of Drug Sensitivity in Cancer (GDSC) database
(2016 version) (https://www.cancerrxgene.org/) (Yang et al.,
2013). The analysis pipeline was as follows: for each compound
in the GDSC database, we predicted the half-maximal inhibitory
concentration (IC50) values for each sample using ridge regression
models trained on cancer cell line expression data (Sebaugh, 2011).
The prediction model was selected through 10-fold cross-validation.
Drug sensitivity differences between high- and low-risk groups were
assessed using the Wilcoxon rank-sum test. Compounds showing
significant differences (p < 0.05) in predicted IC50 values between
risk groups were identified as potential therapeutic candidates. The
results were visualized using boxplots with individual data points,
and median differences in IC50 values between groups were
calculated to indicate the direction and magnitude of sensitivity
differences.

2.8 Pan-cancer analysis

To evaluate the broader applicability of our RSF-based
prognostic model, we performed a comprehensive pan-cancer
analysis across 19 different cancer types from The Cancer
Genome Atlas (TCGA) database. Expression data and
corresponding clinical information were obtained through the
UCSC Xena platform. For each cancer type, we applied the
following analysis pipeline: gene expression matrices were
standardized and aligned with our model’s feature set. Missing
genes were imputed with zero values after standardization. Risk
scores were calculated using our established RSFmodel, and patients
were stratified into high- and low-risk groups based on the median
risk score. The prognostic significance was assessed using Cox
proportional hazards regression and Kaplan-Meier survival
analysis. Hazard ratios with 95% confidence intervals were
calculated for each cancer type, and statistical significance was
determined using the log-rank test (p < 0.05). Results were
visualized using forest plots, incorporating hazard ratios,
confidence intervals, and sample sizes for each cancer type.
Cancer types with insufficient samples (n < 30) were excluded
from the analysis.

3 Results

To investigate the cellular heterogeneity of the OS
microenvironment, we performed single-cell RNA sequencing on
five OS patient samples, yielding a total of 57,246 high-quality single
cells (Supplementary Figures S1, S2). Following stringent quality
control measures, we obtained 18,830 cells from patient BC16,
7,396 cells from BC2, 5,805 cells from BC3, 8,054 cells from
BC5, and 17,161 cells from BC6. The median number of unique
molecular identifiers (UMIs) ranged from 1,154 to 6,832 per cell
across samples, with BC2 showing the highest transcriptional
complexity (median 2,137 genes per cell). Despite some variation
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in sequencing depth among samples, with BC2 exhibiting higher
UMI counts (mean 7,861) compared to others, all samples
demonstrated robust gene detection rates (ranging from 221 to
4,944 genes per cell) suitable for downstream analysis. This
comprehensive single-cell atlas provided a solid foundation for
exploring the cellular composition and molecular characteristics
of the OS tumor microenvironment.

3.1 Single-cell transcriptome analysis reveals
cellular heterogeneity in OS
microenvironment

Through dimensional reduction clustering analysis and cell
type annotation of single-cell RNA sequencing data (Figures 2A,
B), we identified five major cell populations in the OS
microenvironment: (1) OS cells expressing COL1A1, LUM,

DCN, RUNX2, and CDH11; (2) myeloid cells with high
expression of CD74, CD14, and FCGR3A; (3) osteoclasts
specifically expressing MMP9 and CTSK; (4) endothelial cells
enriched for PECAM1 and VWF expression; and (5) tumor-
infiltrating lymphocytes expressing CD3D, NKG7, and IL7R. The
identification of these cell subpopulations provided a foundation
for understanding the cellular composition of the OS
microenvironment.

Further analysis based on epigenetic scores divided cells into
high- and low-score groups (Figure 2C). Although all 5 cell types
were present in both groups, their proportions showed significant
differences: the high-score group contained a significantly higher
proportion of OS cells, while the low-score group showed
enrichment of myeloid cells. Statistical analysis (Figure 2D)
further revealed that OS cells and osteoclasts exhibited
significantly higher epigenetic activity compared to other cell
types (p < 0.05).

FIGURE 2
Epigenetic Characterization of OS Single-cell Transcriptome. (A) UMAP visualization showing the distribution of different cell subpopulations in the
OS microenvironment. (B) Dotplot showing characteristic gene expression patterns of cell subpopulations. (C) Distribution proportions of cell
subpopulations in high and low epigenetic score groups. (D) Differential analysis of epigenetic scores across cell subpopulations.
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3.2 Pseudotime analysis reveals evolutionary
trajectories of OS cells

Through cell type differential analysis, we isolated the highest-
scoring OS cells and identified 11 transcriptionally distinct gene clusters
(Figure 3A). Based on epigenetic scores, samples were divided into high-
and low-score groups (Figure 3B). In the high-score group, clusters
C1 and C2 were predominant, accounting for 25.8% and 19.5%
respectively, while in the low-score group, clusters C1 and C6 were
most abundant, reaching 42.9% and 21.2% respectively.

To investigate the evolutionary trajectory of OS cells, we
constructed a pseudotime landscape based on differentially
expressed genes. Multi-dimensional visualization analysis revealed
clear cell state transition patterns through pseudotime trajectory
(Figure 3C), cell subtype distribution (Figure 3D), and evolutionary
stages (Figure 3E). Specifically, among the 11 clusters, a unique
evolutionary path emerged: initiating from clusters C2, C4, and C7,
progressing through intermediate states, and ultimately
transitioning to clusters C9 and C1. From a developmental
perspective, cells progressed gradually from stages 1–2 through
stage 3, ultimately reaching stages 4–5.

Notably, when cells were visualized according to their epigenetic
scores (Figure 3F), high- and low-score groups showed significant
spatial separation patterns in their evolutionary trajectories. This
distribution pattern suggests that differences in epigenetic
modification levels not only influence cellular phenotypes but

also determine their positions and developmental directions in
the evolutionary trajectory. The tendency of high- and low-score
groups to occupy different evolutionary branches indicates that
epigenetic regulation may be a key factor driving OS cell fate
determination.

3.3 Cell-cell communication network
analysis reveals functional characteristics of
epigenetic regulation

Using CellChat analysis, we systematically compared the
differential features of cellular communication between high and
low epigenetic score groups. In the high-score group, the 5 cell
subpopulations exhibited complex interaction networks
(Figure 4A). Notably, strong bidirectional communication was
observed between OS cells and both osteoclasts and myeloid
cells, while endothelial cells and tumor-infiltrating lymphocytes
also demonstrated significant signal interactions. The
corresponding ligand-receptor interaction map (Figure 4B)
revealed activation of multiple key pathways, including immune
regulatory pathways such as CD74-CD44 and ITGA4-ITGB1, as
well as ligand-receptor pairs associated with extracellular matrix
remodeling.

In contrast, the cell-cell communication network in the low-
score group (Figure 4C) was significantly simplified, primarily

FIGURE 3
Pseudotime evolution analysis of OS cell subgroups. (A) UMAP visualization of cell subgroup distribution based on DDRTree algorithm. Different
colors represent distinct transcriptional feature clusters. (B)Distribution proportions of 11 cell subgroups in high and low epigenetic score groups. (C)Cell
pseudotime trajectory map. (D) Distribution of gene clusters along the evolutionary trajectory. (E) Cell evolutionary stage distribution. (F) Significant
spatial separation pattern of high and low epigenetic score groups in evolutionary trajectory.
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showing limited interactions between OS cells and myeloid cells,
with markedly reduced communication intensity among other cell
types. The ligand-receptor interaction map (Figure 4D) also
displayed a sparser molecular communication pattern, suggesting
that reduced epigenetic modification levels may weaken intercellular
signaling within the tumor microenvironment.

To decipher themolecular mechanisms of epigenetic regulation, we
systematically analyzed the most significantly differentially expressed
genes in each gene cluster (Figure 4E). Among all gene clusters, C1-C10
each displayed unique expression patterns. Particularly in the
C1 cluster, which represented the terminal state in pseudotime
analysis, we observed significant gene expression characteristics,
including upregulation of SPP1, SMOC1, and MMP23B, and
downregulation of LY6K, ISLR, and NPW.

GO functional enrichment analysis of the C1 cluster (Figure 4F)
revealed multiple significantly enriched biological functions. In
biological processes (BP), DNA biosynthetic process, telomere
maintenance, and extracellular matrix organization were
prominent, while humoral immune response and response to
type I interferon suggested the importance of immune regulation.
In cellular components (CC), collagen-containing extracellular
matrix was most significant, along with enrichment of
endoplasmic reticulum lumen and chromosomal region. In

molecular functions (MF), extracellular matrix-related functions,
represented by extracellular matrix structural constituent and
collagen binding, were most prominent. KEGG pathway analysis
(Figure 4G) further identified key signaling pathways, including
PI3K-Akt signaling pathway, Focal adhesion, p53 signaling pathway,
Cell cycle, and Base excision repair.

3.4 WGCNA analysis identifies key
epigenetic regulatory modules

To systematically identify co-expression networks associated
with epigenetic modifications, we performed WGCNA analysis
on differentially expressed genes. Hierarchical clustering results
demonstrated gene co-expression relationships and sample
epigenetic score distribution (Figure 5A). Using the dynamic
tree-cutting algorithm, we identified 12 functional modules
(Figure 5B). Module-trait correlation analysis revealed that the
Pink module showed the strongest positive correlation with
epigenetic scores (cor = 0.55, P = 4e-8) (Figure 5C), and genes
within this module demonstrated significant correlation between
gene significance (GS) and module membership (MM) (cor = 0.44,
P = 3.7e-06) (Figure 5D).

FIGURE 4
Cell-Cell communication network and functional pathway analysis in OS. (A)Cell signaling pathway network in the high epigenetic score group. Line
thickness indicates interaction strength. (B) Circular plot of ligand-receptor interactions in the high-score group. Different colors represent different cell
types, connecting lines indicate ligand-receptor pairs. (C) Cell signaling pathway network in the low epigenetic score group. Network structure shows
significant simplification. (D)Circular plot of ligand-receptor interactions in the low-score group. Showing notably reduced interactions. (E) Volcano
plot of differentially expressed genes across gene clusters. Red and blue indicate significantly up- and downregulated genes, respectively, with key
differential genes labeled. (F)GO functional enrichment analysis results. Bar length represents enrichment significance (-log10P value). (G) KEGGpathway
enrichment analysis results. Bubble size represents gene ratio, color intensity indicates significance (P value).
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Further protein-protein interaction network construction
(Figure 5E) and functional enrichment analysis (Figure 5F)
revealed that core genes in the Pink module were primarily
enriched in immune response-related pathways, including antigen
processing and presentation, leukocyte mediated immunity, and
natural killer cell mediated cytotoxicity; cellular vesicle transport
processes such as endocytosis and lysosome pathway; and cell
adhesion-related functions including cell adhesion molecules and
focal adhesion. These results suggest that the Pink module may serve
as a core functional module coordinating the epigenetic
regulatory network.

3.5 Development of random survival forest-
based prognostic prediction model

Through systematic evaluation of eight machine learning
algorithms and their various combinations (Figure 6A), the RSF
model demonstrated superior predictive performance across three
cohorts (internal TCGA: 0.944, external TCGA: 0.783, GSE21257:
0.631). Feature importance analysis identified 10 core predictive
genes (Figure 6B), with OLFML2B, ACTB, and C1QB showing the
highest variable importance scores. Model performance evaluation
revealed significant time-dependent predictive capability: The RSF
model demonstrated excellent discriminative ability in the TCGA
internal training set, with AUC values of 0.997, 0.998, and 1.001 for
1-year, 3-year, and 5-year survival predictions, respectively

(Figure 6C). This predictive performance was validated in
external validation cohorts, with AUC values in the external
TCGA cohort of 0.929 (1-year), 0.874 (3-year), and 0.795 (5-
year) (Figure 6D), and in the GSE21257 cohort of 0.832 (1-year),
0.666 (3-year), and 0.596 (5-year) (Figure 6E), demonstrating stable
predictive efficiency and promising clinical application potential.

Notably, compared to other machine learning methods (such as
GBM: 0.819, Ridge: 0.846, survival-SVM: 0.711), the RSF model
showed significant advantages in the internal validation set. This
predictive advantage was maintained in external validation cohorts,
confirming the model’s robustness and generalizability.

3.6 Functional mechanism analysis of RSF
risk stratification

To elucidate the molecular biological basis of RSF risk stratification,
we employed a multi-level functional enrichment analysis strategy.
GSEA revealed that the high-risk group was significantly enriched in
multiple cancer-related Hallmark pathways (Figure 7A), including
Mtorc1 signaling, MYC targets V1/V2, Unfolded protein response,
and Wnt beta catenin signaling (FDR <0.05). GSVA further revealed
distinct pathway characteristics of risk stratification (Figure 7B).
Notably, multiple immune-related pathways were significantly
downregulated in the high-risk group, including IL6-JAK-
STAT3 signaling (t = −4.21, adj.P.Val = 0.002), inflammatory
response (t = −3.97, adj.P.Val = 0.002), and interferon responses

FIGURE 5
WGCNA network analysis reveals key gene modules of epigenetic modification. (A) Hierarchical clustering dendrogram of differential genes and
heatmap of epigenetic score distribution. (B) Identification results of 12 functional modules. (C) Module-trait correlation analysis. Pink module shows
strongest positive correlation. (D) GS-MM correlation analysis of the Pink module. (E) PPI network of differential genes. (F) Functional enrichment
clustering analysis of core genes in the Pink module.
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(gamma: t = −3.55, adj.P.Val = 0.004; alpha: t = −3.22, adj.P.Val =
0.008). Additionally, several critical cancer-associated pathways showed
significant depletion in the high-risk group, including allograft rejection
(t = −4.03, adj.P.Val = 0.002), complement (t = −3.84, adj.P.Val =
0.002), and PI3K-AKT-MTOR signaling (t = −3.34, adj.P.Val = 0.006).
Correlation analysis between risk scores and pathway activities
(Figure 7C) validated these findings.

To assess the clinical prognostic significance of key pathways, we
selected nine most significant signaling pathways for survival analysis
(Figures 7D–L). Kaplan-Meier analysis showed that high activity in
these pathways was significantly associated with better prognosis
(P < 0.05):

• Metabolism-related pathways: Bile acid metabolism (p =
0.037) and Xenobiotic metabolism (p = 0.012).

• Immune-related pathways: Interferon alpha/gamma response
(p = 0.031/p = 0.033) and Allograft rejection (p = 0.042).

• Cell death pathways: Reactive oxygen species pathway (p =
0.016) and Apoptosis (p = 0.016).

• Signal transduction pathways: PI3K-AKT-MTOR signaling
(p = 0.029) and Pancreas beta cells (p = 0.008).

3.7 Tumor microenvironment
characteristic analysis

To better understand the relationship between RSF risk
stratification and tumor microenvironment, we employed a
multi-dimensional analysis strategy to evaluate
microenvironmental differences between high- and low-risk
groups. ESTIMATE algorithm analysis showed that compared to
the high-risk group, the low-risk group had significantly elevated
microenvironment scores: StromalScore (p = 0.00022, Figure 8A),
ImmuneScore (p = 5e-05, Figure 8B), and ESTIMATEScore (p =
1.8e-05, Figure 8C) all showed significant differences.

Immune-related pathway analysis (Figure 8D) revealed
15 signaling pathways with significant differences between high-
and low-risk groups, primarily including:

FIGURE 6
Construction and Validation of RSF Prognostic Prediction Model (A) Performance evaluation heatmap of 37 machine learning algorithms. Color
intensity indicates C-index value, with RSF model showing optimal performance across three cohorts. (B) Importance score ranking of top 10 feature
genes in RSF model, with OLFML2B, ACTB, and C1QB being the three most contributive genes. (C) Time-dependent ROC curves in TCGA training set,
showing extremely high prediction accuracy (AUC>0.997). (D) ROC curves in external TCGA validation set, maintaining good predictive
performance (AUC: 0.795–0.929). (E) ROC curves in GSE21257 validation set, confirming external applicability of the model (AUC: 0.596–0.832).
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• Receptor signaling pathways: BCR/TCR receptor
signaling pathway

• Cell migration-related: Leukocyte transendothelial migration
• Immune response processes: Complement and coagulation
cascade, Natural killer cell mediated cytotoxicity

• Signal transduction: Toll-like receptor signaling pathway,
Cytokine signaling pathway

Further immune cell infiltration analysis using complementary
approaches revealed consistent patterns in the tumor
microenvironment. Initial analysis of 28 immune cell subgroups
(Figure 8E) showed distinct abundance differences between high-
and low-risk groups. These findings were further validated by xCell
analysis (Figures 8F, G), which demonstrated significantly decreased
infiltration levels of multiple myeloid cell populations in the high-
risk group, including dendritic cells (iDC), macrophages (both
M1 and M2 subtypes), and monocytes (all P < 0.05). Notably,
the comprehensive microenvironment and immune scores from
xCell analysis also confirmed lower immune cell infiltration in the
high-risk group, consistent with our ESTIMATE and 28 immune
cell subgroups analysis findings. This convergence of results from
multiple analytical approaches suggests a systematic difference in
immune cell composition between risk groups, characterized by
reduced myeloid cell infiltration in high-risk tumors.

3.8 Drug sensitivity analysis based on risk
stratification

To explore the potential value of the RSF risk stratification
model in guiding individualized treatment, we analyzed drug
sensitivity differences between high- and low-risk groups.
Through comparison of predicted IC50 values, we identified
seven drugs showing significant sensitivity differences
(Figure 9), including traditional chemotherapy drugs
Doxorubicin (anthracycline, p = 0.0167, Figure 9A), Etoposide
(topoisomerase inhibitor, p = 0.00036, Figure 9B), Vinorelbine
(microtubule inhibitor, p = 0.011, Figure 9C), and SN-38
(topoisomerase I inhibitor, p = 0.04, Figure 9D), as well as
targeted therapeutic agents 17-AAG (Hsp90 inhibitor, p =
0.0076, Figure 9E), Sorafenib (multi-target tyrosine kinase
inhibitor, p = 0.041, Figure 9F), and BMS-754807 (IGF-1R/IR
inhibitor, p = 0.02, Figure 9G). Notably, the low-risk group
demonstrated higher sensitivity to most chemotherapy drugs,
particularly showing the most significant responses to Etoposide
and SN-38 (Figures 9B, D). These results provide a theoretical
foundation for RSF risk stratification-based personalized
medication strategies while revealing that tumors with
different molecular characteristics may require differentiated
treatment approaches.

FIGURE 7
Functional Mechanism Analysis of RSF Risk Stratification (A)GSEA analysis showing key pathway enrichment patterns in high-risk group (B)Waterfall
plot of differential pathways revealed by GSVA analysis (C) Correlation heatmap between risk scores and pathway activities (D–L) Kaplan-Meier survival
analysis curves for 9 key pathways.
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3.9 Pan-cancer prognostic value analysis of
the RSF model

To evaluate the applicability of the RSF prognostic model in
other cancer types, we conducted systematic analysis across
19 different cancer types from the TCGA database (Figure 10A).
Results showed that the model demonstrated significant prognostic
value in multiple cancer types, including ACC (Adrenocortical
Carcinoma, HR > 2), GBMLGG (Glioma, HR < 1), and STAD
(Gastric Adenocarcinoma, HR < 1). Further survival analysis
revealed that in ACC, high-risk group patients had significantly
shorter overall survival compared to the low-risk group (p = 0.044,
Figure 10B), while GBMLGG and STAD showed opposite trends,
with high-risk group patients showing better prognosis (GBMLGG:

p < 0.0001, STAD: p = 0.021; Figures 10C, D). This differential
prognostic pattern suggests that the RSF model may capture
common molecular features across different cancer types, but
their biological significance may vary in different tissue contexts.

4 Discussion

4.1 Epigenetic heterogeneity and tumor
progression

Through single-cell epigenetic analysis, our study revealed the
crucial role of epigenetic regulation during OS progression.
Regarding cell fate determination, we observed that variations in

FIGURE 8
Multi-dimensional Analysis of Tumor Microenvironment Characteristics (A–C) Violin plots showing microenvironmental component differences in
ESTIMATE scores (D) Heatmap of immune-related pathway activities (E) Box plots of immune cell infiltration levels. (F) Heatmap showing significantly
different immune cell populations identified by xCell analysis between risk groups. (G) Box plots depicting the abundance of significant immune cell
populations from xCell analysis. *p < 0.05, **p < 0.01, ***p < 0.001.
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epigenetic scores significantly influenced the distribution patterns
across eleven transcriptional subgroups. The high-score group was
predominantly characterized by C1 (25.8%) and C2 (19.5%)
subgroups, while the low-score group was dominated by C1
(42.9%) and C6 (21.2%) subgroups. This distributional disparity
suggests that epigenetic modifications may influence cell
differentiation trajectories through the regulation of specific
transcriptional programs. Notably, pseudotime analysis revealed
that the transition of cells from early C2, C4, and C7 subgroups
to late C9 and C1 subgroups is strictly regulated by epigenetic
modification levels, indicating that epigenetic reprogramming acts
as a “molecular switch” in tumor progression (Sun et al., 2022).

At the cellular communication network level, the high-score
group exhibited more complex and active signaling interaction
patterns. Particularly noteworthy was the intense bidirectional
communication between OS cells and osteoclasts/myeloid cells,
alongside the activation of key immunoregulatory pathways
involving CD74-CD44 and ITGA4-ITGB1. CD74-CD44 signaling
promoted immune cell recruitment and activation, while ITGA4-
ITGB1 facilitated immune cell adhesion and migration within the
tumor microenvironment. In contrast, the cellular communication
network in the low-score group was notably simplified, primarily
limited to restricted interactions between OS cells and myeloid cells.
This likely represents more than mere correlation, suggesting that
epigenetic modifications actively shape the immune
microenvironment through the regulation of these pathways
(Yang et al., 2023). This finding provides new perspectives for
understanding tumor immune escape mechanisms (Rodríguez

et al., 2003) while suggesting that epigenetic interventions
targeting these pathways may hold potential for modulating the
tumor immune microenvironment.

From an evolutionary perspective, epigenetic modifications
demonstrated strong associations with tumor evolution. Our
pseudotime analysis clearly illustrated spatial separation patterns
of cells along evolutionary trajectories, with high-score and low-
score groups tending to occupy distinct evolutionary branches. This
phenomenon suggests that epigenetic modifications may drive
tumor cells along specific evolutionary paths by influencing
dynamic changes in gene expression profiles. Particularly in the
terminal C1 subgroup, we observed significant upregulation of key
genes including SPP1, SMOC1, and MMP23B. Functional
enrichment analysis of these genes further revealed the
involvement of crucial biological processes such as DNA
replication, telomere maintenance, and extracellular matrix
remodeling, potentially representing important mechanisms by
which cells with high epigenetic activity maintain homeostasis
(Budhavarapu et al., 2013; Hakobyan et al., 2024).

4.2 Innovation and clinical translation value
of the prognostic model

Our developed RSF prognostic model demonstrates three
distinctive advantages: First, compared to traditional Cox
proportional hazards models and other machine learning
methods, the RSF model automatically handles non-linear

FIGURE 9
Drug Sensitivity Analysis (A–G) Violin plots showing IC50 value distribution of seven key drugs between high- and low-risk groups. Y-axis represents
predicted IC50 values, with lower IC50 values indicating higher drug sensitivity.
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relationships and higher-order interactions, achieving outstanding
predictive accuracy (C-index of 0.944). Second, the model integrates
epigenetic regulatory features, considering not only gene expression
levels but also dynamic changes in epigenetic modifications,
providing a new dimension for capturing tumor heterogeneity.
Third, the model demonstrates consistent predictive performance
across multiple independent cohorts, particularly maintaining
consistency in predictions at different time points (1-year, 3-year,
and 5-year), a time-dependent predictive characteristic crucial for
clinical decision-making.

In terms of personalized treatment, our study is the first to reveal
the possibility of differentiated treatment strategies based on RSF
risk stratification. Notably, we observed significant differences in
drug sensitivity between high-risk and low-risk groups: the low-risk
group showed higher sensitivity to conventional chemotherapy
agents (such as DNA topoisomerase inhibitors Etoposide and

SN-38), possibly related to their higher cell proliferation activity
and DNA replication dependency. The enhanced sensitivity to
topoisomerase inhibitors in the low-risk group may be attributed
to their more active DNA replication machinery and higher
expression of topoisomerase-related genes, making them more
vulnerable to DNA damage-induced cell death. In contrast, the
high-risk group demonstrated better responses to molecular
targeted drugs (such as Hsp90 inhibitor 17-AAG and multi-
kinase inhibitor Sorafenib), correlating with their activated
specific signaling pathways. For instance, 17-AAG may influence
the stability of multiple epigenetic regulatory factors through
Hsp90 inhibition (Talaei et al., 2019), while Sorafenib, as a multi-
target inhibitor, might affect epigenetic modification processes by
interfering with RAF/MEK/ERK and PI3K/AKT signaling pathways
(Abdelgalil et al., 2019; Ullah et al., 2022; Manning and Toker, 2017).
The superior response to targeted therapies in the high-risk group

FIGURE 10
Pan-cancer Prognostic Prediction Analysis of RSF Model (A) Forest plot of hazard ratios for 19 cancer types, dot size represents -log10 (p-value).
(B–D) Kaplan-Meier survival curves for ACC, GBMLGG, and STAD, including risk group stratification and temporal changes in patient numbers.
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could be explained by their greater dependence on these specific
molecular pathways for survival and proliferation, as evidenced by
their distinct pathway activation signatures and epigenetic profiles.
This differential response pattern suggests that RSF risk scores may
reflect fundamental biological characteristics and signaling pathway
dependencies of tumor cells, which directly determine cellular
sensitivity to drugs with different mechanisms of action.

However, clinical application of drug sensitivity prediction faces
several key challenges: First, can in vitro prediction results accurately
reflect in vivo drug responses, particularly considering factors such
as drug metabolism and bioavailability? Second, given the
complexity of the tumor microenvironment, is prediction based
solely on epigenetic features sufficiently comprehensive? For
example, our observed differences in immune microenvironment
might affect the efficacy of immune checkpoint inhibitors, while the
activation level of angiogenesis-related pathways might influence the
effectiveness of anti-angiogenic drugs. Additionally, metabolic
reprogramming and stress response mechanisms of tumor cells
might affect treatment outcomes through their influence on drug
transport and detoxification. These issues require validation through
prospective clinical studies. Nevertheless, our model provides an
actionable framework for developing personalized treatment plans,
particularly valuable in selecting first-line treatment strategies and
predicting therapeutic responses.

Notably, the core feature genes identified by the model (such as
OLFML2B, ACTB, and C1QB) may serve not only as predictive
markers but also as potential therapeutic targets. Their central
position in the epigenetic regulatory network suggests that
targeted interventions against these molecules might produce
cascade effects, thereby affecting the activity of entire signaling
networks. This finding provides direction for developing new
therapeutic strategies, particularly in considering combination
therapy regimens, where individualized adjustments can be made
based on the expression patterns of these core genes.

4.3 Interaction between immune
microenvironment and epigenetic
regulation

This study reveals complex interactions between epigenetic
features and the immune microenvironment through integrated
analysis. We found that the low-risk group exhibited significantly
elevated immune and stromal scores, a seemingly counterintuitive
phenomenon that yields interesting insights upon deeper analysis:
high epigenetic activity may promote tumor immune evasion by
suppressing immune cell recruitment and activation. Specifically,
GSEA analysis revealed significant activation of MYC and
mTORC1 signaling pathways in the high-risk group, which are
known to reshape the tumor immune microenvironment, suppress
T cell function, and promote myeloid-derived suppressor cell
accumulation (Dhanasekaran et al., 2022; Kim et al., 2017).

Regarding epigenetic modification’s regulation of immune
responses, we observed several key mechanisms. Firstly, CD74-
CD44 signaling pathway activation in the high epigenetic activity
group suggests that epigenetic modifications may influence immune
recognition through antigen presentation regulation. Then,
differential expression of the ITGA4-ITGB1 pathway indicates

potential epigenetic influence on immune cell chemotaxis and
infiltration. Specifically, CD74-CD44 signaling may promote
immune evasion through multiple mechanisms: CD74 can
regulate MHC class II trafficking and antigen loading, while
CD44 engagement can trigger immunosuppressive cytokine
production and regulatory T cell expansion. The ITGA4-ITGB1
pathway activation could facilitate selective immune cell
recruitment, favoring immunosuppressive cell populations like
MDSCs and Tregs while impeding cytotoxic T cell infiltration.
Besides, the immune cell communication network remodeling
observed at the single-cell level may represent a novel immune
evasion mechanism: cells with high epigenetic activity alter immune
cell signaling to weaken the synergistic effects of anti-tumor
immune responses.

These findings suggest new approaches for optimizing
immunotherapy strategies:

1. Epigenetic-immune combination therapy (Liang et al., 2023):
For high-risk patients, epigenetic modulator pretreatment
followed by immunotherapy might achieve better
therapeutic outcomes.

2. Personalized immunotherapy: Patient epigenetic
characteristics could more accurately predict immune
checkpoint inhibitor response, guiding optimal
immunotherapy strategy selection.

3. Microenvironment remodeling: Targeting key epigenetic
regulators might reshape the immunosuppressive
microenvironment, enhancing immunotherapy efficacy.

However, integrating single-cell and TCGA database analyses
revealed an apparently contradictory but enlightening phenomenon:
at the single-cell level, the high epigenetic score group showed more
active immune pathways and complex cell communication
networks, while TCGA cohort analysis showed higher immune
scores and immune cell infiltration in the low-risk group. This
discrepancy may reflect scale-specific epigenetic regulation effects:
single-cell analysis captures microscopic instantaneous states, while
TCGA data reflects macroscopic average states. Further analysis
reveals a consistent pattern of immune suppression in the high-risk
group, characterized by significantly decreased infiltration of various
immune cell populations and downregulation of immune-related
pathways. This comprehensive immune deficiency, rather than
active immune suppression, may create a “cold” tumor
microenvironment that favors tumor progression. The systematic
reduction in both innate (macrophages, dendritic cells) and adaptive
immune components suggests an immune-desert phenotype in
high-risk tumors, which could explain their poor prognosis and
potentially guide immunotherapy strategies.

From a dynamic equilibrium perspective, high immune pathway
activity observed at the single-cell level may represent immediate
stress responses to immune pressure, while low immune infiltration
at the tissue level may be the final effect of this stress response,
suggesting that epigenetic modifications may maintain an immune
microenvironment state favorable for tumor survival through
dynamic regulation. This finding not only explains the scale-
dependent characteristics of epigenetic regulation but also
provides new perspectives for understanding tumor immune
evasion mechanisms.
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4.4 Mechanism discussion for pan-cancer
application

The opposing prognostic significance of epigenetic
modifications across different cancer types likely reflects the
tissue specificity and microenvironment dependency of epigenetic
regulation. In endocrine system tumors (such as ACC), high levels of
epigenetic activity often correlate with dedifferentiation and invasive
phenotypes (Ettaieb et al., 2020), possibly due to endocrine tissues’
high dependency on epigenetic balance. Endocrine cells require
precise epigenetic regulation to maintain their specialized functions
and hormone secretion capabilities; thus, epigenetic imbalance may
directly lead to cellular dysfunction and malignant progression. In
contrast, in nervous system tumors (GBMLGG) and digestive
system tumors (STAD), high epigenetic activity may instead
represent better differentiation states and tissue homeostasis
maintenance capability (Li et al., 2019; Hong et al., 2021).

These differences may stem from the developmental origins and
metabolic characteristics of these tissues: glial cells inherently
possess higher plasticity, where moderate epigenetic activity may
help maintain their normal function; gastric mucosal cells require
continuous renewal and differentiation processes, where higher
epigenetic activity may reflect better tissue homeostasis regulation.

5 Limitation and future perspectives

Although this study revealed significant characteristics of epigenetic
heterogeneity in OS and established an effective prognostic prediction
model, several limitations need to be addressed in future research. First,
the current single-cell analysis faces both technical and sample size
limitations. The technical constraints include potential cell dropout
effects, limited capture of rare cell populations, and computational
challenges in data processing. The small sample size may not fully
capture the complete landscape of epigenetic heterogeneity in OS,
necessitating expanded cohort sizes and integration of multi-omics
data. Second, detailed patient clinical characteristics, including complete
follow-up information and treatment protocols, were not available in
the current database, which limits our ability to conduct comprehensive
clinical correlation analyses. Third, the drug sensitivity predictions are
primarily based on in vitro data, requiring prospective clinical studies
for validation of their translational value. Fourth, the causal relationship
between epigenetic modifications and the immune microenvironment,
as well as the molecular mechanisms underlying opposite prognostic
implications in different cancer types, remains to be fully elucidated.

To address these limitations, future research should focus on: (1)
integrating spatial transcriptomics data to better understand the spatial
heterogeneity of epigenetic modifications while expanding sample sizes
through multi-center collaboration; (2) conducting prospective clinical
cohort studies with standardized data collection to validate the model’s
predictive performance and therapeutic guidance value; (3)
investigating the regulatory mechanisms of epigenetic modifications
on the immune microenvironment through in vitro functional
experiments and animal models; (4) exploring the formation
mechanisms of tissue-specific epigenetic regulatory networks; and
(5) establishing standardized protocols for model implementation
and validation in clinical settings. We are actively addressing several
of these limitations through an ongoing comprehensive clinical cohort

study at our center, which will provide detailed clinical parameters and
treatment outcomes for model validation. These continued efforts will
contribute to further optimization of the prognostic prediction model
and provide theoretical foundations for developing novel therapeutic
strategies.

6 Conclusion

By integrating single-cell sequencing data with epigenetic
regulatory networks, this study systematically revealed the
molecular characteristics of epigenetic heterogeneity in OS and
successfully established a Random Survival Forest-based
prognostic prediction model. Our key findings include: (1)
identification of five major cell types in the OS
microenvironment, with significant epigenetic heterogeneity,
particularly high epigenetic activity in OS cells and osteoclasts;
(2) demonstration through pseudotime analysis that epigenetic
modification levels significantly influence cell fate determination,
with high- and low-score groups showing distinct spatial separation
in evolutionary trajectories, indicating the crucial role of epigenetic
regulation in tumor progression; (3) validation of the RSF model’s
excellent predictive performance across multiple independent
cohorts (internal validation AUC>0.997, external validation
AUC = 0.832–0.929), with broad application potential across
19 different cancer types, particularly showing significant
prognostic value in ACC, GBMLGG, and STAD.

Furthermore, our study systematically revealed the close
association between epigenetic scores and the immune
microenvironment, discovering significantly elevated stromal and
immune scores in the low-risk group, suggesting that epigenetic
modifications may influence disease prognosis through regulation of
the tumor immune microenvironment. Additionally, drug
sensitivity analysis identified seven compounds with potential
therapeutic value, providing new options for risk stratification-
based personalized treatment. These findings not only deepen
our understanding of OS development mechanisms but also
provide new theoretical foundations for clinical therapeutic
decision-making, demonstrating significant translational
medical value.
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