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Introduction: Methotrexate (MTX) is a frequently utilized anti-inflammatory and
anticancer agent. Its potential liver and lung toxicity often limits its clinical
effectiveness. We conducted this study to demonstrate the possible protective
impacts of a natural galectin-3 (Gal-3) inhibitor, modified citrus pectin (MCP),
against MTX-induced liver and lung toxicity and verify the potential signaling
pathways of these suggested effects. In vitro, the cytotoxicity of MCP and its
modulatory effect on MTX cytotoxic efficacy were assessed.

Methods: Four groups of rats were used: control, MTX (40 mg/kg, single
intraperitoneal injection on day 9), MTX + MCP (200 mg/kg/day, orally, for
2 weeks), and MCP alone. MCF7, Nalm6, and JEG3 cell lines were used for
the in vitro cytotoxicity assay.

Results: MCP counteracted liver and lung toxicity evidenced by ameliorating the
markers of liver and lung functions. Moreover, MCP minimized oxidative stress
elicited byMTX in lung and liver tissues, as indicated by reducedmalondialdehyde
levels, elevated levels of reduced glutathione, increased superoxide dismutase
activity, and upregulated Nrf2 protein expression. In hepatic and pulmonary
tissues, MCP downregulated the inflammatory signaling pathway, Gal-3/TLR-
4/NF-κB/TNF-α. MCP pretreatment decreased TGF-β, collagen content, and
cleaved caspase-3 levels. MCP enhanced the cytotoxicity of MTX in
Nalm6 and JEG3 and did not interfere with its cytotoxicity in the MCF7 cell lines.

Discussion: MCP attenuated MTX-induced liver and lung toxicity through
antioxidant, anti-fibrotic, anti-inflammatory, and anti-apoptotic influences, as
demonstrated by the improved histopathological changes induced by MTX in
pulmonary and hepatic tissues. Moreover, it increased MTX cytotoxicity in
different human cell lines.
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1 Introduction

Methotrexate (MTX), a folate antagonist, is a competitive
inhibitor of dihydrofolate reductase which converts dihydrofolate
into tetrahydrofolate required for nucleic acid synthesis (Kremer,
2004; Koźmiński et al., 2020). However, it is used in high doses for
managing various cancers such as acute lymphoblastic leukemia,
osteosarcoma, and breast cancer (Ezhilarasan, 2021). Furthermore,
it is used for gestational choriocarcinoma (Chin, 2023). Low-dose
MTX is used as an anti-inflammatory and immunomodulatory drug
as the first line and centerpiece therapy for rheumatoid arthritis and
as maintenance therapy for Crohn’s disease and psoriasis (Pivovarov
and Zipursky, 2019; Hsieh and Tsai, 2023). Unfortunately, however,
adverse effects associated with MTX use such as gastrointestinal
toxicity, hepatotoxicity, nephrotoxicity, pulmonary toxicity, and
neurotoxicity limit its clinical application (Triantafyllou et al.,
2010; Mahmoud et al., 2017b). Steatohepatitis, fibrosis, as well as
cirrhosis, are forms of liver toxicity triggered by MTX (Romão et al.,
2014). Among MTX-treated patients, the prevalence of hepatic
fibrosis and cirrhosis was up to fifty percent and twenty-six
percent, respectively (Roghani et al., 2020). Meanwhile, MTX’s
acute hypersensitivity pneumonitis and interstitial lung
inflammation which usually appear within the first year of
therapy occur in approximately 8% of patients with an estimated
mortality of 13%–17% (Romão et al., 2014). Moreover, lung fibrosis
can also occur with MTX (Juge et al., 2021).

The pathogenesis of MTX-induced hepatotoxicity and lung
damage is not well clarified. However, it was documented that
oxidative stress is the critical factor, as it can initiate an
inflammatory response and oxidative DNA damage, inducing
apoptotic cell death (Mahmoud et al., 2017b; Chauhan et al.,
2020; Ozmen et al., 2024). Furthermore, the profibrotic effects of
MTX were identified in both liver and lung tissues (Mohamed et al.,
2019). MTX activates fibroblasts, which then induce extracellular
matrix synthesis, leading to tissue fibrosis and organ dysfunction
(Fayez et al., 2018). That is why finding therapeutic agents that can
be used with MTX to reduce the incidence and severity of its
associated adverse effects is sought after.

Galectin-3 (Gal-3) is a multifunctional mammalian β-
galactoside-binding lectin that is expressed on the cell surface,
nucleus, cytoplasm, and extracellularly. It is mainly secreted by
macrophages and participates in numerous biological events, for
example, cell adhesion, migration, angiogenesis, and apoptosis
(Nangia-Makker et al., 2000; Henderson et al., 2008; Li et al.,
2014). Its key role in tissue inflammation and fibrosis was
documented. Gal-3 activation in different fibrotic models in
addition to abnormally elevated levels in patients who have liver,
lung, or heart fibrosis have been reported (Nishi et al., 2007; Bayes-
Genis et al., 2014; Sciacchitano et al., 2018).

Modified citrus pectin (MCP) is obtained from citrus fruit as a
water-soluble dietary fiber. It is a natural inhibitor of Gal-3 by
binding directly to its carbohydrate recognition domain (Glinsky
and Raz, 2009; Gunning et al., 2009). Recently, MCP gained
popularity due to its anti-cancer (Glinsky and Raz, 2009; Leclere
et al., 2013; Garrido et al., 2024), anti-inflammatory, and antifibrotic
effects (Kolatsi-Joannou et al., 2011; Abu-Elsaad and Elkashef, 2016;
Li et al., 2018; Marín-Royo et al., 2018; Xu et al., 2020; Cui et al.,
2022; Bouffette et al., 2023) in several diseases. It showed

hepatoprotective effects against carbon tetrachloride (CCl4)-
caused liver fibrosis in rats through antioxidant and Gal-3
blockade-mediated antifibrotic and antiapoptotic effects (Abu-
Elsaad and Elkashef, 2016). Nevertheless, the involvement of Gal-
3 inhibition in MTX-elicited liver and lung illnesses is still unclear.

For the first time, our goal was to discover the role of Gal-3 in
the pathogenesis of MTX-induced hepatotoxicity and lung
toxicity and the possible protective effects of its natural
inhibitor, MCP. We also explored the potential signaling
pathways that could explain these suggested preservative
effects. Finally, different human cancer cell lines were used
here to analyze the impact of MCP on the cytotoxic effect of
MTX as an in vitro part of the study.

2 Materials and methods

2.1 Drugs

Methotrexate was procured from the Austrian pharmaceutical
company EBEWE Pharma, Ges.m.b.H. Nfg. KG. MCP (Pectasol)
was obtained from EcoNugenics, Santa Rosa, CA, U.S.A.

2.2 Animals

2 Here, we procured adult male albino Wistar rats (180–220 g)
from Helwan Farm in Cairo, Egypt, owned by Vacsera Company.
Animals had free access to water and food throughout the 2 weeks of
the acclimatization period and the experiment period. They were
subjected to a 25°C ± 2 temperature and 12:12 h of dark/light cycles.
With the approval number: MPEC-230506, the present study
protocol complied with the regulations set out by the Research
Ethics Committee at the Faculty of Pharmacy at Minia University
in Egypt.

2.3 Experimental design

After randomly dividing the rats into four groups of eight, they
were administered the following dosage schedule:

1. Control group: Rats were given distilled water (MCP vehicle)
orally for 14 days and a single intraperitoneal saline (MTX
Diluent) injection on day 9.

2. MCP group: Rats were administered MCP (200 mg/kg/day,
orally for 14 days) and a single intraperitoneal saline injection
on day 9.

3. MTX group: Rats received distilled water orally for 14 days and
a single intraperitoneal MTX injection (40 mg/kg) on day 9.

4. MTX + MCP group: Rats were given MCP (200 mg/kg/day,
orally for 14 days) and a single intraperitoneal MTX injection
(40 mg/kg) on day 9.

The dosage and timing for MCP were determined based on our
preliminary studies and prior pharmacological investigation (Li
et al., 2021) which showing its protective impact against organ
damage. Meanwhile, the MTX dose was chosen to be sufficient to
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elicit hepatic and pulmonary injury in male rats (Letertre et al., 2020;
Dogra et al., 2021; Matouk et al., 2022; Matouk et al., 2023). MTX
injection on day 9 was done based on prior research (Matouk et al.,
2022). Furthermore, our preliminary study results indicated that
MCP showed hepatic and pulmonary protective effects when given
200 mg/kg/day for 8 days before giving MTX on day 9.

2.4 Blood and tissue sampling

Rats were put under anesthesia 24 h following the final dose. A
cardiac puncture was made to take samples of blood in clean
centrifuge tubes and then centrifuged at 3,500 rpm for 10 min to
get sera which were used freshly for liver function assessment. The
liver and lungs were rapidly isolated and weighed after drying on
filter paper. Relative liver and lung weights were calculated (Relative
organ weight = ((organ weight/body weight) × 100) (Jakkula et al.,
2000; Wan et al., 2021). Immunohistochemical and
histopathological examinations were conducted on parts of the
lower lobe of the right lung and the medial lobe of the liver after
fixing them in 10% formalin. Before the biochemical analysis, the
residual liver parts and left lung were kept at −80°C after being
quickly frozen in liquid nitrogen.

2.5 Evaluation of microvascular permeability
and lung edema

Rapidly after blood collection by cardiac puncture, we obtained
the bronchoalveolar lavage fluid (BALF) through tracheal intubation
and lavage of both lungs with 2 mL saline. The BALF samples
underwent centrifugation at 1,000 rpm at 4°C for 10 min (Rajizadeh
et al., 2024). The supernatant was used to measure the BALF total
protein spectrophotometrically using a commercially available kit
(BioMed, Cairo, Egypt) according to Kingsley (1939). Meanwhile,
total leukocyte count was detected by Mindray Bc-20 s Auto
Hematology analyzer after resuspending the cell pellet in 0.5 mL
phosphate buffer saline (PBS) (Zhao et al., 2021). To assess the wet/
dry (W/D) weight ratio as an indicator of lung edema, the right
upper lobe weight was determined alone after lung separation, wet
weight. Then 24 h of drying was done in an oven at 80°C, dry weight
(Zhang et al., 2021).

2.6 Determination of liver function markers

The serum alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) levels were assessed using commercial
kits purchased from Biodiagnostic, Cairo, Egypt as described by
Reitman and Frankel (1957).

2.7 Liver and lung histopathology

After fixation of the liver and lung sections in 10% formalin, they
were embedded in paraffin blocks after dehydration with graded
ethanol series, cleared with xylene, and then sectioned into 4–6 µm
thickness slices. For histopathological examination,

deparaffinization and hematoxylin and eosin (H&E) staining of
the produced sections were performed following Bancroft and
Gamble (2008). The damage was evaluated according to the
scoring system by Plaa et al. (1994) in the liver and by Eldh
et al. (2012) in the lung. Moreover, Masson’s trichrome staining
was done to evaluate organ fibrosis. Fibrosis was assessed semi-
quantitatively in ×200 magnification. The area percentage (%) of
tissue with fibrotic changes on Masson’s trichrome-stained sections
was evaluated using ImageJ software (Van De Vlekkert et al., 2020).

2.8 Assessment of oxidative stress
parameters in liver and lung homogenates

Lipid peroxidation in hepatic and lung homogenates was
analyzed as thiobarbituric acid reactive species (TBARS) named
malondialdehyde (MDA) employing the methodology established
by Buege and Aust (1978). Reduced glutathione (GSH) content and
superoxide dismutase (SOD) activity have been investigated as
markers of endogenous antioxidant defense. Ellman (1959)
methodology was used to measure GSH content. Whereas, SOD
activity was assessed following Marklund (1985).

2.9 Assessment of Nrf2, TLR-4, NF-κB, and
c-caspase-3 using western blot analysis

Hepatic and pulmonary tissues were homogenized using a
protease inhibitor cocktail (Biospes, China) and tris lysis buffer
for 30 min at 4°C following the method described by Ali et al. (2018).
After that, centrifugation at 10,000 rpm for 10 min at 4°C was done
to remove residual tissue. Total protein concentrations were assessed
using the Biuret method Wang et al. (1996). Utilizing 10% sodium
dodecyl sulfate-polyacrylamide gel electrophoresis, equivalent
quantities of protein, 30 μg of total protein for each lane,
underwent electrophoresis and then transferred to a polyvinyl
difluoride membrane (Millipore, USA) applying semi-dry transfer
methods (Towbin et al., 1979). To block the membranes, they were
incubated for 60 min at room temperature with 5% non-fat milk in
tris-buffered saline Tween 20.

Next, the membranes were incubated with the primary
antibodies for the target proteins overnight at 4°C; toll-like
receptor-4 (TLR4) (dilution 1:1,000) (Santa Cruz
Biotechnology, Inc., sc-293072), nuclear factor erythroid 2-
related factor 2 (Nrf2) (dilution 1:500), nuclear factor-kappa B
(NF-κB p65) (dilution 1:500), cleaved caspase-3 (c-caspase-3)
(dilution 1:500) (Chongqing Biospes Co., Ltd., China, YPA1865,
BBP1066, and YPA2210, respectively) and β-actin (dilution 1:
3,000) (Elabscience Biotechnology, Inc., E-AB-20031). The
membranes were mixed with an alkaline phosphatase-
conjugated secondary antibody (dilution 1:5000) for 1 hour
obtained from Biospes, China. Band visualization was achieved
by BCIP/NBT substrate detection Kit obtained from Genemed
Biotechnologies, United States of America. Analysis of the
produced bands compared to the internal control β-actin
bands was conducted utilizing ImageJ® software (National
Institutes of Health, Bethesda, Maryland, United States
of America).
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2.10 Assessment of TNF-α using enzyme-
linked immunoassay (ELISA) technique

A rat TNF-α ELISA kit was used to assess tumor necrosis factor-
alpha (TNF-α). It employs the sandwich ELISA principle, wherein
samples were added to precoated microwells with TNF-α specific
antibody. The microplate was then incubated with avidin-
horseradish peroxidase (HRP) conjugate and biotinylated
antibody. Substrate solution was added, causing a blue color. A
stop solution was used to end the reaction, turning blue to yellow. At
450 nm, the optical density was measured which is directly
proportional to the TNF-α concentration.

2.11 Assessment of Gal-3 and TGF-β using
immunohistochemistry

After deparaffinizing and rehydrating the liver and lung
tissue sections, they were soaked in hydrogen peroxide and
washed in buffer to inhibit peroxidase activity. Non-specific
background staining was blocked using Ultra V block.
Antibodies targeting Gal-3 (Novocastra laboratories, UK, clone
9c4) and transforming growth factor-beta (TGF-β1) (Chongqing
Biospes Co., Ltd., China, YPA1196) were incubated with liver and
lung tissue sections exactly as directed by the manufacturer.
Afterward, they were incubated at room temperature for
10 min with a primary antibody enhancer and then for
15 min with HRP polymer. Hematoxylin was used as a
counterstain to contrast the chromogen color (Shan et al., 1999).

Immunoreactivity was assessed semi-quantitatively in high
microscopic power fields (X400). The area percentage (%) of
positively stained cells was evaluated by using Fiji ImageJ
software (Schindelin et al., 2012).

2.12 In vitro analysis

Cell culture was done at Vacsera-cell culture laboratory, Cairo,
Egypt. The cytotoxicity assay was evaluated on the tested drugs using
breast cancer (MCF7), acute lymphoblastic leukemia (Nalm6), and
choriocarcinoma (JEG3) cell lines. The American Type Culture
Collection in Manassas, Virginia, United States of America was
the source of all the cell lines. These cells were grown in RPMI
1640 media provided with 10% fetal bovine serum, 1% penicillin,
and 1% streptomycin, and then incubated with 5% CO2 at 37°C.

2.13 Assessment of the cytotoxic effect of
MCP and MTX using MTT assay

An in vitro toxicological assay kit (Sigma Aldrich, Inc., M-5655)
which is MTT-based was utilized to assess MTX, MCP, and their
combination cytotoxicity on MCF7, Nalm6, and JEG3 cell lines. The
cancer cells were seeded into a 96-well plate containing 100 μL of the
culture media at 1 × 104 cells/mL density and incubated for 1 day.
Afterwards, the culture media was exchanged with 100 μL of a new
media with different concentrations of the tested drugs; MTX and
MCP (0.4, 1.6, 6.3, 25, 100 μg/mL) and vehicle control, 0.01%

dimethyl sulfoxide (DMSO), for 48 h. Each well of the plates was
incubated for another 4 hours with 20 μL of MTT in 200 μL of
media. Eliza microplate reader (BDR206, Bioline Technology, India)
was used for optical density determination, with a 570 nm
absorbance. Each concentration of each drug was done in
triplicate wells for assessment of IC50 (the concentration
required to inhibit 50% of cell growth) of MTX and MCP. After
the assessment of the IC50 of each drug for each cell line, another
experiment was carried out. The IC50 of MTX was added in
combination with that of MCP to the three types of cancer cells
for measuring the percentage of cell viability of each cell line to study
the effect of MCP on MTX cytotoxicity.

2.14 Statistical analysis

Results representation was done as mean ± standard error of the
mean (SEM). One-way analysis of variance (ANOVA) was
performed to figure out the statistically significant differences.
Thereafter, the comparison between the means of all groups was
done using the Tukey-Kramer post-analysis test. A P-value below
0.05 was deemed significant by using Version 9.00 for Windows of
GraphPad Prism® (GraphPad Software, United States of America,
https://www.graphpad.com/).

3 Results

3.1 Effect of MTX and MCP on relative liver
weight and liver function biomarkers

Following the MTX intoxication, the relative liver weight was
significantly (P < 0.05) elevated compared to the control group
while the MTX-induced hepatomegaly was significantly (P <
0.05) alleviated by coadministration of 200 mg/kg of MCP
(Table 1). Moreover, MTX led to a significant (P < 0.05)
elevation in serum levels of ALT and AST in comparison to
the control group. In contrast to the MTX group, MCP treatment
significantly (P < 0.05) mitigated the increased serum AST and
ALT levels (Table 1).

3.2 Effect of MTX and MCP on relative lung
weight, lung W/D weight ratio, BALF total
protein, and leukocyte count

In contrast to the control group, the relative lung weight and
lung W/D weight ratio, indicators of pulmonary edema, were
significantly (P < 0.05) increased in the MTX group. Of interest,
both relative lung weight and lungW/Dweight ratio were attenuated
significantly (P < 0.05) with MCP treatment compared to the MTX
group (Table 2).

Table 2 illustrates that the MTX intoxication produced a
significant (P < 0.05) rise in total leukocyte count and total
protein content in BALF, markers of inflammation, compared to
the control group. Co-treatment with MCP significantly (P < 0.05)
decreased both total leukocyte counts and total protein content in
BALF compared to the MTX alone.
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3.3 Effect of MCP on histopathological
changes in hepatic and pulmonary tissues
induced by MTX

Regarding H&E staining, Figure 1A demonstrates hepatic tissue
sections of the control and MCP groups at which hepatic lobules

exhibit normal histological architecture. Well-organized hepatic
cords with polygonal hepatocytes interconnected in anastomosing
plates, with borders facing either the neighboring hepatocytes or the
sinusoids were also observed (grade 0).

Conversely, the hepatic tissue sections of the MTX group
displayed disorganized hepatic cords. Kupffer cells hyperplasia

TABLE 1 Effect of MTX and MCP on relative liver weight and liver function biomarkers.

Groups Relative liver weight Serum ALT (U/mL) Serum AST (U/mL)

Control 2.69 ± 0.06 79.51 ± 1.33 73.25 ± 4.07

MCP 2.82 ± 0.01 80.44 ± 1.04 87.69 ± 4.17

MTX 3.20 ± 0.02* 106.70 ± 2.69* 188.50 ± 3.73*

MTX + MCP 2.79 ± 0.14# 67.70 ± 4.23# 107.20 ± 5.52#

Data are expressed as mean ± SEM., Significant differences compared to the control and MTX, groups were denoted by * and #, respectively, at P < 0.05. MTX: methotrexate; MCP: modified

citrus pectin; AST: aspartate transaminase; ALT: alanine transaminase.

TABLE 2 Effect of MTX and MCP on relative lung weight, lung W/D weight ratio, BALF total protein, and leukocyte count.

Groups Relative lung weight
(mg/g)

Lung W/D weight
ratio

Total protein (g/dL) in
BALF

Total leukocytes in
BALF (*103)

Control 6.21 ± 0.16 6.92 ± 0.18 1.43 ± 0.08 2.76 ± 0.11

MCP 5.93 ± 0.35 6.85 ± 0.19 1.53 ± 0.09 3.02 ± 0.06

MTX 8.56 ± 0.40* 8.97 ± 0.31* 3.28 ± 0.04* 4.57 ± 0.14*

MTX + MCP 6.14 ± 0.19# 7.11 ± 0.28# 1.50 ± 0.08# 2.74 ± 0.12#

Data are expressed as mean ± SEM., Significant differences compared to the control and MTX, groups were denoted by * and #, respectively, at P < 0.05. MTX: methotrexate; MCP: modified

citrus pectin; BALF: bronchoalveolar lavage fluid; W/D weight ratio: Wet/Dry weight ratio.

FIGURE 1
Hematoxylin and eosin staining of liver and lung tissue sections. (A) Representative photomicrographs of hepatic tissue sections (X200) (scale bar =
20 µm). Liver sections of the control and MCP groups show an obvious central hepatic vein and well-organized hepatic cords (arrow). The liver section
from the MTX group shows hepatocyte apoptosis and nuclear pyknosis (arrow), and the liver section from the MTX + MCP group exhibits narrowed liver
sinusoids and hepatocyte ballooning degeneration (arrow). (B) Representative photomicrographs of lung tissue sections (X200) (scale bar = 20 µm).
Pulmonary sections of the control and MCP groups show the normal structure of the alveoli (arrow). The lung tissue section of the MTX group displays
thickened alveolar walls and focal collapsed areas with inflammatory cell infiltration of the interstitium (arrow). The lung tissue section of the MTX +MCP
group shows mild thickened inter-alveolar septa and focal emphysematous regions (arrow). MTX: Methotrexate; MCP: Modified citrus pectin.
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and narrowed hepatic sinusoids were observed. Moreover,
hepatocyte ballooning degeneration, accompanied by nuclear
pyknosis, and apoptosis, manifested as intense scattered
eosinophilic bodies throughout the hepatic lobules, were also
indicated (grade IV). The hepatic tissue sections of MTX-
intoxicated animals treated with MCP showed mild hepatocyte
swelling having granular cytoplasm and central vesiculated nuclei
with peripheral chromatin condensation. Kupffer cells hyperplasia
and narrowed hepatic sinusoids were also observed (grade I).

Regarding lung sections, the lung tissues obtained from the
control and MCP groups revealed lung lobules with normal
histological architecture. The alveoli were delineated with inter-
alveolar septa and blood capillaries with tiny connective tissue
surrounding these blood vessels (score 0). In the MTX group, the
lung tissue exhibited widespread inflammatory cellular infiltration,
primarily macrophages and lymphocytes, congested blood
capillaries, and markedly thickened inter-alveolar septa.

Moreover, bronchial goblet cells were absent. Numerous areas of
focal collapse accompanied by the formation of giant alveoli were
also noticed (score 4) as shown in Figure 1B.

Contrarily, the pulmonary tissue sections of the MTX + MCP
group demonstrated moderate inflammatory cell infiltration. Mild
thickened inter-alveolar septa with numerous focal emphysematous
regions (score 2) were also observed (Figure 1B).

ConcerningMasson’s trichrome staining, the liver tissue sections of
the control and MCP groups exhibited normal morphology of the
portal triad consisting of a branch of the portal vein, hepatic artery, and
bile duct supported by delicate fibrous tissue. Conversely, the liver tissue
section of the MTX group showed fibrous tissue proliferation with bile
duct hyperplasia. On the other hand, the liver tissue section of theMTX
+MCP group revealed a normal distribution of the fibrous tissue with a
dilated portal vein (Figure 2A). Semi-quantitative analysis of liver
fibrosis exhibited a significant (P < 0.05) elevation in fibrosis in the
MTX group compared to the control group. On the other hand, the

FIGURE 2
Masson’s trichrome staining of liver and lung tissue sections. (A) Representative photomicrographs of hepatic tissue sections (X200). Liver sections
of the control and MCP groups show normal portal triad morphology with delicate fibrous tissue (arrow). The liver section from the MTX group shows
fibrous tissue proliferation with hyperplasia of the bile duct (arrow), and the liver section from the MTX + MCP group exhibits the normal histological
structure of portal triad (arrow). (B) Representative photomicrographs of lung tissue sections (X200). Pulmonary sections of the control and MCP
groups show delicate fibers in some alveolar and bronchial walls (arrow). The lung tissue section of the MTX group shows a peribronchial fibrotic
thickening arrow (arrow). The lung tissue section of the MTX + MCP group shows gentle fibrotic changes of the alveolar and bronchial wall (arrow). (C):
The bar chart represents the semi-quantitative analysis of the area percentage of liver tissue with fibrotic changes on Masson’s trichrome-stained liver
sections of control, MCP, MTX, and MTX +MCP groups. (D): The bar chart represents the semi-quantitative analysis of the area percentage of lung tissue
with fibrotic changes onMasson’s trichrome-stained lung sections of control, MCP, MTX, andMTX+MCP groups. Data are represented asmean ± SEM. *,
# refer to significant differences compared to the control and MTX groups, respectively, at P < 0.05. MTX: Methotrexate; MCP: Modified citrus pectin.
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MTX +MCP group had a significant (P < 0.05) decline in liver fibrosis
compared to the MTX group (Figure 2C).

Masson’s trichrome-stained lung tissue sections of the control and
MCP groups revealed delicate fibers in some alveolar and bronchial
walls. In contrast, theMTX group showed fibrotic thickening of alveolar
septa, peribronchial, and periarteriolar regions. Contrarily, the lung
tissue section of MTX + MCP displayed gentle fibrotic changes in the
alveolar and bronchial walls (Figure 2B). Semi-quantitative analysis of
lung fibrosis revealed a significant (P < 0.05) increase in lung fibrosis in
theMTX group compared to the control group. On the other hand, the
MTX+MCP group had a significant (P < 0.05) decrease in lung fibrosis
compared to the MTX group (Figure 2D).

3.4 Effect of MCP on MTX-caused oxidative
stress in hepatic and pulmonary tissues

Methotrexate administration resulted in a significant (P < 0.05)
elevation in MDA levels in hepatic and pulmonary tissues compared

to the control group (Figures 3A, D). On the contrary, co-
administration with MCP significantly (P < 0.05) reduced the
MDA levels.

Consistent withMDA findings, a significant (P < 0.05) reduction
in SOD activity and GSH content in both liver (Figures 3B, C) and
lung tissues (Figures 3E, F) was detected with MTX administration
compared to the control group. The impairment in the endogenous
antioxidant capacity was significantly (P < 0.05) hindered by pre-
conditioning with MCP.

3.5 Effect of MTX and MCP on
Nrf2 expression in hepatic and
pulmonary tissues

Compared to the control group, MTX significantly (P < 0.05)
diminished Nrf2 protein expression in liver and lung tissues, while
co-treatment with MCP significantly (P < 0.05) prevented this
decrease induced by MTX, as shown in Figure 4.

FIGURE 3
Effect of MCP on MTX-caused oxidative stress in liver and lung tissues. (A) Liver MDA level, (B) Liver SOD activity, (C) Liver GSH level, (D) Lung MDA
level, (E) Lung SOD activity, and (F) Lung GSH levels. Data are expressed as mean ± SEM. Significant differences compared to the control and MTX groups
were denoted by * and #, respectively, at P < 0.05. MTX: Methotrexate; MCP: Modified citrus pectin; MDA:malondialdehyde; GSH: Reduced glutathione;
SOD: Superoxide dismutase.
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3.6 Effect of MTX and MCP on Gal-3
immunoreactivity in liver and lung tissues

As illustrated in Figure 5, Gal-3 expression of the control and
MCP groups revealed no staining affinity in either liver or lung
tissues. On the other hand, MTX showed moderate staining
intensity in both investigated tissues. Interestingly, MTX + MCP
demonstrated weak staining for Gal-3 expression.

3.7 Effect of MTX andMCP on TLR-4 and NF-
κB expression in liver and lung tissues

Figure 6 demonstrates howMTX and its combination withMCP
affected TLR-4 and NF-κB protein expression, a downstream
regulator of TLR-4, in liver and lung tissues. Relative to the
control group, MTX resulted in a significant (P < 0.05)
overexpression of TLR-4 and NF-κB in both tissues. In contrast
to the MTX group, cotreatment with MCP significantly (P < 0.05)
inhibited their increased expression.

3.8 Effect ofMTX andMCPon TNF-α levels in
liver and lung tissues

As shown in Figures 7A, B, a significant rise of TNF-α levels in both
hepatic and lung tissues was observed in the MTX-intoxicated group
compared to the control group. Nevertheless, MCP treatment
significantly (P < 0.05) halted this increase compared to theMTX group.

3.9 Effect of MTX and MCP on TGF-β
immunoreactivity in liver and lung tissues

No staining affinity to TGF-βwas observed in either lung or liver
specimens of the control andMCP groups. However, strong staining
intensity in these tissues was revealed in the MTX group. It is worth
noticing that MCP administration for 14 days significantly
attenuated TGF-β expression in both examined tissues relative to
the MTX group (Figure 8).

3.10 Effect of MTX and MCP on c-caspase-
3 expression in liver and lung tissues

As demonstrated in Figure 9, MTX led to a significant (P < 0.05)
upregulation in the expression of c-caspase-3 in hepatic and
lung tissues compared to the control group. However, MCP
cotreatment significantly (P < 0.05) downregulated MTX-induced
overexpression of c-caspase-3 in examined tissues.

3.11 Effect of MTX, MCP, and their
combination on the viability of MCF7,
Nalm6, and JEG3 cells

MTX and MCP decreased the cancer cell viability of all cell lines
in a concentration-dependent way. Cancer cell viability attenuation
was more pronounced in MTX (Figure 10). IC50 values of MTX and
MCP were 0.485 and 27.154 μg/mL in MCF7 cells, 0.266 and

FIGURE 4
Western blot analysis of the effect of MTX and MCP on Nrf2 expression in hepatic and pulmonary tissues. (A, C) represent the Nrf2 bands of control,
MCP, MTX, and MTX + MCP groups of liver and lung tissues, respectively. (B, D) represent the bar charts of semi-quantitative densitometric analysis of
Nrf2 bands in both liver and lung tissues, respectively. Data are expressed as mean ± SEM. Significant differences compared to the control and MTX
groups were denoted by * and #, respectively, at P < 0.05. MTX: Methotrexate; MCP: Modified citrus pectin; Nrf2: Nuclear factor erythroid 2-related
factor 2.
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101.0 μg/mL in Nalm6 cells, 0.793 and 114.473 μg/mL in JEG3 cells,
respectively. The IC50 values of MTX andMCP in each cell line were
used to demonstrate whether MCP may affect MTX cytotoxicity. As
displayed in Figure 10, the percent cell viability was 50% in all cell
lines in the presence of the corresponding IC50 of MTX only. Upon
combination withMCP (IC50), the % viability was significantly (P <
0.05) reduced in both Nalm6 and JEG3 cells while there was no
significant change in MCF7 cells compared to MTX (IC50) alone.
Moreover, the % viability of Nalm6 and JEG3 cells was significantly
(P < 0.05) reduced in the MTX + MCP combination compared to
MCP alone. There was no significant change in the % viability of
MCF7 cells with the MTX + MCP combination compared to the
MCP alone.

4 Discussion

Despite being a commonly prescribed chemotherapeutic and
immunosuppressant agent (Pivovarov and Zipursky, 2019;

Koźmiński et al., 2020), MTX use is limited due to several
adverse effects such as liver and lung toxicity which represent a
major clinical challenge (Kim et al., 2009; Ezhilarasan, 2021). For the
first time, we reported the potential protective effects of MCP against
MTX-elicited liver and lung toxicity in rats as evidenced by
improving markers of liver and lung functions and restoring
normal liver and lung structure. Mitigating oxidative stress,
inflammation, fibrosis, and apoptosis might also contribute to
MCP’s therapeutic impact.

Consistent with previous experimental and clinical studies (Ali
et al., 2014; Mori et al., 2018; Cao et al., 2019; Karlsson Sundbaum et al.,
2019; Roghani et al., 2020), MTX-induced hepatotoxicity was presented
through a pronounced elevation in serum ALT and AST levels. Besides
the damaged liver histological structure; disorganized hepatic cords,
hepatocyte ballooning degeneration with nuclear pyknosis, and hepatic
apoptosis (Mahmoud et al., 2017a; Al Kury et al., 2020). The elevated
serum liver enzymes may be ascribed to hepatocellular degeneration,
loss of hepatocytes structural integrity, and leak of their contents into
the blood (McGill, 2016; Rizk et al., 2018).

FIGURE 5
Effect of MTX and MCP on Gal-3 immunoreactivity in liver and lung tissues. (A) Photomicrographs representing Gal-3 immunoreactivity in rat liver
tissues (X400). (B) Photomicrographs representing Gal-3 immunoreactivity in rat lung tissues (X400). (C): The bar chart represents the semi-quantitative
analysis of the area percentage of Gal-3 positively stained cells in liver tissues of control, MCP, MTX, and MTX +MCP groups. (D) The bar chart represents
the semi-quantitative analysis of the area percentage of Gal-3 positively stained cells in lung tissues of control, MCP, MTX, and MTX + MCP groups.
Data are expressed as mean ± SEM. Significant differences compared to the control and MTX groups were denoted by * and #, respectively, at P < 0.05.
MTX: Methotrexate; MCP: Modified citrus pectin; Gal-3: galectin-3.
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The MCP hepatoprotective effect against MTX was verified here by
the decline in the elevated serum ALT and AST levels alongside the
improved liver architecture. As reported before (Kelleni et al., 2016;
Kalantari et al., 2019), MTX led to hepatomegaly in rats which was
attenuated, here, by MCP. MCP hepatoprotective influence was reported
in CCl4-induced liver fibrosis in rats (Abu-Elsaad and Elkashef, 2016).

Regarding MTX-caused pulmonary toxicity, the relative lung
weight and lung W/D weight ratio in addition to total protein

content and leukocyte count in BALF were notably elevated in the
MTX group which are features of acute lung injury (Abraham, 2003;
Poitout-Belissent et al., 2021) consistent with previous studies
(Rajizadeh et al., 2023; Rajizadeh et al., 2024). The BALF analysis
of patients with MTX-induced pneumonitis revealed lymphocytosis
and elevated neutrophil counts (D’Elia, 2014). Lymphocyte
proliferation and hypersensitivity pneumonitis triggered by
alveolitis are linked to cellular immune response and cytokine

FIGURE 6
Western blot analysis of the effect of MTX andMCP on TLR-4 and NF-κB expression in liver and lung tissues. (A, D) represent TLR-4 and NF-κB bands
of control, MCP, MTX, and MTX + MCP groups of liver and lung tissues, respectively. (B, C) represent the bar chart of semi-quantitative densitometric
analysis of hepatic TLR-4 and NF-κB bands, respectively. (E, F) represent the bar chart of semi-quantitative densitometric analysis of pulmonary TLR-4
andNF-κB, respectively. Data are expressed asmean ± SEM. Significant differences compared to the control andMTX groups were denoted by * and
#, respectively, at P < 0.05. MTX: Methotrexate; MCP: Modified citrus pectin; NF-κB: Nuclear factor-kappa B; TLR-4: Toll-like receptor-4.
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FIGURE 7
Effect of MTX and MCP on TNF-α levels in liver and lung tissues. (A): Liver TNF-α levels. (B): Lung TNF-α levels. Data are expressed as mean ± SEM.
Significant differences compared to the control and MTX groups were denoted by * and #, respectively, at P < 0.05. MTX: Methotrexate; MCP: Modified
citrus pectin; TNF-α: Tumor necrosis factor-alpha.

FIGURE 8
Effect of MTX and MCP on TGF-β immunoreactivity in liver and lung tissues. (A) Photomicrographs representing TGF-β immunoreactivity in rat liver
tissues (X400). (B) Photomicrographs representing TGF-β immunoreactivity in rat lung tissues (X400). (C) The bar chart represents the semi-quantitative
analysis of area percentage (%) of TGF-β positively stained cells in hepatic tissues of control, MCP, MTX, and MTX + MCP groups. (D) The bar chart
represents the semi-quantitative analysis of the area percentage (%) of TGF-β positively stained cells in lung tissues of control, MCP, MTX, andMTX +
MCP groups. Data are expressed asmean ± SEM. Significant differences compared to the control and MTX groups were denoted by * and #, respectively,
at P < 0.05. MTX: Methotrexate; MCP: Modified citrus pectin; TGF-β: Transforming growth factor-beta.
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release (Kim et al., 2009). The histopathological findings showed
lymphocytes and macrophage infiltration, disrupted lung
architecture, thickened inter-alveolar septa, and capillary
congestion as reported before (Arpag et al., 2018; Ozmen
et al., 2024).

Here, MCP ameliorated lung edema indices, BALF total protein
content, and leukocyte count, and improved the histological
architecture, suggesting its protective effects against MTX-
induced lung toxicity.

Despite no obvious mechanism illustrating MTX-induced organ
dysfunction, accumulation of MTX polyglutamate inside
hepatocytes, the metabolized form of MTX, has been reported as
the key factor of MTX-induced hepatotoxicity. It decreases the folic
acid reservoir which consequently induces several pathological
events associated with oxidative stress, inflammation, apoptosis,
and fibrosis (Hawwa et al., 2015; Yamamoto et al., 2016).

The impairment of the tissue oxidant/antioxidant balance
remains the hallmark cause of MTX-induced organ toxicity
resulting in oxidative damage (Gao and Horie, 2002; Huang
et al., 2005; Chang et al., 2013). This oxidative damage of protein
and DNA in addition to lipid peroxidation causes disarrangement of
the lipid bilayer membrane, deactivation of membrane-bound
receptors and enzymes, and, in turn, enhances tissue permeability
(Halliwell and Gutteridge, 2015; Malayeri et al., 2022) which can
explain the elevated liver enzymes with MTX (Dalaklioglu
et al., 2013).

The pathogenesis of MTX-induced hepatotoxicity (Cetin et al.,
2008; Çakır et al., 2011; Pınar et al., 2018; Kalantar et al., 2019) and
lung toxicity (Kurt et al., 2015; Saygin et al., 2016; Arpag et al., 2018)
is known to involve oxidative stress. An elevation in MDA levels, a
marker of lipid peroxidation, and a decrease in GSH levels as well as

inhibition of SOD antioxidant activity, in liver and lung tissues were
demonstrated in the MTX group consistent with earlier studies
(Demiryilmaz et al., 2012; Mohamed et al., 2019; Hussein et al., 2020;
Goudarzi et al., 2021; Zaki et al., 2021; Parthasarathy and Prince,
2023; Abdalhameid et al., 2024). GSH reduction was explained
previously by MTX inhibitory effect on cytosolic reduced
nicotinamide adenine dinucleotide phosphate (NADPH) (Vardi
et al., 2010) which is required for GSH maintenance by
glutathione reductase (Ali et al., 2017).

Conversely, MCP significantly rebalanced the oxidative status in
both tissues, indicating its antioxidant properties. The antioxidant
activity of MCP was revealed in various animal studies including
diabetes-associated cognitive impairment (Yin et al., 2020), CCl4-
induced liver fibrosis (Abu-Elsaad and Elkashef, 2016), doxorubicin-
induced cardiotoxicity (Tian et al., 2020), diabetes-induced
nephropathy (Mahmoud et al., 2024), diet-induced obesity
(Marín-Royo et al., 2018), and in vitro model of mouse
monocytes (Ramachandran et al., 2017).

The master and emerging regulator of cellular antioxidant
defense, Nrf2, induces the transcription of antioxidant enzymes
and enzymes involved in GSH and NADPH regeneration (Ma,
2013). Although Nrf2 is activated during oxidative stress, the
generation of huge amounts of reactive oxygen species (ROS)
suppresses its expression (Mahmoud et al., 2017a; Mahmoud
et al., 2017b). In agreement with other studies (Mukherjee et al.,
2013; Bu et al., 2018; Fayez et al., 2018; Kawami et al., 2022), MTX
greatly downregulated Nrf2 expression in hepatic and pulmonary
tissues parallel to the findings of MDA, SOD, and GSH. Conversely,
MCP prevented Nrf2 downregulation which, subsequently, reduced
oxidative stress and improved antioxidant defense. These
antioxidant effects of MCP can play a significant role in its

FIGURE 9
Western blot analysis of the effect of MTX and MCP on c-caspase-3 expression in liver and lung tissues. (A, C) represent c-caspase-3 bands of
control, MCP, MTX, and MTX + MCP groups of the liver and lung tissues, respectively. (B, D) represent the bar chart of semi-quantitative densitometric
analysis for both liver and lung tissues, respectively. Data are expressed as mean ± SEM. Significant differences compared to the control and MTX groups
were denoted by * and #, respectively, at P < 0.05. MTX: Methotrexate; MCP: Modified citrus pectin; C-caspase-3: Cleaved caspase-3.
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protective effects against MTX-induced hepatic and
pulmonary toxicity.

Galectin-3 is pivotal in fibrosis and inflammation (Mackinnon
et al., 2012; An et al., 2021; Slack et al., 2021; Boutin et al., 2022; Lima
et al., 2023). As a proinflammatory protein, Gal-3 initiates and
amplifies acute inflammatory response through the recruitment of
macrophages to the injury site and perpetuating a chronic
inflammatory state through the induction of proinflammatory
pathways (Bouffette et al., 2023). The embroilment of
inflammation was documented in the pathogenesis of MTX-
induced liver (Ali et al., 2017; Mahmoud et al., 2017a; Al Kury
et al., 2020) and lung (Mammadov et al., 2019; Zaki et al., 2021;
Ozmen et al., 2024) toxicity. This study aimed to demonstrate the
significance of Gal-3, as a therapeutic target, in MTX-induced liver
and lung toxicity, which has yet to be explored, using MCP as a
natural Gal-3 inhibitor.

Galectin-3 was reported as an endogenous paracrine ligand and
activator of TLR-4 inducing an inflammatory response (Burguillos
et al., 2015). TLR-4, a member of the pattern recognition receptors,
is an important sensor of the innate immune response that can
interact with exogenous molecules such as lipopolysaccharide (LPS)
of Gram-negative bacteria which are recognized as pathogen-
associated molecular patterns. Additionally, it can be triggered by
endogenous molecules of damaged or necrotic cells such as heat
shock protein after oxidative stress which are recognized as damage-

associated molecular patterns (Lu et al., 2008; Gill et al., 2010). This
interaction eventually leads to an inflammatory cascade through the
activation of NF-κB and elevated transcription of proinflammatory
cytokines such as TNF-α (Miller et al., 2005).

Recently, the contribution of the TLR-4/NF-κB signaling
pathway in MTX-induced liver toxicity was documented (Matouk
et al., 2022; Manna et al., 2023). To the best of our knowledge, its
importance in MTX-induced lung toxicity has yet to be established.
Here, high expression of Gal-3 along with TLR-4/NF-κB/TNF-α
signaling pathway upregulation was observed in the hepatic and
lung tissues of the MTX group. The activation of TLR-4/NF-κB
signaling in LPS-caused injury in chondrocytes mediated the
inflammatory and proapoptotic actions of Gal-3 while Gal-3
silence resulted in apoptosis inhibition through inhibition of the
inflammatory response (Wang et al., 2019).

Crosstalk between TLR-4 and oxidative stress has also been
reported. ROS may lead to TLR-4 activation which, in turn, may
increase ROS production through direct interaction between
NADPH oxidase and TLR-4 (Gill et al., 2010). Reports discussing
relation between NF-κB and Nrf2 revealed that Nrf2 is a negative
regulator of NF-κB signaling dampening NF-κB activation as well as
limiting the transcription and overproduction of proinflammatory
cytokines (Ahmed et al., 2017). Moreover, Nrf2 activation may
mitigate TLR-4-induced inflammation under pathological
conditions (Huang et al., 2014; Marinovic et al., 2015). This

FIGURE 10
Effect of MTX, MCP, and their combination on the viability of MCF7, Nalm6, and JEG3 at predetermined concentrations. (A–C) representing the
relation between % cell viability of each cancer cell line and different concentrations of MTX and MCP for determination of IC50 of each drug. (D–F)
representing the % cell viability of each cell line under the influence of vehicle, IC50 of MTX, IC50 of MCP, and a combination of IC50 of both MTX and
MCP. Data are expressed as the mean value of % cell viability± SEM. Significant differences compared to the control, MTX, and MCP groups were
denoted by *, #, and $, respectively, at P < 0.05. MTX: Methotrexate; MCP: Modified citrus pectin.
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crosstalk may also be a result of the Nrf2/NF-κB relationship
(Wardyn et al., 2015; Mohan and Gupta, 2018). In a model of
ischemic-reperfusion liver injury, it was stated that induction of
Nrf2 attenuated TLR-4-induced liver inflammation and ameliorated
oxidative stress (Huang et al., 2014).

We found that the MCP-induced blockade of Gal-3 protected
against MTX-induced liver and lung toxicity by suppressing TLR-4
and its downstream regulator, NF- κB. Hence, one of the critical
mediators of inflammation and apoptosis was decreased, TNF-α.
Previous studies indicated that the MCP-induced Gal-3 inhibition
exhibited anti-inflammatory effects in animal models analyzing
erectile dysfunction (Wang et al., 2024), cerebral-ischemia
reperfusion injury (Cui et al., 2022), and myocardial fibrosis (Xu
et al., 2020) via the downregulation TLR-4/NF-κB signaling
pathway. Collectively, the inhibition of the TLR-4/NF-κB/TNF-α
signaling by MCP could be explained by both inhibition of Gal-3
and activation of Nrf2. The anti-inflammatory effects of MCP can
explain, to a certain extent, its protective effects against
MTX toxicity.

Unresolved inflammation and abnormal tissue repair can result
in tissue fibrosis (Bouffette et al., 2023). As a profibrotic protein, Gal-
3 is identified as a biomarker for the progression of fibrosis (Li et al.,
2014) and its expression was increased in the bleomycin-caused
pulmonary fibrosis mouse model and patients with idiopathic
pulmonary fibrosis (Nishi et al., 2007; Mackinnon et al., 2012) or
liver fibrosis (Mackinnon et al., 2023). MTX-elicited fibrosis in the
liver (Taskin et al., 2017; Cao et al., 2019; Ahmad et al., 2021) and
lung (Saygin et al., 2016; Abdalhameid et al., 2024; Manie et al.,
2024) tissues were identified. In this work, MTX led to elevated
expression of TGF-β, a profibrotic cytokine. TGF-β stimulation
eventually activates tissue fibroblasts into active myofibroblasts
leading to extracellular matrix synthesis (Biernacka et al., 2011;
Meng et al., 2016). TGF-β is significant in MTX-induced pulmonary
fibrosis which is at least partially mediated by epithelial-
mesenchymal transition (EMT) at which myofibroblasts originate
from the injured epithelial cells (Ohbayashi et al., 2014). Moreover,
MTX-induced downregulation and reduced activity of Nrf-2 are also
involved in MTX-caused EMT in alveolar epithelial cell lines
(Kawami et al., 2022). Gal-3 has an important role in the
regulation of EMT induction (Mackinnon et al., 2012).

Gal-3 is mandatory for TGF-β-induced myofibroblast activation
and extracellular matrix production (Henderson et al., 2006). Gal-3
has recently been shown to activate TGF-β in human pulmonary
fibroblasts and its inhibition can prevent TGF-β activation (Calver
et al., 2024). Moreover, it was identified that the pharmacological
inhibition of Gal-3 in the NAFLD mice model downregulated TGF-
β (Lee et al., 2022). MCP counteracted the profibrotic effects of Gal-3
in different disease models (Kolatsi-Joannou et al., 2011; Calvier
et al., 2013; Martínez-Martínez et al., 2015; Vergaro et al., 2016; Li
et al., 2018; Ibarrola et al., 2019; Yin et al., 2020). Consistent with
previously mentioned findings, MCP-induced Gal-3 inhibition
downregulated hepatic and pulmonary TGF-β in MTX-treated
rats. So, the inhibition of the fibrotic Gal-3/TGF-β pathway by
MCP can protect against MTX-induced liver and lung fibrosis.

Hepatic and pulmonary fibrosis induced by MTX were
additionally confirmed by Masson’s trichrome staining which
showed the proliferation of fibrous tissue, as previously reported
(Tag, 2015; Mohamed et al., 2019; Abdalhameid et al., 2024).

However, MCP treatment decreased collagen deposition in both
liver and lung tissues in line with the results of Gal-3 and TGF-β.
Similarly, MCP decreased collagen content demonstrated by
Masson’s trichrome staining in the cisplatin-induced
nephrotoxicity model (Li et al., 2018).

Several studies reported that the induction of apoptosis may
mediate MTX-induced liver (Mahmoud et al., 2017a; Khafaga and
El-Sayed, 2018; Türk et al., 2022) and lung (Kurt et al., 2015; Abosrea
et al., 2023; Ozmen et al., 2024) damage. Consistent with previous
reports (Ali et al., 2014; Rajizadeh et al., 2024), MTX caused
c-caspase-3 overexpression in both examined tissues which can
be related to the elevated levels of ROS and proinflammatory
cytokines (Simon et al., 2000; Jaeschke, 2011). It is worth
mentioning that Gal-3 may have a function in regulating
apoptosis. It may act as an antiapoptotic factor due to its
sequence homology to B-cell lymphoma 2 (Bcl-2), an apoptosis
suppressor (Yang et al., 1996). However, a previous study showed
that extracellular Gal-3 acts as a proapoptotic factor triggering
apoptosis in activated T-cells leading to mitochondrial apoptosis
involving the release of cytochrome c and activation of caspase-3
(Fukumori et al., 2003). In the present, MCP showed antiapoptotic
effects through downregulating c-caspase-3 which may result from
the Gal-3 inhibition, anti-inflammatory and antioxidant influences
of MCP parallel to earlier studies reporting the antiapoptotic
properties of MCP (Abu-Elsaad and Elkashef, 2016; Li et al.,
2018; Tian et al., 2020; Mahmoud et al., 2024).

Galectin-3 has a tumor-promoting effect in different tumors
(Eliaz and Raz, 2019). It promotes cancer cell resistance to
chemotherapeutic agents acting as a potent inhibitor of the
intrinsic apoptosis pathway (Nakahara et al., 2005; Fukumori
et al., 2007; Navarro et al., 2020). Several previous reports have
shown that MCP, through Gal-3 inhibition, modulates multiple
rate-limiting steps of cancer metastasis (Glinsky and Raz, 2009; Eliaz
and Raz, 2019). The anticancer activity of MCP was demonstrated
before such as in the colon (Liu et al., 2008; Wu et al., 2018), prostate
(Yan and Katz, 2010), ovarian (Hossein et al., 2013), and breast
(Garrido et al., 2024) cancers. According to these findings, MCPmay
be used as a natural chemosensitizer with chemotherapeutic agents
(Chauhan et al., 2005; Johnson et al., 2007). Accordingly, our
findings of the MTT cell viability assay showed that both MTX
and MCP significantly reduced, in a concentration-dependent way,
the cell viability of MCF7, Nalm6, and JEG3 at which the expression
of Gal-3 in these cell lines was previously documented (Simone et al.,
2014; Jovanović et al., 2024; Li et al., 2024). Moreover, combining
MCP (IC50) with MTX (IC50) enhanced MTX cytotoxicity efficacy
by decreasing cell viability by less than 50% compared to MTX alone
in Nalm6 and JEG3 cells. The MCP-induced inhibition of Gal-3
could demonstrate this.

In conclusion, this study demonstrates that MCP protects
against MTX-caused hepatic and pulmonary toxicity through
anti-inflammatory, antiapoptotic, antifibrotic, and antioxidant
properties. The antioxidant effects are evidenced by the
upregulation of Nrf2 expression, a decrease in MDA levels, and
an increase in SOD activity and GSH levels. Moreover, MCP
downregulated the inflammatory signaling pathway Gal-3/TLR-4/
NF-κB pathway. Additionally, MCP decreased c-caspase-3, TGF-β,
and collagen levels in liver and lung tissues. These effects were
reflected in the improved liver and lung functional markers and
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histological structure. Moreover, the cytotoxicity of MTX was
enhanced by MCP in different human cell lines. A limitation of
the study is the necessity for in vitro and further in vivo studies to
investigate additional protective mechanistic pathways of MCP
against MTX-induced hepatic and pulmonary toxicity.

The study outcomes are significant clinically where MTX is
commonly prescribed. As a natural product, MCP can be combined
with MTX treatment protocols to decrease the incidence and
severity of its associated adverse effects thus enhancing the
patient’s outcome. Clinical trials are required before practical
application to assess efficacy, safety, appropriate dosage, and time
required for pretreatment to offer its protective effects.
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