![Man ultramarathon runner in the mountains he trains at sunset](https://d2csxpduxe849s.cloudfront.net/media/E32629C6-9347-4F84-81FEAEF7BFA342B3/0B4B1380-42EB-4FD5-9D7E2DBC603E79F8/webimage-C4875379-1478-416F-B03DF68FE3D8DBB5.png)
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
REVIEW article
Front. Pharmacol.
Sec. Experimental Pharmacology and Drug Discovery
Volume 16 - 2025 | doi: 10.3389/fphar.2025.1525210
This article is part of the Research Topic Harnessing Marine Natural Products for Innovative Drug Discovery and Global Health Solutions View all 3 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Manzamine A (MA), a bioactive compound derived from the marine sponge Haliclona sp., shows considerable therapeutic potential, particularly in the treatment of various cancer types. Extracted with acetone and purified through chromatography, MA exhibits a bioavailability of 20.6% when administered orally in rats, underscoring its feasibility for therapeutic use. This compound disrupts key cellular mechanisms essential for cancer progression, including microtubule dynamics and DNA replication enzymes, demonstrating strong anti-proliferative effects against multiple cancer cell lines while sparing normal cells. Additionally, network pharmacology and molecular docking studies reveal MA's interactions with important targets related to lung cancer progression, such as EGFR and SRC, bolstering its potential as a novel anti-lung cancer agent. Pathway analyses further indicate that MA influences critical signaling pathways involved in tumor growth and metastasis. Given the urgent need for effective treatments against drug-resistant cancers and the limited toxicity profile of MA, further exploration of its pharmacological benefits and mechanism could pave the way for new therapeutic strategies in lung cancer.
Keywords: Manzamine A, lung cancer, Network Pharmacology, molecular docking, EGFR, src
Received: 09 Nov 2024; Accepted: 11 Feb 2025.
Copyright: © 2025 Su, Zhu, Bai, Cao and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Shaohui Wang, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.