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Computational drug repositioning, serving as an effective alternative to traditional
drug discovery plays a key role in optimizing drug development. This approach
can accelerate the development of new therapeutic options while reducing costs
and mitigating risks. In this study, we propose a novel deep learning-based
framework KGRDR containing multi-similarity integration and knowledge
graph learning to predict potential drug-disease interactions. Specifically, a
graph regularized approach is applied to integrate multiple drug and disease
similarity information, which can effectively eliminate noise data and obtain
integrated similarity features of drugs and diseases. Then, topological feature
representations of drugs and diseases are learned from constructed biomedical
knowledge graphs (KGs) which encompasses known drug-related and disease-
related interactions. Next, the similarity features and topological features are
fused by utilizing an attention-based feature fusionmethod. Finally, drug-disease
associations are predicted using the graph convolutional network. Experimental
results demonstrate that KGRDR achieves better performance when compared
with the state-of-the-art drug-disease predictionmethods. Moreover, case study
results further validate the effectiveness of KGRDR in predicting novel drug-
disease interactions.
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1 Introduction

The traditional drug development (R&D) process is extremely expensive, lengthy,
complex, and risky (Chong and Sullivan, 2007). According to a recent study (Chan et al.,
2019), introducing a new drug to the market involves multiple steps, typically costs over
2 billion USD, and takes an average of 12 years. Effectively improving the success rate of
R&D and reducing the expensive workload of the verification procedure has become an
urgent challenge for researchers (Wang et al., 2023). Drug repositioning is an approach to
finding new therapeutic potential for existing drugs that have already been approved by the
Food and Drug Administration (FDA) for the treatment of diseases (Novac, 2013). This
innovative strategy has many advantages, such as reducing drug risk, shortening clinical
evaluation cycle, enhancing cost-effectiveness, and improving efficiency (Pushpakom et al.,
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2019; Luo et al., 2021). In recent years, drug repositioning has been
widely applied in disease and related therapeutic areas, including
anticancer drug discovery (Ye et al., 2014), identification of novel
therapies for orphan and rare diseases (Setoain et al., 2015),
overcoming of drug resistance (Younis et al., 2015) and
advancement of personalized medicine (Li and Jones, 2012).
These successful applications have shown that drug repositioning
is increasingly becoming an attractive proposition (Lotfi Shahreza
et al., 2018).

Many previous studies of computational drug repositioning
mainly utlized drug and disease similarity information to predict
potential drug-disease associations (Wang et al., 2019; Zhang et al.,
2018; Luo et al., 2018). However, most of these methods typically
used a single type of similarity information, which can lead to
various data quality issues, such as missing information, sparse data
and insufficient generalization ability. Based on various biomedical
information, multiple drug similarities and disease similarities can
be calculated (Huang et al., 2021). These similarities can be
integrated to enhance the feature representation of drugs and
diseases in multiple dimensions (Peng et al., 2021). In recent
years, many methods have been proposed to integrate multiple
similarity information to improve the performance of drug-disease
interaction prediction. These integration methods primarily use two
main schemes including linear-based and nonlinear-based strategies
to handle multiple similarities.

The similarity integration methods based on the first strategy
train the prediction model by jointly learning linear combination of
multiple similarities. AVE (Nascimento et al., 2016) was the most
intuitive linear approach that simply averaged multiple similarity
networks by assigning the same weight to each network.
Hilbert–Schmidt Independence Criterion (HSIC) (Ding et al.,
2020) applied the HSIC metric to achieve the optimal
combination of different similarity networks. This method
utilized multi-kernel learning to assign weights to each similarity
network, thereby maximizing the dependency on the ideal similarity
network. Local Interaction Consistency (LIC) (Liu and Tsoumakas,
2021) introduced the concept of local balance, which refers to the
proportion of similar drugs or diseases with the same drug-disease
interaction. This method improves the prediction performance by
assigning higher weights to similarity networks with better local
balance. Liu et al. (2023) proposed a fine-grained selective similarity
integration method (FGS), which further used a similarity selection
step based on LIC to filter out noise information with finer
granularity. However, these linear-based similarity integration
methods can’t capture complex relations among these networks
effectively.

Integration methods using the second strategy regard each
similarity network as a graph and exploit the structure of the
graph to find complex nonlinear relations between network
nodes. These integration methods can be divided into two
categories: (1) methods using SNF (Wang et al., 2014), and (2)
methods using matrix joint decomposition strategies. SNF used a
nonlinear approach based on message-passing theory and updated
each similarity network iteratively to make it more similar to the
others, eventually converging to a single network. Recently several
works have extended SNF in different ways to propose novel
integration approaches. For example, considering that the
Euclidean distance metric used in SNF suffers from the curse of

dimensionality (Rozza et al., 2012), HSNF (Hierarchical SNF) (Liu
and Shang, 2018) designed a hierarchical processing by applying the
SNFmethod to different feature subsets multiple times. This method
aims to reduce the noise and redundant information of high-
dimensional data, thereby improving the quality of the fused
similarity network. Although HSNF performs better than SNF on
multiple datasets, it has a higher computational cost due to the
iteration of SNF. Affinity Network Fusion (ANF) (Ma and Zhang,
2017) used affinity matrices to represent the degree of association
between networks from different data sources and reduced the
computational cost of SNF by simplifying the iterative integration
process into a more straightforward one-step random walk
approach. Considering the redundancy and noise problems in
multi-similarity networks, several methods have been proposed to
improve SNF. For example, similarity selection step is adopted to
remove network noise in several integration methods (Olayan et al.,
2018; Thafar et al., 2020). The Similarity Kernel Fusion algorithm
(SKF) (Jiang et al., 2019) used the kernel functions to construct the
kernel matrix of each similarity network and adjusted its weight
according to the contribution of each kernel matrix to the target task,
thereby increasing the weight of the similarity kernel with lower
noise and improving the model’s performance. The association-
signal-annotation boosted similarity network fusion (ab-SNF)
method (Ruan et al., 2019) introduced the concept of associated
signals and aimed to improve SNF by using a weighted distance
measurement to emphasize important signal features while
minimizing the impact of noisy data. The weight was measured
using the paired t-test method, which calculates the weight ratio by
comparing the negative sample with the adjacent normal sample at
the feature.

Some studies employed joint matrix decomposition to
differentiate shared information from network-specific
information across various datasets and identify the consistency
of multiple networks (Žitnik et al., 2015; Žitnik et al., 2013; Zheng
et al., 2013). Recently, Cho et al. proposed a method for multi-
similarity networks integration, named Mashup (MU) (Cho et al.,
2015; 2016; Wang et al., 2015). This method combines random walk
with multi-view factorization and provides a fruitful integration
framework. Zhang et al. (2022b) developed a multi-similarity
integration method, EnMUGR, that incorporates graph
regularization. EnMUGR can effectively address noise and
redundancy in multi-similarity networks.

In addition to using similarity information as feature
representations of drugs and diseases, drug repositioning
methods can also use the associations between drugs and other
related biomedical entities (such as genes, diseases, and pathways) to
learn feature representations, thereby more accurately predicting
potential drug-disease association information (Zhang et al., 2023;
Zhang et al., 2024). By constructing a knowledge graph that contains
drugs and other related entities, feature representations of drugs and
diseases can be learned, which include the relationships and
contextual information between these entities. Domingo-
Fernández et al. (2022) proposed a knowledge graph causal
reasoning model (RPath) for drug discovery, which uses drug
perturbation and disease-specific transcriptome features to help
identify potential drug candidates for specific diseases by
reasoning on causal paths in a knowledge graph (KG). Zhang
et al. (2022a) combined drug chemical structures and biomedical
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knowledge graphs (KGs) to propose a meta-path-based graph
representation learning model for drug-disease association
(DDA) prediction, namely, RLFDDA. This model constructs a
heterogeneous network by integrating DDA, disease-protein
associations, and drug-protein associations, and adopts a meta-
path random walk strategy to learn the latent representations of
drugs and diseases. Han et al. (2023) proposed a multi-channel
feature fusion model for multi-typed DDIs prediction, which
employs a multi-channel feature fusion module to fuse drug
chemical structure features, drug pairs’ extra label features, and
KG features of drugs. This approach effectively alleviates the
problem of feature redundancy and noise from KG.

In light of the above discussion, we proposed a novel
computational framework for drug repositioning based on graph
regularized integration and knowledge graph embedding. First, in
order to address the problem of incomplete entity information
caused by using only one source of data, we employ a graph
regularized integration method with a denoised diffusion module
to fuse multiple similarity information of drugs and diseases, thereby
calculating the common attribute feature representation of drugs
and diseases. Then we utilize knowledge graph embedding methods
to learn global topological feature representations of drug and
disease entities. Finally, we fuse these two learned feature
representations by iAFF and feed them into a graph
convolutional network prediction model to identify potential
therapeutic indications for drugs.

The major contributions of this study are summarized
as follows.

• This study proposed a novel framework KGRDR, which
integrates a fusion algorithm based on graph regularization
and knowledge graph embedding to identify potential
indications for existing drugs, providing valuable insights to
promote drug repositioning.

• The KGRDR framework utilized a graph regularized method
to effectively address noise and redundancy in multi-
similarity networks.

• An iterative attention feature fusion method is utilized to
combine similarity feature information with the structural
feature information derived from knowledge graph learning.

2 Materials and methods

2.1 Notations and brief review of KGRDR

Similarity matrices, denoted by {S(u)}uu�1, are calculated based on
various biomedical data sources for drug pairs or disease pairs.
S(u)r ∈ RNr×Nr are drug pairs similarity matrices, where Nr is the
number of drug nodes; S(u)d ∈ RNd×Nd are disease pairs similarity
matrices, where Nd is the number of disease nodes; element s(u)ij

represent the similarity score between nodes i and j in the uth

network; {S(v)}vv�1 denotes the similarity matrices selected from
{S(u)}uu�1 to reduce network redundancy; {~S(v)}vv�1 denotes the
denoised similarity matrices by further denoised diffusion;
X ∈ RN×D denotes common attribute feature representation
learned by joint decomposition with graph regularization,
Y ∈ RN×D denoted topological feature representation learned by

feature extraction based on KG, and Z ∈ RN×D denotes the feature
representation fused by iAFF.

As illustrated in Figure 1, the proposed framework KGRDRmainly
consists of four steps, including multi-similarity integration based on
graph regularization, feature extraction based on KG, feature fusion
based on iAFF, and drug-disease interaction prediction based on GCN.
In the first step, a graph regularized integration method is used to fuse
and compute common attribute feature representation X ∈ RN×D for
multiple denoised similarity networks {~S(v)}vv�1. In the second step,
knowledge graph embedding is used to extract global topological feature
representation Y ∈ RN×D of drug and disease entities. In the third step,
an iterative attention feature fusion method iAFF is used to effectively
integrate the attribute feature representation X and topological feature
representation Y. In the fourth step, the fused drug and disease feature
vectors Z ∈ RN×D are fed into the GCN model to predict new drug-
disease interactions.

2.2 Multi-similarity integration based on
graph regularization

Considering that noise and redundant information in the multi-
similarity networks significantly affect the model’s prediction
performance, a graph regularized integration approach (Zhang
et al., 2022b) is used to denoise and fuse the multi-similarity
information of drugs and diseases. This method primarily
consists of denoised diffusion and joint decomposition. The
denoised diffusion module is used to denoise multiple similarity
networks, while the joint decomposition module fuses the denoised
networks. Additionally, to eliminate similarity networks with
minimal information and excessive redundancy, a similarity
selection operation is employed to pre-screen the similarity
matrices before the graph regularized integration step.

2.2.1 Drug and disease similarity data
The pairwise similarity data of drug-related and disease-related

entities used in this study are obtained from SND (Jarada et al.,
2021) and SCMFDD_S (Zhang et al., 2018) datasets. SND includes
ten drug-related similarity data, fourteen disease-related similarity
data, and drug-disease interaction data. SCMFDD_S contains five
drug-related similarity data, one disease-related similarity data, and
drug-disease interaction data. The pairwise similarity values
between drugs and diseases range from 0 to 1.

In addition to the above similarity data, we also calculate
Gaussian interaction profile kernel similarity of drugs and
diseases based on known drug-disease interaction information
Van Laarhoven et al. (2011). Drug r is represented by a binary
feature vector f(r), where the absence or presence of a disease
interaction is encoded by 0 or 1, respectively. Similarly, Disease d is
represented by a binary feature vector g(d), where the absence or
presence of a drug interaction is encoded by 0 or 1, respectively. The
profile similarity values for drug pairs and disease pairs were
calculated as shown in Equations 1, 2.

Sr GIP( ) r1, r2( ) � exp
−γnr‖f r1( ) − f r2( )‖2

∑nr
i�1

|f ri( )|2
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (1)
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Sd GIP( ) d1, d2( ) � exp
−γnd‖g d1( ) − g d2( )‖2

∑nd
j�1

|g dj( )|2
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2)

where the parameter γ controls the kernel bandwidth, nr and nd are
the total number of drugs and diseases, |f(ri)| is the number of

diseases that interact with drug ri, |g(dj)| is the number of drugs
that interact with disease dj. Here, γ was simply set to 1 as indicated
by Van Laarhoven et al. (2011).

2.2.2 Similarity selection
The quality, richness and correlation of drug-related and

disease-related similarity matrices vary considerably (Jarada et al.,

FIGURE 1
The workflow of the proposed KGRDR.
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2021). Data inconsistency and redundancy can introduce noise. This
study adopted an effective method, introduced by Olayan et al.
(2018), to select the most informative and less redundant drug and
disease similarity subset. The heuristic similarity selection process
consists of four parts: calculating the average entropy of similarity
matrices, ranking the matrices according to their average entropy
values, calculating the similarity measure between similarity
matrices from different data sources, and eliminating redundant
similarity matrices.

In this study, we use the calculated profile similarity and similarities
from SND and SCMFDD_S datasets to perform the similarity selection.
The similarity selection step extracts a subset {S(v)}vv�1 of the similarity
matrices that is both highly informative and minimally redundant, V
denotes the number of similarity matrix.

2.2.3 Diffusion to denoise matrices
Some noise may still exist in the extracted similarity matrices. To

address this problem, we apply denoised diffusion (Wang et al.,
2018) to further reduce the noise in the similarity matrices {S(v)}vv�1
obtained by similarity selection. The denoised similarity matrix
{~S(v)}vv�1 is computed as Equation 3.

~S
v( ) � 1 − α( )U v( ) Σ I − αΣ2( )−1( ) U v( )( )−1 (3)

where ~S
(v) ∈ RN×N represents the vth denoised similarity matrix of size

N × N, α ∈ (0, 1) is a hyperparameter that increases the strength of
self-similarity, U(v) is the matrix with eigenvectors of S(v) as its
columns, I is the N × N identity matrix and ∑ is a diagonal
matrix with eigenvalues of S(v) as its entries. Through the above
iterative process, denoised matrix ~S

(v)
can be computed for each

similarity matrix, which is used in the next joint decomposition step.

2.2.4 Joint decomposition with graph
regularization

In order to fuse the denoised similarity matrices in {~S(v)}vv�1, we
employ a graph regularized integration method (Zhang et al.,
2022b), which combines joint decomposition (Cho et al., 2016)
with graph regularization to learn a common attribute feature
representation X ∈ RN×D from denoised similarity matrix subsets
{~S(v)}vv�1.

The joint decomposition method can analyze multiple networks
uniformly, capture the inconsistencies between networks, and explore
the correlations between networks. Specifically, for the denoised
similarity subset {~S(v)}vv�1, the common feature matrix X is used to
represent the common components between networks, and the specific
feature matrix W(v) is used to represent the specific components for
network v. Each denoised matrix ~S

(v)
is approximated by a

reconstruction matrix Ŝ
(v)

with Ŝ
(v) � sof tmax(XTW(v)). The

approximation error of ~S
(v)

and Ŝ
(v)

is measured by the
Kullback–Leibler (KL) divergence and described as Equation 4.

Lappr � ∑V
v�1

KL ~S
v( )‖Ŝ v( )( )

� 1
N

∑V
v�1

∑N
i,j�1

~s v( )
ij log ~s v( )

ij

− 1
N

∑V
]�1

∑N
i,j�1

~s ]( )
ij xT

i w
]( )

j − log ∑N
j′�1

exp xT
i w

]( )
j′{ }⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

(4)

in which xi are column vectors ofX, representing a common feature
vector of node i in the vth network, and w(v)

j are column vectors of
W(v), representing a specific feature vector of node j in the
vth network.

Moreover, to ensure that the common feature X can accurately
represent the refined structural information from {~S(v)}vv�1, a graph
Laplacian regularization term Lreg is introduced on X. Specifically,
the consistency of all node pairs is defined as Equation 5.

Lreg � ∑V
v�1

∑N
i,j�1

‖xi − xj‖2~s v( )
ij

� ∑V
]�1

Tr X~D
]( )
XT( ) − Tr X~S

]( )
XT( )[ ]

� ∑V
v�1

Tr X~L
v( )
XT( )

(5)

in which ~D
(v)

denotes the diagonal degree matrix of ~S
(v)

with ~L
(v) �

~D
(v) − ~S

(v)
is the graph Laplacian matrix and Tr(·) denotes the trace

of a matrix.
The objective function is described as Equation 6.

min
~W

v( ){ }V
v�1 ,X

L � Lappr + Lreg

� ∑V
v�1

KL ~S v( )‖Ŝ v( )( ) + λTr X ~L v( )
XT( )[ ] (6)

where λ≥ 0 is the regularization parameter, X is regarded as the
common attribute feature representation shared across all similarity
matrices. The dimension of the feature representation X directly
affects the integration capacity of multi-similarity networks and the
performance of downstream prediction tasks. To investigate its
effect on model predictions, we subsequently conducted a
parameter sensitivity analysis on the feature
representation dimension.

2.3 Feature extraction based on KG

In this study, we used the Drug Repurposing Knowledge Graph
(DRKG) (Ioannidis et al., 2020) to learn topological features of drugs
and diseases. DRKG is specifically designed for drug repurposing
and includes entities such as drugs, diseases, and genes, along with
their relationships. Knowledge graph embedding maps these entities
and relationships into a low-dimensional vector space, preserving
both structural and semantic information. In this study, we applied
the ComplEx knowledge graph (KG) embedding method (Trouillon
et al., 2016) to learn embedding representations.

2.3.1 Knowledge graph construction
DRKG included 97,238 entities belonging to 13 entity types and

5,874,261 triples belonging to 107 edge types. The types of entities
and relationships included in the knowledge graph are as follows.

• Entities: drugs, diseases, genes, compounds, etc.
• Relations: drug-target, gene-disease, drug-disease, etc.

DRKG is composed of entity-relation-entity triples. For
example, the triple (DB00512, Compound:Disease, C0157749)

Frontiers in Pharmacology frontiersin.org05

Luo et al. 10.3389/fphar.2025.1525029

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1525029


indicates that drug DB00512 interacts with disease C0157749. In the
knowledge graph, entities are represented as nodes, and relations are
represented as edges from the subject entity node to the object entity
node. We removed all the triples of drug-disease relationship in
DRKG that were not present in the benchmark dataset (Jarada et al.,
2021; Zhang et al., 2018), added new triples of drug-disease
relationship that existed in dataset to DRKG, and regarded the
obtained triples in DRKG as the KG dataset.

2.3.2 Knowledge graph embedding
As shown in Figure 1, we employed the widely adopted KGE

method, ComplEx (Trouillon et al., 2016), to derive KG-based
feature representations for each entity and relationship in the
DRKG. ComplEx models entities and relations by embedding
them into complex domains, which can capture the asymmetric
relationship between triples (drug-disease-relationship) while
preserving the vector representation, thereby more effectively
handling the drug-disease interaction prediction problem. The
process is as follows.

• Embedding Initialization: The dataset contains nr drugs and
nd diseases. For each drug ri, we learn the complex vector
es ∈ Ck of ri, and Ck represents a complex vector space with k
dimensions. Similarly, for each disease dj, learn the complex
vector eo ∈ Ck of dj. For the drug-disease interaction
relationship r, we learn the complex vector wr ∈ Ck.

• Predicting drug-disease interaction scores: A scoring function
is used to measure the interaction strength between the
learned complex embedding vectors of drugs and diseases,
thereby predicting potential drug-disease interactions. The
scoring function is a core component of the ComplEx
embedding method. By training and optimizing the scoring
function, the embedding vectors of drugs and diseases are
adjusted and refined. The scoring function for the triple is
described as Equation 7.

ϕ r, s, o;Θ( ) � Re <wr, es, �eo >( )
� Re ∑K

k�1
wrkesk�eok⎛⎝ ⎞⎠

� 〈Re wr( ),Re es( ),Re eo( )〉
+〈Re wr( ), Im es( ), Im eo( )〉
+〈Im wr( ),Re es( ), Im eo( )〉
−〈Im wr( ), Im es( ),Re eo( )〉

(7)

where Θ denotes the model parameters, wr is the embedding vector
of the relation, es is the subject vector of the relation, �eo is the
conjugate object vector of the relation, Re(x)means to take the real
vector component of x, Im(x) means to take the imaginary vector
component of x. In the complex space,< eo, es > � < es, eo > , so
Re(< eo, es > ) is symmetric, while Im(< eo, es > ) is antisymmetric.
The score for the triple (s, r, o) is calculated as the product of the
conjugate vector of the relation r and the vectors representing the
subject s and object o, with the real part of the final result retained.
The predicted probability of interaction that the triple (s, r, o)
existed in knowledge graph is calculated by the logistic inverse
link function defined in Equation 8.

P Yrso � 1( ) � σ ϕ r, s, o;Θ( )( ) (8)

• Model training and optimization: In order to learn
appropriate embedding representations of drugs and
diseases, the ComplEx model optimizes the embedding
representation through negative sampling and loss function.
The goal of the loss function is to maximize the prediction
score of the true drug-disease interaction pair while
minimizing the score of the negative sample pair. The loss
function of the model is defined as Equation 9.

min
Θ

∑
r s,ρ( )∈Ω

log 1 + exp −Yr,ρϕ s, r, σ,Θ( )( )( ) + λ‖Θ‖22 (9)

where λ is a hyper-parameter introduced in the study (Trouillon
et al., 2016).

• Extracting features: Using the trained model, the embedding
vectors of drug and disease entities are extracted as their global
topological feature representation Y ∈ RN×D.

2.4 Feature fusion based on iAFF

In this study, we used the iterative attention feature fusion (iAFF)
method (Dai et al., 2021) to fuse the attribute feature X ∈ RN×D

obtained from the graph regularized integration module with the
topological feature Y ∈ RN×D learned from the knowledge graph
embedding. The iAFF updates the feature representation iteratively
and uses theMultiscale Channel AttentionModule (MS-CAM) to learn
feature information with different scale in each channel and calculate

FIGURE 2
The structure of iterative attention feature fusion.
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the attentionweight of each channel feature. These attentionweights are
multiplied element-wise with the original features to achieve channel-
level feature enhancement. As shown in Figure 2, the input feature
representations X and Y are extracted by CNN to obtain intermediate
features with C channels and feature maps of size N × D. First, we
perform the initial feature fusionX ⊕ Y on the input featuresX and Y.
Next, to achieve a more comprehensive perception of the input feature
map, the MS-CAM module is used to calculate attention weights of
X ⊕ Y, assigning different weights to features X and Y. The detailed
calculation of the attention feature fusion is defined as Equation 10.

XmY � M X ⊕ Y( ) ⊗ X ⊕ 1 −M X ⊕ Y( )( ) ⊗ Y (10)
wherem denotes the disjoint union operation, ⊕ denotes broadcasting
addition, ⊗ denotes the element-wise product operation, M(·) denotes
the generation of attention weights using theMS-CAMmodule and the
dashed line indicates the operation 1 −M(X ⊕ Y).

Finally, the attention-fused feature XmY is iteratively used in
the MS-CAM module to calculate new attention weights, assigning
defferent weights to feature X and Y. This two-stage calculation
method is called iterative attention feature fusion (iAFF). The
iteratively attention-fused feature Z is defined as Equation 11.

Z � M XmY( ) ⊗ X ⊕ 1 −M XmY( )( ) ⊗ Y (11)

2.5 Prediction of drug-disease interactions
based on GCN

Recently, graph convolutional networks (GCNs) (Kipf and
Welling, 2016) have attracted increasing attention and have been
widely applied to various drug repositioning prediction tasks in an
end-to-end manner (Peng et al., 2022). In this study, the drug and
disease feature vectors obtained through feature fusion, along with
known drug-disease interactions, are fed into a graph convolutional
neural network (Cai et al., 2021) to predict candidate drug-disease
interactions.

2.5.1 Construction of the drug–disease
heterogeneous network

Using the fused drug and disease feature matrix, the similarity
matrix R and D are calculated based on the Euclidean distance.
Subsequently, the drug-disease heterogeneous network is
constructed using the drug similarity matrix R, the disease
similarity matrix D, and the drug-disease interaction matrix.

The drug–drug similarity matrix is denoted as a graphGr withN
drugs, and its adjacency matrix Ar ∈ RN×N is composed of the drug
similarity matrix Sr. Specifically, if drug is the rj nearest neighbor of
drug ri based on drug similarity matrix Sr, then the (i, j) th entry of
Ar is Srij; otherwise A

r
ij � 0. topk denotes the number of K nearest

neighbors of each drug or each disease. Similarly, the disease-disease
similarity matrix is denoted as a graph Gd with M diseases, and its
adjacency matrix Ad ∈ RM×M is composed of disease similarity
matrix Sd. Specifically, if disease dj is the topk nearest neighbor
of disease di based on disease similarity matrix Sd, then the (i, j) th
entry of Ad is Sdij; otherwise Ad

ij � 0. The drug–disease interaction
matrix is denoted as a graph G withN drugs andM diseases, and its
adjacent matrix is A ∈ {0, 1}N×M. Aij � 1 if a drug ri is associated

with a disease dj. Aij � 0 if the association between drug ri and
disease dj is unknown or unobserved.

2.5.2 Feature extraction based on GCN
GCN is a multilayer connected neural network architecture and

is used to learn low-dimensional representations of nodes from
graph-structured data. In this study, we employed a heterogeneous
information fusion graph convolutional network model (Cai et al.,
2021) to predict drug-disease associations. The strategy of fusing
intra-domain features and extra-domain features is used by this
method to improve the prediction performance. Specifically, the
intra-domain embeddings of drugs and diseases are first extracted
using the drug-drug similarity network and the disease-disease
similarity network. Then, the inter-domain embeddings of drugs
and diseases are extracted using the drug-disease association
network. Finally, the inter-domain embeddings and intra-domain
embeddings are fused to obtain the final embedding representations
of drugs and diseases.

First, we initialize the embeddings of drugs and diseases as
Equation 12.

H0 � H0
r

H0
d

[ ] � Sr 0
0 Sd

[ ] ∈ R N+M( )× N+M( ) (12)

Second, the intra-domain feature extractionmodule is defined as
Equation 13.

Ĥ
l+1 � Ĥ

l+1
r

Ĥ
l+1
d

⎡⎣ ⎤⎦ � GCN Ar,Hl
r,W

l
r( )

GCN Ad,Hl
d,W

l
d( )⎡⎣ ⎤⎦ (13)

where Ĥ
l+1
r ∈ RN×k is the drug intra-domain output features at the l

th-layer, Ĥ
l+1
d ∈ RM×k is the disease intra-domain output features at

the l th-layer, is the drug input embeddings at the l th-layer,Hl
r is the

disease input embeddings at the l th-layer and Wl
r ∈ Rk×k and

Wl
d ∈ Rk×k are trainable matrices of the l th-layer intradomain

feature extraction module. Graph convolution operation is
denoted as GCN(A,H,W), and is formulated as Equation 14.

GCN A,H,W( ) � σ D−1
2AD−1

2HW( ) (14)

where D � diag(∑jAij) and σ(·) is a ReLU (Nair and Hinton, 2010)
activation function.

The inter-domain feature extractionmodule for message passing
between drugs and diseases is composed of a bilinear aggregator
(BA) and a traditional GCN aggregator (AGG). Specifically, for a
drug ri, its drug inter-domain feature extractionmodule is defined as
Equation 15.

H
~ l+1
ri

� σ αl
∑
j

Hl
dj
Wl ⊙ Hl

ri
Wl( )Aij

∑
j
Aij

+ 1 − αl( )∑j H
l
dj
WlAij

∑
j
Aij

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(15)

where ⊙ is an element-wise product, Hri

~
l + 1 ∈ Rk is the l th-layer

drug inter-domain output feature of drug ri, Wl ∈ Rk×k is a trainable
matrix and αl ∈ R is a trainable scalar used to balance the
importance between BA and the traditional GCN aggregator. For
disease dj, its disease inter-domain feature extraction module is
defined in the same way as the drug inter-domain feature extraction
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module, using H
~ l+1
dj

∈ Rk to represent the l th-layer of disease inter-
domain output features of disease dj.

Finally, the intra-domain features and inter-domain features are
merged as Equation 16.

Hl+1 � Ĥ
l+1 + ~H

l+1 +Hl � Ĥ
l+1
r + ~H

l+1
r +Hl

r

Ĥ
l+1
d + ~H

l+1
d +Hl

d

⎡⎣ ⎤⎦ (16)

whereHl+1 is the l th-layer output embeddings of the nodes (drugs and
diseases). The embeddings at different GCN layers capture different
levels of information of the input graphs. After the L layer, we obtained
L k-dimensional drug and disease embeddings, respectively.

Next, layer attention is introduced into the network architecture
to adaptively combine embeddings at different graph convolution
layers with an attention mechanism to further improve the
prediction performance. Specifically, we paid different attention
to convolution layers to integrate embeddings and obtained the
final embeddings of drugs and diseases as Equation 17.

HR

HD
[ ] � ∑

l�1
βlHl (17)

where βl ∈ R is auto-learned by neural networks and initialized as 1/
L, which denotes the contributions of the embeddings at different
convolution layers to the feature embeddings. HR ∈ RN×k is the
feature embeddings of drugs, and HD ∈ RM×k is the final
embeddings of diseases.

2.5.3 Drug-disease interaction prediction
To reconstruct the associations between drugs and diseases, the

decoder f(HR,HD) is formulated as Equation 18.

Â � f HR ,HD( ) � sigmoid HRH
T
D( ) (18)

where Â ∈ RN×M is the predicted probability score matrix. The
predicted score for the association between drug ri and disease
dj is given by the corresponding (i, j) th entry of Â.

The parameters are learned by minimizing the weighted binary
cross entropy loss as Equation 19.

loss � − 1
N × M

γ × ∑
(i,j)∈S+

logÂij + ∑
(i,j)∈S−

1 − logÂij( )⎛⎝ ⎞⎠ (19)

where N denotes the number of drug nodes, M denotes the number of
disease nodes, (i, j) denotes the pair of drug ri and diseasedj, S+ denotes
the set of all known drug–disease association pairs and S− represents the
set of all unknown or unobserved drug–disease association pairs. The
balance factor γ � |S−|

|S+| is used to reduce the impact of data imbalance,
where |S−| and |S+| are the number of pairs in S+ and S−.

Finally, the model is optimized using the Adam optimizer
(Diederik, 2014) and the weights are initialized as described in
Glorot and Bengio (2010).

3 Results and discussion

3.1 Datasets

Two benchmark datasets containing drug-related information
similarity, disease-related information similarity, and drug-disease

interaction are used in this study. The detailed information of the
two datasets is shown in Table 1.

3.1.1 SND dataset
The SND benchmark dataset was assembled from various

biological and biomedical data sources. Drug-disease interaction
data was collected from two widely used data sources, namely,
DrugBank (Wishart et al., 2018) and repoDB (Brown and Patel,
2017). The dataset contains 867 FDA-approved drugs, 803 diseases,
and 8,684 clinically reported and/or experimentally validated drug-
disease interactions with 98.75% sparsity.

SND contains ten drug similarity data: (1) target interaction
similarity, (2) side effect similarity, (3) chemical structure similarity,
(4) GO molecular function similarity, (5) GO biological process
similarity, (6) GO cellular component similarity, (7) metabolism
enzyme similarity, (8) protein sequence similarity, (9) ATC code
similarity and (10) drug interaction similarity.

Moreover, the dataset contains fourteen disease similarity (1)
curated gene similarity, (2) HPO gene similarity, (3) literature gene
similarity, (4) curated variant similarity, (5) literature variant
similarity, (6) microRNA similarity, (7) lncRNA similarity, (8)
HPO phenotype similarity, (9) IS-A taxonomy similarity (10)
information-theoretic similarity, (11) GO term similarity (12)
implicit semantic similarity, (13) semantic & functional
similarity, and (14) association ontology similarity.

3.1.2 SCMFDD_S dataset
The SCMFDD_S benchmark dataset are collected from the

literature (Zhang et al., 2018). The drug-disease interaction data
include 18,416 known drug-disease interactions between 269 drugs
and 598 diseases from CTD (Davis et al., 2017), with a sparsity
of 88.55%.

SCMFDD_S contains five drug similarity data: (1) target
interaction similarity, (2) metabolism enzyme similarity, (3)
drug interaction similarity, (4) pathway similarity, and (5)
chemical substructure similarity. Information on drug targets,
enzymes, and related aspects is sourced from DrugBank (Wang
et al., 2010).

Disease similarity data based on the MeSH descriptor is
contained in SCMFDD_S. The MeSH descriptors of the disease
can be represented as a hierarchical directed acyclic graph (DAG),
and the DAG structure can be used to calculate the similarity
between two diseases (Meng et al., 2022).

3.2 Method comparisons

To validate the effectiveness of our approach in predicting
drug-disease associations, we compared KGRDR with six state-of-
the-art drug repositioning methods based on recommender
systems and GCNs, including LAGCN (Yu et al., 2021),
DRHGCN (Cai et al., 2021), DRWBNCF (Meng et al., 2022),
GCNAT (Sun et al., 2022), SMGCL (Gao et al., 2023), and
DRAGNN (Meng et al., 2024). These methods are described in
detail as follows.

• LAGCN is a layered attention graph convolutional network,
which is used for the drug–disease associations prediction.
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• DRHGCN uses GCN to extract inter-domain and intra-
domain feature information of drugs and diseases, thereby
finding new drug indications based on different network
topology information of drugs and diseases in
different domains.

• DRWBNCF is a neural collaborative filtering method that
proposes a new weighted bilinear graph convolution operation
to integrate the information of the known drug–disease
association, drug’s and disease’s neighborhood, and
neighborhood interaction into a unified representation to
infer novel potential drug–disease associations.

• GCNAT is a deep learning algorithm that combines graph
convolutional networks (GCN) and graph attention networks
(GAT). After building a heterogeneous network, this approach
combines the embeddings of multiple convolutional layers
using a graph attention layer on a constructed heterogeneous
network and assigns different weights to predict new
metabolite-disease associations.

• SMGCL is a graph contrastive learning method based on
similarity measurement. It introduces graph contrastive
learning methods and jointly trains node representations to
maximize consistency, thereby overcoming the problem of
sparse supervision signals in traditional graph neural network
methods and enhancing the predictive ability of drug-disease
associations.

• DRAGNN is a local information weighted enhancement
method that improves the effectiveness of target node
information collection by combining the attention
mechanism and omitting self-node information aggregation,
thereby improving the prediction performance of the model.

These competing methods with the optimal parameters
suggested in the original papers are compared with KGRDR
using 10-fold cross-validation. Furthermore, we conducted
parameter analysis and selected the best parameters for KGRDR.

3.3 Parameter settings

There are multiple parameters in KGRDR which can impact
the model performance. According to the literature (Zhang et al.,
2022b), the number of neighbors K in the graph regularization
integration module is set to 20, the surfing parameter α is set to 1,
the regularized parameter γ is set to 10, and the embedding
feature dimension is set to 500. We initialize the embedding
dimension of KG to 500, set the learning rate to 0.1, and set the
regularization coefficient to 1.00E-07. GCN adopts a three-layer
architecture with 64 hidden units in each layer. In terms of
variable settings, referring to the settings of Cai et al. (2021),

the regular loss rate of 0.4, the edge loss rate of 0.2, the learning
rate of 0.05, the topk of 15, and the maximum number of training
epochs for all experiments is 4,096. The hyperparameters of
LAGCN, DRHGCN, DRWBNCF, GCNAT, SMGCL and
DRAGNN are selected according to the optimal values
provided by their publications. We use 10-fold cross
validation to evaluate model parameters and grid search to
select the best hyperparameter settings. Since the embedding
dimension directly impacts the learned representation of the
fused feature vectors and knowledge graph embedding vectors,
while the channel scaling ratio reflects the compression of
channel information, we tested the above parameters: graph
regularized integration and KG embedding feature dimensions
within the range of ∈ 100, 200, 300, 400, 500, 600, channel scaling
ratios within the range of ∈ 2, 4, 8, 16, 32, 64 in iterative attention
feature fusion. Table 2 provides the details of the
parameter settings.

3.4 Performance evaluation

In this study, we conducted 10-fold cross-validation on two
benchmark datasets to evaluate the performance of KGRDR. During
the 10-fold cross-validation, we randomly selected 10% of the
known drug-disease associations and 10% of the unknown
associations in the dataset as the testing set; the remaining 90%

TABLE 1 Detailed information of benchmark datasets.

Datasets No.
drugs

No.
disease

No.
interactions

Sparsity No. drug
similarities

No. disease
similarities

SND (Jarada et al., 2021) 867 803 8,684 0.9875 10 14

SCMFDD_S (Zhang et al.,
2018)

269 598 18,416 0.8855 5 1

TABLE 2 Hyperparameter settings.

Parameter Setting

epoch 4,096

embedding_dim 128

learning rate 5 × 10–2

layer_num 2

topk 15

dropout 0.4

edge_dropout 0.2

optimizer Adam

GR_dim 500

KG_dim 500

KG_model_name ComplEx

KG_lr 0.1

KG_regularization 1 × 10–7
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of clinically reported drug-disease association and unknown drug-
disease associations pairs were used to train the prediction model.
The area under the receiver operating characteristic curve (AUROC)
and the area under the precision–recall curve (AUPR) has been
widely used in bioinformatics research (Zhang et al., 2020a; Zhang
et al., 2020b). We adopt these two metrics to evaluate the overall
performance of KGRDR and compare it with six state-of-the-art
association prediction methods.

As shown in Table 3, on the SND dataset, KGRDR finally
achieved an AUROC of 0.9864, which is 2.09% higher than the
second-ranked DRHGCN; KGRDR achieved an AUPR of 0.7915,
which is 11.69% higher than the second-ranked DRHGCN. It is
worth noting that KGRDR also achieved the highest AUROC and
AUPR on the SCMFDD_S dataset. The benchmark comparison
results of the two datasets show that KGRDR outperforms six
state-of-the-art prediction models. In particular, the results of
each 10-fold cross-validation are basically consistent, which
shows that our model shows convincing performance and high
robustness.

The excellent prediction performance of KGRDR can be
attributed to learn the feature representations of drugs and
diseases from different perspectives and fuse these features to
improve the prediction performance. First, KGRDR
considers14 the information of drugs and diseases from
multiple similarity perspectives, and uses a graph regularized
integration method to fuse the different similarity information
of drugs and diseases, which can obtain more comprehensive
common attribute feature information. Then, KGRDR uses the
existing drug-disease interaction data and combines all related
entities in KG to enrich the global topological representation of
drugs and diseases. Finally, the attention feature fusion method is

used to fuse these two features of information, which can more
effectively represent the entity characteristics of drugs and
diseases, thereby further improving the performance of the
drug-disease interaction prediction model.

3.5 Parameter sensitivity analysis

To further analyze KGRDR, we studied the impact of some
parameters on model performance. The dimension of embedding
directly affects the representation ability of the fused feature vector
and the knowledge graph embedding vector. Increasing the
embedding dimension can effectively encode more feature
information. However, exceeding a certain range will lead to
overfitting, which will reduce the model performance. The
channel scaling ratio reflects the compression of channel
information. Reducing the channel scaling ratio makes the
number of channels of the feature map larger, which means that
the model can retain more feature information. However, having an
excessive number of channels can lead to overfitting, which will
affect the model performance. Therefore, we conducted parameter
sensitivity analysis on the two parameters to select the optimal
parameters for KGRDR. All the following studies were conducted
using 10-fold cross validation experiments on the SND benchmark
dataset in Table 1.

3.5.1 Effect of the dimension of embedding
As shown in Figure 3, we selected the embedding dimensions

of {100, 200, 300, 400, 500, 600} to adjust the graph regularized
integration module and the KG embedding representation
module, and evaluated them through the AUROC and AUPR
indicators. The result shows that when the embedding dimension
is 500, the performance of the model reaches optimal.
Specifically, as the embedding dimension increases from
100 to 500, the model prediction performance improves
significantly. However, when further increasing the embedding
dimension to 600, the model performance decreases. This shows
that within a certain range, increasing the embedding dimension
can effectively encode more feature information, thereby
improving model performance. However, exceeding the
optimal embedding dimension can lead to overfitting and thus
degrade prediction performance.

3.5.2 Effect of the parameter channel scaling ratio
As shown in Figure 4, we evaluated the impact of different

channel scaling ratios on the iterative attention feature fusion
module effect of drug and disease feature. We changed the
channel scaling ratio in the range of {2, 4, 8, 16, 32, 64} and
analyzed its impact on the model performance.

The result shows that KGRDR performs best when the
channel scaling ratio is set to 4. The smaller the channel
scaling ratio, the more channels the intermediate feature map
has, which means the model can retain more feature
information. Specifically, as the channel scaling ratio
increases from 2 to 4, the model prediction performance
improves significantly. However, when further increasing the
channel scaling ratio to 64, the model performance decreases.
This shows that within a certain range, decreasing the channel

TABLE 3 Comparison of KGRDR with the state-of-the-art methods.

Method SND dataset SCMFDD_S dataset

AUROC AUPR AUROC AUPR

LAGCN 0.8890 0.3791 0.8695 0.2502

DRHGCN 0.9655 0.6915 0.8667 0.5345

DRWBNCF 0.9278 0.6630 0.8480 0.4761

GCNAT 0.7578 0.2539 0.8240 0.3070

SMGCL 0.9343 0.4434 0.8665 0.5057

DRAGNN 0.8560 0.3016 0.8059 0.4190

KGRDR 0.9864 0.8085 0.8739 0.5470

The best results are highlighted in bold.

TABLE 4 Detailed information of benchmark datasets.

Methods AUROC AUPR

KGRDR (w/o KG + GRI) 0.9655 0.6915

KGRDR (w/o KG) 0.9826 0.7502

KGRDR (w/o GRI) 0.9845 0.7882

KGRDR 0.9864 0.8085
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scaling ratio can effectively encode more feature information,
thereby improving model performance. However, exceeding the
optimal channel scaling ratio can lead to overfitting, which may
degrade prediction performance.

3.6 Comparison with the other multi-
similarity fusion methods

To further demonstrate the performance of KGRDR in multi-
similarity network fusion, we compare it with four methods: SNF-H
(Olayan et al., 2018), SNF-NN (Jarada et al., 2021), DeFusion (Wang
et al., 2021) and EnMuGR (Zhang et al., 2022b). Among them, SNF-
H, DeFusion, and EnMuGR used the same network prediction
model (DRHGCN). They were compared with KGRDR on the
SND dataset in Table 1. The SNF-NN first compiled and used a
large number of drug and disease similarity datasets (SND). The
optimal network model (NN) provided by the publication (Jarada
et al., 2021) was compared with KGRDR on the SND dataset. The
results are as follows.

As shown in Figure 5, when using the same dataset and
prediction model, KGRDR achieves the highest AUROC and
AUPR values compared to SNF-H, DeFusion, EnMuGR and
SNF-NN, indicating that the proposed method better integrates
multiple similarity networks, thereby improving the prediction
model’ performance.

3.7 Ablation study

According to Figure 1, KGRDR mainly consists of four parts:
graph regularized integration module, knowledge graph extraction
module, iterative attention feature fusion module and graph
convolutional network prediction module. In KGRDR, we
learned multi-similarity integrated feature representation and
knowledge graph-based feature representation. To verify the
impact of these two feature representations on model
performance, we designed three KGRDR variants and compared
them on the SND dataset. The model variants are outlined
as follows:

FIGURE 3
The impact of different embedding dimensions.

FIGURE 4
The impact of different channel scaling ratios.
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The model variants are summarized as follows.

• KGRDR(w/oKG + GRI): A variant of KGRDR, which is the
original graph convolutional network model based on
heterogeneous information fusion, only uses the single
similarity information of drugs and diseases for calculation.

• KGRDR(w/oKG): A variant of KGRDR, which consists only
of a feature extraction module based on knowledge graph.

• KGRDR(w/oGRI): A variant of KGRDR, which consists only
of a graph regularized integration module.

Table 4 shows the performance of KGRDR and various
variants on the SND dataset. In the 10-fold cross validation,
the performance of the combined graph regularized integration

module with the knowledge graph extraction module is better
than that of using only a single module. This result shows that the
weighted attention fusion of the attribute feature information
obtained by graph regularized integration and the global
topological feature information obtained by knowledge graph
extraction helps to improve the prediction performance of
KGRDR. Additionally, we validated the predictive ability of
KGRDR in drug-disease interactions using the graph
regularized integration module and the knowledge graph
extraction module separately through local exclusion cross-
validation. The experimental result shows that both variants
have better predictive performance than the original graph
convolutional network model, which indicates that both the
graph regularized integration process and the knowledge
graph-based feature extraction operation can improve the
predictive performance of drug-disease interactions.

3.8 Case study

To further verify the reliability of KGRDR, the proposed method
KGRDR was applied on the SND dataset to learn feature
embeddings of drugs and diseases. The learned embeddings were
used to predict interaction scores for the unknown drug-disease
associations.

In this study, we predicted candidate drugs for two
neurodegenerative diseases including Alzheimer’s disease and
Parkinson’s disease having a large patient population, high
incidence, and no definitive cure. Extensive research has been
conducted on the two diseases.

For AD, we focused on the top 10 potential drugs predicted by
KGRDR (Table 5) and searched for literature evidence
supporting the predictions in the biomedical literature to

FIGURE 5
Comparison of multiple similarity network fusion methods.

TABLE 5 The top 10 KGRDR-predicted candidate drugs for AD.

Rank Candidate drugs PubMed Id

1 Escitalopram 3,2,741,828

2 Tamoxifen 33,831,349

3 Tacrolimus 17,270,732

4 Amitriptyline 21,738,757

5 Phenylbutyric acid 37,354,655

6 Rifampin 22,718,435

7 Mechlorethamine 7,885,382

8 Prochlorperazine 17,047,137

9 Hyoscyamine 36,508,538

10 Chlorpromazine 27,458,372
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check the predicted drug-disease associations. The results
showed that all 10 candidate drugs (100% success rate) were
validated by clinical trials from reliable sources. For example,
Escitalopram was originally used to treat major depressive
disorder (MDD), generalized anxiety disorder (GAD), and
other specific psychiatric disorders such as obsessive-
compulsive disorder (OCD). A previous study reported that
Escitalopram can improve tau hyperphosphorylation in vitro,
and inhibition of tau hyperphosphorylation is one of the most
promising therapeutic targets for the development of drugs to
alleviate Alzheimer’s disease (AD). This was confirmed by an
experiment using Escitalopram to alleviate Tau pathological
changes in elderly P301L Tau transgenic mice with AD (Wang
et al., 2020). The pathogenesis of Alzheimer’s disease (AD) is a
complex process, in which the protein toxicity of amyloid β(Aβ)
has been identified as a major factor. Phenylbutyric acid has been
shown to alleviate the onset of AD by reducing Aβ protein
toxicity through its proven chemical chaperone properties or
inhibiting histone deacetylase (HDAC) (Baumanns et al., 2023).
In addition, the drugs Amitriptyline and Tamoxifen predicted by
KGRDR have also been confirmed by biomedical experiments to
have significant beneficial effects on aging and impaired
AD brains.

For PD, we focused on analyzing the top 10 candidate drugs
predicted by KGRDR. As shown in Table 6, we found that 9 out of
10 drugs (90% success rate) have been verified by the reliable sources
and clinical trials. For example, KGRDR predicted that Biperiden
affects both the central and peripheral nervous systems. It has been
approved for the treatment of arteriosclerosis, idiopathic and post-
encephalitic Parkinson’s syndrome. This drug-disease association
has also been recorded in DrugBank (Wishart et al., 2018).
Therefore, Biperiden is the first potential drug predicted in this
article to treat Parkinson’s disease. In addition, Orphenadrine
predicted by KGRDR as an adjuvant drug for relieving
musculoskeletal pain and discomfort symptoms has also been
shown to be useful for the treatment of drug-induced Parkinson’s
syndrome and the relief of pain caused by muscle spasms. This
prediction is also supported by DrugBank and PubChem.

To sum up, most of our predictions can be verified by reliable
sources and clinical trials. The case study results further demonstrate

the effectiveness of KGRDR in predicting novel drug–disease
associations.

4 Conclusion

In this study, we proposed a new framework for drug-disease
interaction prediction by combining graph regularized integration
and knowledge graph embedding, named KGRDR. Firstly, in order
to alleviate the data quality problem caused by using single feature
information of drugs and diseases, the graph regularized integration
method is applied to fuse the drug and disease similarities frommultiple
data sources to build amore comprehensive heterogeneous networkwith
multiple relationship types to improve the prediction performance of the
model. Secondly, most of the current studies on drug-disease interaction
prediction only consider drug and disease entities, ignoring the
association between drugs or diseases and other entities during the
drug’s efficacy. Therefore, we introduce the knowledge graph embedding
module to obtain the global topological feature representation of drug
and disease entities by constructing the association between drugs and
diseases and multiple medical entities. Finally, the attention feature
fusion method is used to fuse the feature information of the graph
regularized integration module and the knowledge graph embedding
module, and feed the fused features into the graph convolutional
network prediction model to identify the potential therapeutic
indications of drugs. The results of extensive experiments
demonstrated that KGRDR outperformed other drug–disease
association prediction methods and various variants of KGRDR.

In summary, KGRDR integrates multiple similarity information
between drugs and diseases, and obtains various topological
associations in drug-disease heterogeneous networks based on
knowledge graphs, which can significantly improve the
performance of drug-disease interaction prediction models. It can
help pharmacologists or biologists effectively narrow down the
search space of candidate drugs. It may further guide them to
conduct wet-lab experiments and thus reduce costs and time. In
future work, more biomedical information can be integrated to learn
drug and disease features, and efficient fusion strategies can be
designed to obtain more comprehensive feature information.
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